

USDOT Tier 1

University Transportation Center

on Improving Rail Transportation

Infrastructure Sustainability and Durability

Final Report UNLV-5

DEVELOPMENT OF MULTI-ROTOR-UAV-BASED RAIL TRACK IRREGULARITY

MONITORING AND MEASURING PLATFORM WITH IMAGE AND LIDAR

SENSORS

By

Lihao Qiu, Graduate Student, Ming Zhu, Ph.D., Lab Director, Yingtao Jiang, Ph.D., Professor

Department of Electrical and Computer Engineering, University of Nevada, Las Vegas

Jee Woong Park, Ph.D., Professor

Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas

Han Li, Ph.D., Professor

College of Mathematics, Wenzhou University, Wenzhou, Zhejiang, China

Tianding Chen, Ph.D., Professor

Minnan Normal University, Zhangzhou, Fujian, China

Haijian Shao, Ph.D., Associate Professor

Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China

and

Hualiang (Harry) Teng, Ph.D., Professor

Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas

September 2024

Grant Number: 69A3551747132

ii

DISCLAIMER

The contents of this report reflect the views of the authors, who are responsible for the facts and

the accuracy of the information presented herein. This document is disseminated in the interest of

information exchange. The report is funded, partially or entirely, by a grant from the U.S.

Department of Transportation’s University Transportation Centers Program. However, the U.S.

Government assumes no liability for the contents or use thereof.

iii

CONTENTS

DISCLAIMER .. II

LIST OF TABLES ... VII

LIST OF FIGURES ... VIII

DISCLAIMER .. ii

EXECUTIVE SUMMARY .. 1

1 TRACK GEOMETRY BACKGROUND ... 2

1.1 Overview ... 2

1.2 The Basics of Track Geometry ... 2

1.2.1 Track Irregularities .. 7

1.2.2 Absolute vs. Relative Track Geometry ... 7

1.2.3 Space Curve .. 8

1.2.4 Chordal (Versine) Measurements .. 13

1.2.5 Additional Track Geometry Variables... 14

1.3 Types of Track Geometry Measurement Systems... 15

1.3.1 Relative and Absolute TGMS ... 16

1.3.2 Platform... 16

1.3.3 Principle of Operation ... 16

1.3.4 Autonomous TGMS .. 20

1.3.5 Vehicle Response Measurement ... 21

1.4 References ... 21

2 DEVELOPING OPTIMAL UAV FLIGHT PATH .. 24

2.1 Overview ... 24

2.2 Introduction ... 24

2.3 Preliminaries and Background .. 25

2.3.1 Value-oriented Method for the Exploration-Exploitation Tradeoff in RL 25

2.3.2 RL over Graphs ... 26

2.3.3 Floyd-Warshall Algorithm .. 27

2.4 Convergence of Exploration and Exploitation .. 27

2.4.1 Completely Explored Graph ... 27

2.4.2 Exploration Converges to Exploitation ... 28

2.5 Algorithm Implementation.. 30

2.5.1 Shortest Path Search in Dynamic Environment .. 31

2.5.2 Guided Exploration ... 32

2.5.3 Update of the CEG .. 33

2.6 Experimental Results .. 34

2.6.1 Setup of Experiment ... 34

2.6.2 Performance Comparison with Q-learning Algorithms .. 36

2.6.3 The Maze in the Dynamic Environment ... 41

2.6.4 Computation Efficiency .. 43

2.7 Conclusion .. 44

2.8 References ... 44

3 UAV-LIDAR-BASED GEOMETRY MEASUREMENT SYSTEM 46

3.1 Overview ... 46

3.2 Methodology ... 46

3.2.1 Data collection platform ... 46

iv

3.2.2 Data Analysis/Software ... 48

3.3 Results ... 54

3.3.1 Semantic segmentation result ... 55

3.3.2 Point cloud registration result ... 55

3.3.3 Geometry calculation result .. 56

3.4 Conclusion .. 59

REFERENCES.. 60

4 LIDAR CAMERA DATA FUSION .. 62

4.1 Overview ... 62

4.2 Literature Review.. 62

4.2.1 Unsupervised semantic segmentation in image .. 62

4.2.2 Camera intrinsic parameters estimation .. 63

4.2.3 Camera LiDAR extrinsic parameters estimation .. 64

4.3 Experiment .. 64

4.3.1 Unsupervised image segmentation ... 64

4.3.2 Camera intrinsic calibration .. 69

4.3.3 LiDAR camera extrinsic calibration ... 72

4.4 Results and analysis .. 73

4.4.1 Unsupervised image segmentation result.. 73

4.4.2 Calibration result ... 75

4.5 Conclusion .. 76

4.6 References ... 77

5 ACKNOWLEDGEMENTS .. 79

6 ABOUT THE AUTHOR ... 80

v

TABLE OF FIGURES

Figure 1 A simple curve .. 2

Figure 2 MCO measurement with a 62-foot chord ... 4
Figure 3 Curves without (left) and with (right) transition curves ... 5
Figure 4 Multicentered curves. ... 5
Figure 5 Track gauge and superelevation. .. 6

Figure 6 Balance conditions.. 6

Figure 7 The relationship between absolute track geometry and alignment................................... 9
Figure 8 Space curve corresponding to the track in Figure 7. .. 9
Figure 9 Absolute and relative vertical track geometry. ... 10
Figure 10 Non-tilting (left) and tilting (right) track-centered coordinate systems 11

Figure 11 Space curve variable definitions ... 13
Figure 12 Versine (chordal) measurement. ... 14

Figure 13 Mid-chord offsets (2017 FRA Compliance Manual, Vol. 2, Ch.1,p.2.1.29)................. 14

Figure 14 Rail dip angle (left); switch entry (i.e., kink) angle (right). ... 15
Figure 15 Manual and automated optical surveying. .. 17

Figure 16 Traditional vehicle-mounted IMS and its schematic (Lewis, 2011) 18
Figure 17 Vehicle-mounted chordal TGMS .. 19
Figure 18 In reinforcement learning, the agent observes the environment and interact with the

environment, update its own state and receives reward .. 24
Figure 19 An example of a completely explored graph. ... 28
Figure 20 Graph iterative frame .. 31

Figure 21 Maze settings .. 35
Figure 22 The steps amount in the #25 maze per episode comparison... 36
Figure 23 The number of steps in the #908 maze per episode .. 37

Figure 24 Average exploration efficiency while solving maze 25 .. 37
Figure 25 Average exploration efficiency while solving maze 908 .. 38

Figure 26 Convergence speed comparison: ql and SFW .. 39
Figure 27 Convergence speed comparison: qlm and SFW ... 39
Figure 28 Steps length of convergence comparison: ql and SFW .. 40

Figure 29 Steps length of convergence steps comparison: qlm and SFW 40
Figure 30 Explore efficiency comparison ... 41

Figure 31 Dynamic obstacles, maze #8 .. 42
Figure 32 Dynamic target, maze #243 .. 43
Figure 33 Left: Data collection prototype description. Right: Data collection hardware at the test

site. .. 46

Figure 34 Coordinate axis difference between the LiDAR and the IMU. 48

Figure 35 Flowchart of data processing. ... 49
Figure 36 Supervisely annotation process.. .. 49
Figure 37 Network structure. .. 51
Figure 38 Test site track section for data collection. ... 55
Figure 39 Testing IoU curve. .. 55

Figure 40 Registered test site point cloud map. .. 56

Figure 41 Using specialized rail tools to measure gauge, curvature, and profile at the test site. . 56
Figure 42 Gauge calculation process. ... 57

vi

Figure 43 Curvature calculation process... 58
Figure 44 Profile calculation. .. 59

Figure 45 Histogram of deviations of calculated values from measured values. 59

Figure 46 Rail images. (a) Rails in original condition. (b) Inverted binary image. 65
Figure 47 Non-maximum suppression. ... 65
Figure 48 Hysteresis thresholding. ... 66
Figure 49 Flowchart of unsupervised image segmentation .. 67

Figure 50 Key points. .. 68

Figure 51 Cover ROI .. 68
Figure 52 U-net like model to predict point wise labels.. ... 69
Figure 53 FLIR camera setup for data fusion ... 71
Figure 54 Checkerboard for camera intrinsic calibration. .. 71

Figure 55 LiDAR camera calibration process. ... 73
Figure 56 Canny edge detection-based method result. ... 74

Figure 57 Segment-Anything result. Left: result one. Right: result two. 74

Figure 58 Segmentation result when camera is placed along the rail. .. 75
Figure 59 Segmentation result from sideview .. 75

Figure 60 Lab calibration result. ... 76
Figure 61 Field data calibration result. ... 76

vii

LIST OF TABLES

Table 1 Exploration algorithm .. 32

Table 2 Algorithm: update CEG ... 33
Table 3 Maze design parameter .. 35
Table 4 Q-learning parameter ... 36
Table 5 Dynamic obstacles, maze #8 .. 41

Table 6 Dynamic target, maze #243.. 42

Table 7 Algorithm complexity comparison ... 44
Table 8 Ouster OS-1 LiDAR key specifications. .. 47
Table 9 3DM-GQ7 IMU key specifications. ... 47
Table 10 Platform calculation result summary using RMSE. ... 59

1

EXECUTIVE SUMMARY

The field of track geometry measurement has evolved from manual and visual methods to

sophisticated Track Geometry Measurement Systems (TGMS), which use advanced digital

instrumentation to record various parameters. Despite their ability to measure long distances with

minimal human resources, TGMS still face a critical limitation: the need to close tracks during

inspection.

This project aimed to develop a multi-rotor UAV-based track geometry measurement system using

image and LiDAR sensors that does not require the closure of track during inspection. Key

challenges, including UAV path planning, data collection, and data processing, were addressed.

The research was divided into three stages: exploration of optimal path planning, development of

a LiDAR-only track geometry measurement system, and development of a camera-LiDAR track

geometry measurement system.

In the first stage, the authors identified reinforcement learning as a solution for optimal UAV path

planning and proposed a modified Floyd-Warshall (FW) algorithm. Experiments demonstrated

that the proposed algorithm effectively handles the exploration-exploitation tradeoff, showing that

exploration and exploitation converge in the decision-making process. As a result, the graph-based

algorithm finds the shortest path during exploration, leading to higher efficiency and faster

convergence compared to the Q-learning algorithm and its variants. A key advantage of the

proposed algorithm is its applicability in dynamic environments, such as UAV-based track

geometry measurement, where value-oriented algorithms typically fail. However, this improved

efficiency and convergence come at the cost of increased computational complexity.

In the second stage, the authors developed a UAV-LiDAR-based platform capable of performing

track geometry measurements alongside normal rail operations. This system, built on a UAV

equipped with a LiDAR sensor, utilizes machine learning for rail point segmentation, LiDAR

SLAM for expanding the point cloud's field of view, and regression techniques for outlier removal

and geometry calculations. Compared to traditional field measurements using specialized tools,

the platform demonstrated high accuracy in gauge measurement, though it performed less

effectively in curvature and profile measurements.

In the final stage, the authors explored integrating camera data with LiDAR to enhance track

geometry measurement. Due to time constraints, a semi-assisted supervised image segmentation

approach was used, yielding high accuracy when the rails were vertically aligned in the images.

Calibration results were highly accurate with checkerboard data but showed significant errors

when applied to rail data. As a result, the current data fusion approach is not yet suitable for the

track geometry measurement platform. Future research will aim to achieve more comprehensive

image segmentation and improve the accuracy of LiDAR-camera calibration.

Keywords: Lidar, Unmanned aerial vehicle, railroad geometry, image processing, vehicle routing

2

1 TRACK GEOMETRY BACKGROUND

1.1 Overview

Rail track geometry defines the properties and relations of points, lines, curves, and surfaces in the

three-dimensional positioning of railroad track, and popular track geometries are tangent,

horizontal and vertical curves, transition curves, superelevation, and gradient. Track irregularities

are deviations from the original geometry of a railroad track, and the typical track irregularities are

gauge, alignment, profile, cross level, twist. These irregularities are the second most frequent cause

of derailments on Class I main line tracks in the United States (Liu, 2012). Accurate and timely

measurement of track geometry is crucial for rail safety, passenger comfort, and preventing

damage to rolling stock and cargo.

The field of track geometry measurement has evolved from manual and visual methods to

sophisticated Track Geometry Measurement Systems (TGMS), which use advanced digital

instrumentation to record various parameters.

1.2 The Basics of Track Geometry

Figure 1 A simple curve

Track curvature can be expressed by the following four parameters:

a. Radius of curvature (R)

b. Inverse of radius of curvature (1/R).

c. Degree of curvature, the magnitude of the arc angle subtended by a chord of a specific length

(typically 100 feet or 20 meters).

3

The relationship between radius of curvature, chord length, and degree of curvature is given

by the formula:

 𝑅 sin (
θ

2
) =

C

2
 (1)

where R is the curve radius, θ is the arc angle in radians, and C is the chord length.

d. Mid-chord offset (MCO) or versine: This is measured at the midpoint of a chord with a

specified length:

 v = R − √R2 −
c2

4
= R(1 − cos(

θ

2
)) (2)

where v is versine, R is curve radius, and C is chord length (all length dimensions in feet or

meter; θ in radius).

Applying the small angle approximation and combining Equations (1) and (3) yields the

following relationship (Ciobanu, 2016):

 v ≅
c2

8R
≅

cθ

8
 (3)

When using a 62-foot chord, the mid-chord offset (MCO) per degree of curvature is

approximately 1 inch. This means a one-degree curve will have an MCO of about 1 inch, a

two-degree curve will have an MCO of about 2 inches, and so on for higher degrees of

curvature. (Figure 2)

4

Figure 2 MCO measurement with a 62-foot chord

Here's a paraphrased version without itemization:

Transition curves, also called easement curves or spirals, are track sections connecting tangents

and simple curves, as illustrated in Figure 3. These curves serve to prevent abrupt changes in

superelevation and centripetal acceleration when vehicles transition between straight sections and

curves, or between curves of different radii. However, transition curves might be omitted on low-

speed tracks, in cases of shallow curves, in turnouts, on older rail lines, and where space is limited

due to terrain features or structures along the track route.

5

Figure 3 Curves without (left) and with (right) transition curves

Multicentered curves, depicted in

Figure 4, consist of adjacent simple curves with either no tangent section or a short tangent section

between them. These curves may or may not include transition curves. Multicentered curves

encompass several special cases (Hay, 1982): compound curves (i.e., adjacent curves with the same

curvature direction), reverse curves (i.e., adjacent curves with opposite curvature directions), and

broken back curves (i.e., curves in the same direction separated by a short tangent).

Figure 4 Multicentered curves.

Vertical track geometry is composed of constant grade sections and vertical curves, typically

designed as quadratic parabolas. Grade represents the change in elevation (i.e., rise) relative to

horizontal distance (i.e., run), often approximated as rise over distance traveled, and is usually

expressed as a percentage.

Track gauge, illustrated in Figure 5, is the distance between the inner sides of rail heads, measured

at a specific height below the top of the rail (5/8-inch in North America, 14 mm in Europe). The

6

standard gauge, used in most countries, is 56 ½ inches, or 1435 mm. In sharp curves, the gauge

may be intentionally widened slightly from the nominal value to enhance vehicle steering.

Figure 5 Track gauge and superelevation.

Superelevation refers to the intentional elevation of the outer (i.e., high) rail in a curve above the

inner (i.e., lower) rail. This design feature compensates for the centrifugal acceleration experienced

by vehicles as they navigate the curve. In a curve, the balance speed is the velocity at which the

lateral components of centrifugal acceleration and gravitational acceleration neutralize each other.

At this speed, a vehicle experiences no net lateral force, resulting in equal wheel loads on both left

and right wheels, as depicted in Figure 6.

Figure 6 Balance conditions.

The formula for calculating balance speed in imperial units is:

 Vbal = √
Ea

0.00069θ
 (4)

where Vbal is balance speed in miles per hour, Ea is track superelevation in inches, and θ is track

curvature in degrees.

7

1.2.1 Track Irregularities

Over time, track geometry deteriorates, with the track position deviating from its design geometry.

These deviations are referred to as irregularities or excursions. Their cause includes (Puzavac et

al., 2012; Haigermoser et al., 2015; Zarembski et al., 2015; Muinde, 2018):

• Track component manufacturing tolerances, including rail rolling defects

• Errors in initial surveying, construction, and track realignment measurements

• Degradation of crossties and fasteners

• Substandard weld geometry

• Issues with rail surface geometry

• Ground settlement

• Alterations in ballast density and stiffness, resulting from settlement, washout, scattering

and tamping operations

• Vehicle-track interaction at both small scale (e.g., rail corrugation, rail squats, etc.) and

large scale (e.g., uneven ballast and soil settlement under vehicle loads) with a notable

positive feedback between increasing wheel-rail forces and degradation of track geometry

degradation (Elkhoury et al., 2018)

• Lateral track displacement due to high lateral wheel forces and inadequate lateral track

stiffness

• Track bucking caused by thermal loads and insufficient restraint

1.2.2 Absolute vs. Relative Track Geometry

Track geometry measurements are typically classified into two main categories: absolute and

relative geometry. Absolute geometry, also known as outer geometry, refers to the position of the

track in relation to an absolute reference point. This measurement is crucial for maintaining

clearances around the track and establishing its location relative to other structures.

Measurement of absolute track geometry employs traditional or automated surveying methods,

with results recorded in a surveying coordinate system (i.e., northings, eastings, and elevation).

The origin of the coordinate system can be positioned anywhere on or off the track, with the XY

surface parallel to the surface of the geoid and the Z axis perpendicular to this surface, aligning

with Earth’s gravitational force direction.

While absolute track geometry is essential for track construction and sometimes maintenance, it is

not ideal for assessing the track’s compliance with safety standards or predicting how rail vehicles

will respond to track irregularities.

Relative or inner geometry is recorded in a track-centered coordinate system. Design geometry

variables (i.e., curvature, superelevation, grade) and track irregularity variables (e.g., alignment,

profile, gauge, cross level, and twist) are plotted against the distance along the track (i.e., chainage),

often referred to as being in the distance domain. While relative track geometry doesn’t provide

information on the heading or position of the track with respect to absolute references, it describes

curves and perturbations affecting vehicle behavior. Most TGMS measure relative track geometry,

8

which is suitable for verifying track quality, compliance with safety standards, and predicting

vehicle response using multibody dynamics (MHD) simulation.

Absolute track geometry can be easily and accurately converted to relative track geometry. The

reverse process, while theoretically possible through integration, is less accurate due to

accumulating errors, unless combined with engineering survey measurements (Reedman, 2014).

Relative track geometry is recorded in two formats: space curve and chord offset (i.e., versine).

The space curve format directly relates to vehicle performance and is used for multi-body

dynamics (MBD) simulations and track quality assessment (Zhang et al., 2004; El-Sibaie and

Zhang, 2004). Many countries base their track safety standards on space curve measurements (EN

13848-1,5,6). However, its complexity in measurement and processing leads some agencies to

avoid using it (Malon, 2007).

Chordal offset measurements, while not directly related to vehicle performance, have been shown

to perform similarly to space curve measurements in predicting vehicle response to track geometry

(Keylin, 2019). These measurements are intuitive and can be taken with simple hand tools. Many

countries, including the United States, based their track safety standards on chordal measurements.

1.2.3 Space Curve

The space curve concept separates track geometry features into long-length elements, such as

curvature and gradient, and short-length elements, like alignment and profile deviations. This

separation is achieved by establishing a reference track trajectory. The space curve describes both

the deviations of the measured track from this reference trajectory and the overall geometry of the

reference trajectory itself.

Figure 7 presents a plane view of a rail track. In this figure, solid line depict the actual positions

of the rails and track centerline, while dashed lines represent the reference trajectory of the track.

The space between these solid and dashed lines illustrates the space curve, which is further detailed

in

Figure 8.

9

Figure 7 The relationship between absolute track geometry and alignment.

Figure 8 Space curve corresponding to the track in

Figure 7.

Vertical plane track geometry is described in a similar manner to the horizontal plane, as illustrated

in

Figure 9. The reference centerline geometry is characterized by grade or vertical curvature, while

the measured track geometry is described in terms of profile and cross level (or alternatively, left

and right rail profiles).

10

Figure 9 Absolute and relative vertical track geometry.

Space curve data is recorded in a track-centered coordinate system. While there is no universally

agreed-upon system, one possible option is described as follows:

The origin of the system is on the reference centerline trajectory. The X axis aligns with the heading

direction of the track, the Y axis points from the origin toward the nominal left rail position, and

the Z axis points upward from the origin. This coordinate system can be either tilting or non-tilting,

as shown in

Figure 10.

In a non-tilting system, the Z axis always remains parallel to Earth’s gravity. In a tilting system,

the Z axis is always perpendicular to either the reference track plane (defined by nominal left and

right rail positions) or the measured track plane (defined by measured left and right rail positions)

(Lewis, 2011). This distinction is important when defining space curve variables.

11

Figure 10 Non-tilting (left) and tilting (right) track-centered coordinate systems

Space curve data typically includes several key elements: chainage, curvature, cross level,

alignment, gradient, superelevation, and profile.

Chainage measure the distance along the centerline of the track. Curvature describes how much

the centerline of the track bends horizontally at a specific point. It can be expressed in various

ways, such as the inverse of the radius of the curve, as MCO, or as an angle formed by a 100-foot

chord (

Figure 1).

In this context, gauge refers to the distance between the rails at a particular point on the track

(Figure 5). It may differ from the standard gauge due to slight sideways shifts of the rails from

their intended positions.

Cross level typically refers to the unplanned height difference between the left and right rails

(Figure 5). When this difference is intentional, such as on curves, it is called superelevation. Some

sources use “superelevation” to refer to both planned and unplanned height differences.

Cross level is calculated using a formula that considers the superelevation, the angle measured by

an inclinometer, and the standard distance between rail centers (usually 1,500 mm or 59.055 inches

for standard gauge tracks):

 ∆zXLV = WsinαXLV − ∆zSE (5)

where ∆zXLV is the cross level, ∆zSE is the superelevation, αXLV is the cross level angle measured

with an inclinometer, and W is the nominal track width, or center to center rail distance. If the

actual gauge differs from the standard, the calculated cross level may not exactly match the true

height difference between the rails.

Centerline alignment measures how far the actual track centerline deviates sideways from its

intended position. This deviation represents the combined lateral shift of both rails from where

they should be.

12

Gradient, also known as grade, indicates how quickly the centerline of the track changes in

elevation relative to its horizontal distance.

Centerline profile measures the vertical difference between the actual and intended track centerline,

perpendicular to the intended line. This represents how both rails jointly deviate vertically from

their planned positions. The intended centerline includes both the gradient and any designed

vertical curves. Most TGMS provide separate alignment and profile data for each rail, rather than

combined centerline measurements.

In a tilting reference system, the relationship between the alignment and profile of each track and

the centerline alignment can be expressed as:

 yL ≅ yC +
1

2
∆g, yR ≅ yC −

1

2
∆g (6)

 zL ≅ zC +
1

2
∆zXLV, zR ≅ zC −

1

2
∆zXLV (7)

where yL, yR, yC are left rail, right rail, and centerline alignments; zL, zR, and zC are left rail, right

rail, and centerline profiles, respectively; ∆g is gauge deviation. These relationships aren’t exact

due to two factors

1. The plane used for gauge measurement may not be perfectly horizontal, depending on the

cross level.

2. The cross level measurement does not precisely equal to the height difference between the

rail tops.

Some of these track geometry variables are visually represented in

Figure 8.

13

Figure 11 Space curve variable definitions

1.2.4 Chordal (Versine) Measurements

Many countries, including the United States and Canada, define their track safety standards using

chordal measurements, also known as versine (

Figure 12,

Figure 13), rather than space curve data. This approach is outlined in specific regulations such as

49 CFR §213 Subpart C for the US and TC E-54 Subpart C for Canada. A versine with a ratio α of

0.5 is termed a symmetric versine, or more commonly, a mid-chord offset (MCO).

14

The main advantage of using chordal measurements is their practicality. They can be taken easily

in the field using basic, handheld tools, making them convenient for on-site track inspections and

maintenance.

Figure 12 Versine (chordal) measurement

Figure 13 Mid-chord offsets (2017 FRA Compliance Manual, Vol. 2, Ch.1,p.2.1.29).

A chordal offset is influenced by two factors: the irregularities in track alignment (

Figure 12) and intentional curvature in the track design (Figure 2). For example, a point in the

body of a 10-degree curve has an MCO value of 10 inches for a 62-foot chord length if the rail at

the point is perfectly aligned with its reference trajectory.

Because of this dual influence, track geometry standards are not based on the raw chordal

measurements. Instead, they use the difference between the actual chordal values and the average

values in the surrounding area. This approach allows for distinguishing between planned curvature

and unintended irregularities.

1.2.5 Additional Track Geometry Variables

Beyond the basic track geometry variables, additional parameters can be derived:

15

Vertical curvature, which describes how the track centerline curves in the vertical plane, can be

used to calculate the centrifugal acceleration experienced by a rail vehicle on a vertical curve.

Twist and warp both measure how quickly cross level changes. Twist is defined as the cross level

difference between two specific points, while warp is the maximum cross level difference between

any points within a set distance. These can be calculated using chainage x and base distance L:

 Twist(x) = ∆zXLV (x +
L

2
) − ∆zXLV(x −

L

2
) (8)

 Warp(x) = max(∆zXLV(x1)) − min(∆zXLV(x2)) ; x −
L

2
≤ (x1, x2) ≤ x +

L

2
 (9)

Maximum gauge change is determined within a specified distance (i.e., between any two points

less than a specified distance apart).

Runoff (ramp) refers to how much the elevation of a rail changes over a 31-foot segment at the

end of raised section (49 CFR §213.63). Track recording vehicles typically measure this as the

peak-to-peak amplitude within a 31-foot space curve window (Clouse, 2018).

Dip angle measures localized changes in the vertical gradient of a rail (

Figure 14), often noticeable near rail joints. It is usually expressed in degrees or milliradians and

is calculated from changes in vertical rail profile gradient over short distances. Dip angle is closely

related to vertical wheel impact loads and can indicate potential rail end breaks. Its magnitude can

vary based on vehicle speed, wheel load, and travel direction due to rail elasticity (Mandal et al.,

2016; RAIB, 2014; prEN 13848-1:2016).

Kin angle, also called entry angle, is similar to dip angle but in the lateral direction (

Figure 14). It is a design feature of turnouts and is not commonly measured by TGMS.

Figure 14 Rail dip angle (left); switch entry (i.e., kink) angle (right).

1.3 Types of Track Geometry Measurement Systems

Track geometry measurement systems are designed to collect comprehensive track geometry data.

The data gathered typically includes measurements of curvature, grade, cross level, gauge,

alignment, and profile.

16

1.3.1 Relative and Absolute TGMS

Relative TGMS, which typically employ either inertia-based or chordal methods, make up the

majority of both trolley-based and vehicle-mounted systems. These systems are generally more

cost-effective and easier to use compared to absolute TGMS of similar accuracy and portability.

Most absolute TGMS use optical surveying methods. However, some newer TGMS overcome the

limitations of optical surveying by combining inertial measurement systems (IMS), high-precision

global navigation satellite system (GNSS), and/or machine vision technologies (Engstrand, 2011;

Pinter, 2012; Chen et al., 2015; Chen et al., 2018; Trimble, 2017). While almost all absolute TGMS

are mounted on small trolleys, there are also track recording vehicles equipped with absolute

TGMS (Vogelaar, 2017).

1.3.2 Platform

TGMS can be installed on various platforms, including manually pushed trolleys, self-powered

carts, road-rail (i.e., hi-rail) vehicles, specialized track geometry vehicles, and regular service

vehicles. Beyond the obvious logistical and financial factors to consider, it is crucial to understand

that TGMS are influenced by both the stiffness of the track and the weight of the measuring vehicle.

TGMS can be mounted on hand-pushed trolleys, self-propelled carts, road-rail (i.e., hi-rail)

vehicles, dedicated track geometry vehicles, and revenue service vehicles. Aside from obvious

logistical and financial considerations, it is important to recognize that track geometry

measurements are affected by the stiffness of the track and the weight of the measuring vehicle.

However, the relationship between wheel load and track geometry irregularities is not simple nor

direct. It is dependent on several factors, such as the condition of the ballast and soil, the type of

track structure, and the kind of rail fasteners used. Moreover, the degree to which a truck bends

17

the rail (and consequently affects the measured amplitudes of gauge and alignment irregularities)

is partly determined by its dynamic performance, including its behavior when negotiating curves.

1.3.3 Principle of Operation

Manual track geometry measurements, while straightforward in principle, are time-consuming and

require significant labor. One manual method, chord surveying, measures relative track geometry

using chordal offsets. This technique employs a chord of specific length and a ruler (

Figure 12,

Figure 13). It is often used to confirm track geometry defects that have been identified by vehicle-

mounted systems.

Another manual approach, optical surveying, measures absolute track geometry. This method uses

either a theodolite or an automated geodetic total station. It involves measuring the vertical and

lateral coordinates of a point on one rail in relation to a global coordinate system (

Figure 15, top). The corresponding coordinates for the opposite rail are then estimated using these

measurements, along with gauge and cross level data obtained with a gauge bar at that location

(Stow and Andersson, 2006).

18

Figure 15 Manual and automated optical surveying.

Automated optical surveying uses specialized track surveying trolleys. A typical setup involves a

stationary total station and a reflective target on a trolley, which also carries sensors for measuring

cross level and gauge. In some configurations, the total station is mounted on a trolley and uses

fixed reflectors along the track (

Figure 15).

The trolleys can operate in two modes: kinematic (i.e., at walking speed) or stop-and-go, with the

latter offering higher accuracy. However, this method has significant drawbacks, including slow

measurement speed and limited range (typically tens to hundreds of meters). The range is further

affected by topography and weather conditions, with higher temperatures and stronger winds

reducing the effective distance.

While it is possible to extend the range and improve accuracy by relocating the total station and

making overlapping measurements, this process is cumbersome and time-consuming. As a result,

most absolute TGMS using this method are limited to trolleys designed for measuring short track

sections.

Some optical surveying systems enhance their capabilities by incorporating data from inertial

measurement systems (IMS). These IMS can be installed on various parts of a track recording

vehicle, such as the carbody or truck frame, or less commonly, on a portable trolley (Chen et al.,

2015; Sundaram and Wilson, 2016; Trimble, 2017).

These systems integrate data from multiple sensors:

• An odometer to measure chainage

• Non-contact (usually optical) or contact sensors to determine the relative position of rails

to the sensor

• A combination of accelerometers and gyroscopes to measure the relative acceleration and

velocity of the measuring device, which is then integrated to calculate its relative position

Traditional vehicle-mounted IMS have accelerometers and gyroscopes on the truck frame or

carbody, with displacement sensors (such as linear variable differential transformers (LVDTs))

mounted across vehicle suspension components (

Figure 16). In contrast, many modern IMS are self-contained units attached entirely to the carbody

or truck frame, without measuring suspension displacement.

Each approach has its pros and cons. Sensors on upsprung masses like axle boxes provide a more

direct connection to track irregularities but face harsh vibrations and must measure a wide

19

frequency range. Carbody-mounted TGMS with optical sensors may have limitations in measuring

extreme track curvatures due to their offset from the rails.

Figure 16 Traditional vehicle-mounted IMS and its schematic (Lewis, 2011)

A significant limitation of IMS is the minimum vehicle speed required for accurate measurements.

At lower speeds, the outputs from accelerometers and gyroscope sensors decrease, leading to a

poor signal-to-noise ratio below a certain speed threshold (Lewis, 2011). This means that the

slower the vehicle moves, the shorter the maximum wavelength of track irregularity that the IMS

can accurately measure. Typically, measuring long wavelengths demands much higher speeds than

shorter wavelengths. However, recent advancements in sensor design and data processing have led

to new IMS capable of measuring track geometry at lower speeds (i.e., around 5 mph) and even

during brief stops.

Chordal systems are modernized versions of manual chord surveys (

Figure 13). They measure the lateral and vertical distances between each rail and the frame of the

track recording vehicle or trolley at a minimum of three points (

Figure 17). When necessary, adjustments can be made to account for the bending of the vehicle

frame (Haigermoser et al., 2015). The resulting chordal measurements can be converted into a

space curve through a restoration process. Asymmetric chordal systems have fewer “zeros” (i.e.,

wavelengths with zero gains that cannot be restored) but introduce phase distortion. Even for

asymmetric systems, the larger the ratio of track defect wavelength to chord length, the more

challenging it becomes to accurately restore that wavelength due to decreasing signal-to-noise ratio.

Consequently, small trolley-based chord systems are limited to short wavelengths, making them

20

unsuitable for high-speed rail track measurements. Vehicle-mounted chord-based systems,

however, can measure longer wavelengths.

Figure 17 Vehicle-mounted chordal TGMS

Despite these limitations, chordal systems offer several advantages over inertial systems. Chordal

systems are generally simpler in mechanical design and less expensive than IMS. Their accuracy

is not dependent on vehicle speed, and they can perform static measurements. However, due to

ongoing improvements in IMS design, vehicle-mounted chordal systems are becoming less

common. Trolley-mounted chordal systems, on the other hand, remain widely used.

Some chordal systems have been developed to overcome typical disadvantage by combining

chordal measurements with other measurement types. For instance, one trolley-mounted system a

“differential difference method” (Naganuma and Yada, 2016), which integrates versine and slope

measurements. Other systems combine chordal and inertial measurements (Yazawa and Takeshita,

2002; Yada et al., 2017).

Global Navigation Satellite System/Global Positioning Systems (GNSS/GPS) alone lack the

precision required for track geometry measurements, with even high-accuracy differential GNSS

having an accuracy of only 0.5-1.0 inch in this application (Szwilski et al., 2003). Typically, GNSS

on track recording vehicles are used to record the location of track geometry defects, not to

measure their magnitude.

However, some newer TGMS combine data from high-accuracy GNSS with inertial or chordal

systems. This allows for measurement of both absolute and relative track geometry while

addressing some issues associated with optical surveying systems (Luck et al., 2001; Kreye et al.,

2004; Chen et al., 2015; Trimble, Inc., 2017). Other systems integrate GNSS data with optical

surveying systems (Mahalakshmi and Joseph, 2013; Jiang et al., 2017).

Research has explored using Doppler Light Detection and Ranging (LiDAR) systems to measure

track chainage and curvature. These offer advantages over traditional methods, including accuracy

at low speeds and resistance to wheel slip and tread wear (Wrobel, 2013; Andani, 2016; Andani et

al., 2018).

More sophisticated LiDAR-based machine vision systems have also entered the TGMS market.

These sensors can create 3D point clouds, enabling measurement of track geometry (both absolute

21

and relative) and clearances between track and nearby structures (Vogelaar, 2017; Burton, 2018).

Non-LiDAR machine vision systems are also in development (Gabara and Sawicki, 2018).

Accurate position determination remains a challenge in TGMS design and operation. Odometers

often lack sufficient accuracy, while GNSS does not function in tunnels and is not precise enough

to identify specific tracks in multi-track areas. This may require more complex methods, such as

installing radio-frequency identification 9RFID) tags or specifically processing accelerometer data

(Broquetas et al., 2012).

1.3.4 Autonomous TGMS

Over the past decade, advancements in electronics and software have led to the development of

autonomous track geometry measurement systems (ATGMS). These systems, mounted on regular

service trains, operate without human supervision, enabling more frequent and cost-effective

inspections compared to traditional TGMS. The collected track geometry data is wirelessly

transmitted to a remote operator (Morant, 2016; Stuart, 2017; Higgins and Liu, 2018). While

railroads, transit agencies, and regulatory bodies have shown great interest in ATGMS and

conducted extensive testing, their widespread implementation is currently hindered by several

issues (Morell, 2017), including:

• Challenges in precisely locating defects, especially in distinguishing between tracks in

multi-track areas

• Difficulties in ensuring data quality and preventing false positive without real-time human

data examination

• Logistical issues, such as underdeveloped procedures for hardware maintenance and data

handling

• Regulatory uncertainties, particularly regarding requirements for addressing defects

identified during automated inspections

Additional technical challenges may arise depending on the specific vehicles hosting the ATGMS.

For instance, installing an ATGMS on a freight railcar may expose it to harsh load conditions with

high accelerations and varying natural frequencies based on loading conditions. Furthermore, the

weight of the vehicle and curving characteristics can cause ATGMS measurements to differ from

those taken by a traditional track geometry vehicle on the same route.

1.3.5 Vehicle Response Measurement

The end goal of track geometry measurement is to ensure vehicle safety and passenger comfort.

As a result, it is often valuably to directly measure vehicle performance by recording wheel-rail

forces and/or accelerations of the carbody and truck, and to draw conclusions about track condition

from these measurements.

Vehicle response measurement systems (VRMS) complement traditional track geometry

measuring system, but do not replace them for several reasons:

• Vehicle response does not clearly distinguish between different types of irregularities or

22

measure their magnitudes accurately

• The response is specific to each vehicle. A lack of response from one vehicle to a track

defect does not guarantee safety for other vehicle types or even for the same vehicle at a

different speed; the correlation is not straightforward

Directly measuring wheel-rail forces requires the use of instrumented wheelsets, which are costly

and require significant effort to design, use, and maintain. Accelerometers do not have these

drawbacks, but the readings do not directly represent wheel-rail forces.

1.4 References

1. Liu, X., Saat, M., & Barkan, C. (2012). Analysis of causes of major train derailments and their effect

on accident rates. Journal of the Transportation Research Board, 2289, 154–163.

2. Ciobanu, C. (2016). The versine formulae. Accessed: December 12, 2018.

3. Hay, W. (1982). Railroad engineering, 2nd Edition. John Wiley & Sons, New York.

4. Puzavac, L., Popović, Z., Lazarević, L. (2012). Influence of Track Stiffness on Track Behaviour under

Vertical Load. Promet – Traffic & Transportation, 24(5), 405–412.

5. Haigermoser, A., Luber, B., Rauh, J., & Grafe, G. (2015). Road and track irregularities: measurement,

assessment and simulation. Vehicle System Dynamics, 53(7).

6. Zarembski, A.M., Grissom, G.T., Euston, T.L., & Cronin, J.J. (2015). Relationship between missing

ballast and development of track geometry defects. Transportation Infrastructure Geotechnology, 2,

167–176.

7. Muinde, M.S. (2018). Railway track geometry inspection optimization. M.S. Thesis, Luleå University

of Technology.

8. Reedman, M. (2014). Kinky Tracks. Conference on Railway Excellence (CORE-2014), Adelaide,

Australia, May 5–7, 2014.

9. Zhang, Y., El-Sibaie, M., & Lee, S. (2004). FRA track quality indices and distribution characteristics.

Proceedings of AREMA Annual Conference, Nashville, TN, September 19-22, 2004.

10. Zhang, Y., El-Sibaie, M., & Lee, S. (2004). FRA track quality indices and distribution characteristics.

Proceedings of AREMA Annual Conference, Nashville, TN, September 19-22, 2004.

11. Malone, J. (2007). Performace and testing requirements for portable track geometry inspection systems.

TCRP Research Results Digest, 83.

12. Keylin, A. (2019). Measurement and Characterization of Track Geometry Data: Literature Review and

Recommendations for Processing FRA ATIP Program Data.

13. Lewis, R. (2011). Track geometry recording and usage: Notes for a lecture to Network Rail.

14. Clouse, A. (2018). Federal Railroad Administration. Personal communication. April 6, 2018

15. Mandal, N.K., Dhanasekar, M., & Sun, Y.Q. (2016). Impact Forces at Dipped Rail Joints. Proceedings

of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 230(1), 271–282.

16. European Committee for Standardization (CEN) (2016). PrEN 13848-1: Railway applications – Track

– Track geometry quality – Part 1: Characterization of track geometry.

17. Engstrand, A. (2011). Railway Surveying – A Case Study of the GRP 5000. MS Thesis, Royal Institute

of Technology, Stockholm.

18. Pinter, O. (2012). Using of Trimble® GEDO CE system for absolute track positioning. [in Czech],

Diploma Thesis, Czech Technical University in Prague, Prague.

19. Chen, Q., Niu, X., Zhang, Q. & Cheng, Y. (2015). Railway track irregularity measuring by GNSS/INS

integration. Navigation, 62(1), 83-93.

20. Chen, Q., Niu, X., Zuo, L., Zhang, T., Xiao, F., Liu, Y., & Liu, J. (2018). A railway track geometry

measuring trolley system based on aided INS. Sensors, 2018(18).

23

21. Trimble Inc. (2017). Trimble adds inertial-based trolley solution to its track survey and scanning rail

portfolio. Press Release.

22. Vogelaar, J. (2017). Absolute track geometry, what is it and how does it help me? Rail Infrastructure

and Vehicle Inspection Technology Conference, University of Illinois Urbana Champaign, June 20-21,

2017.

23. Stow, J. & Andersson, E. (2006). Field testing and instrumentation of railway vehicles. Handbook of

railway vehicle dynamics, ed. S. Iwnicki, CRC Press, Boca Raton, FL.

24. Sundaram, N. & Wilson, R. (2016). Portable track geometry measurement system: a unique derailment

investigation tool. Presentation, 2016 APTA Rail Conference, 2016.

25. Naganuma, Y. & Yada, T. (2016). Development of truly portable track geometry recording trolley and

accompanying new measurement principle. Proceedings of the 15th International Conference on

Railway Engineering Design and Operation (CR 2016), 2016.

26. Yazawa, E. & Takeshita, K. (2002). Development of measurement device of track irregularity using

inertial mid-chord offset method. Quarterly Report of RTRI, 43(3).

27. Yada, T., Soda, Y., & Naganuma, Y. (2017). Improvement of the realignment performance for short

wavelength track irregularity on a tamping machine. WIT Transactions on Engineering Sciences, 118.

28. Szwilski, T.B., Begley, R., Dailey, P., Sheng, Z., & Rahall, N.J. (2003). Determining rail track

movement trajectories and alignment using HADGPS. Proceedings of the AREMA Annual

Conference, Chicago, Ill, USA, October 2003.

29. Luck, T., Eissfeller, B., Kreye C., & Meinke, P. (2001). Measurement of Line Characteristics and of

Track Irregularities by Means of DGPS and INS. International Symposium on Kinematic Systems in

Geodesy, Geomatics and Navigation, Banff, Alberta, Canada, June 5-8, 2001.

30. Kreye, C., Eissfeller, B., & Ameres, G. (2004). Architectures of GNSS/INS Integrations Theoretical

Approach and Practical Tests. Institute of Geodesy and Navigation, University FAF Munich,

Neubiberg, Germany. Accessed Dec. 12, 2018.

31. Mahalakshmi, V. & Joseph, K.O. (2013). GPS Based Railway Track Survey System. International

Journal of Computer Applications in Engineering Sciences, Volume III, Special Issue on National

Conference on Information and Communication (NCIC'13).

32. Jiang, Q., Wu, W., Li, Y., & Jiang, M. (2017). Millimeter Scale Track Irregularity Surveying Based on

ZUPT-Aided INS with Sub-Decimeter Scale Landmarks. Sensors, 2017(17).

33. Wrobel, S. (2013). Multi-function LIDAR sensors for non-contact speed and track geometry

measurement in rail vehicles. M.S. Thesis, Virginia Polytechnic Institute and State University,

Blacksburg, VA.

34. Andani, M. T. (2016). The application of Doppler LIDAR technology for rail inspection and track

geometry assessment. PhD Dissertation, Virginia Tech, Blacksburg, Virginia.

35. Andani, M.T., Peterson, A., Munoz, J., & Ahmadian, M. (2018). Railway track irregularity and

curvature estimation using doppler LIDAR fiber optics. Journal of Rail and Rapid Transit, 232(1), 63–

72.

36. Burton, T. (2018). RILA Train Mounted Survey System, Opportunities & Constraints.

37. Gabara, G. & Sawicki, P. (2018). A New Approach for Inspection of Selected Geometric Parameters

of a Railway Track Using Image-Based Point Clouds. Sensors, 18(3).

38. Broquetas, A., Comerón, A., Gelonch, A., Fuertes, J.M., Castro, J. A., Felip, D., López, M. A., &

Pulido, J.A. (2012). Track Detection in Railway Sidings Based on MEMS Gyroscope Sensors. Sensors.

39. Morant, S. (2016). Automating geometry measurement offers real-time benefits. International Railway

Journal.

40. Stuart (2017). Autonomous track geometry measurement system: technical development and short line

demonstration. Rail Infrastructure and Vehicle Inspection Technology Conference, University of

Illinois Urbana-Champaign, June 20-21, 2017.

24

41. Higgins, C. & Liu, X. (2018). Modeling of track geometry degradation and decisions on safety and

maintenance: A literature review and possible future research directions. Journal of Rail and Rapid

Transit, 232(5), 1385–1397.

42. Morell, J. (2017). Evaluation of the Federal Railroad Administration’s Autonomous Track Geometry

Measurement System Research and Development Program (Report No. DOT/FRA/ORD-17/05).

Federal Railroad Administration.

25

2 DEVELOPING OPTIMAL UAV FLIGHT PATH

2.1 Overview

The researchers concluded that an unmanned aerial vehicle (UAV) would be the optimal carrier

for this automated track geometry measurement system (TGMS). However, the implementation of

UAVs presents a significant challenge due to the intricate environment surrounding railway tracks.

Common obstacles in these areas include power lines and other infrastructure. Consequently, it is

crucial to develop an algorithm that enables the UAV to navigate effectively and avoid collisions

while determining its flight path. The authors deemed Reinforcement Learning (RL) to be a

suitable algorithm for this task.

2.2 Introduction

Reinforcement Learning (RL) has found its great use in a lot of practical applications, ranging

from problems in mobile robot (Mataric, 1997; Smart and Kaelbling, 2002; Huang et al., 2005),

adaptive control (Sutton et al., 1992; Lewis et al., 2012; Lewis and Varbie, 2009), AI-backed chess

playing (Silver et al., 2017a; Silver et al., 2017b; Silver et al., 2016), among many others. The idea

behind reinforcement learning, as illustrated in

Figure 18, is that an agent learns from the environment by interacting with it and receives positive

or negative rewards for performing calculated actions, and the cycle is repeated. The key issue of

the whole process is to learn a way of controlling the system so as to maximize the total award.

When the agent begins to sense and learn a completely or partially unknown environment, it

involves in two distinct tasks: exploration which attempt to collect as much information about the

environment as possible, the exploitation which attempts to receive positive rewards as quickly as

possible.

Figure 18 In reinforcement learning, the agent observes the environment and interact with the

environment, update its own state and receives reward

Nevertheless, there is a dilemma of choosing between the two tasks of exploration and exploitation.

Too much exploration will adversely influence the efficiency and convergence of the learning

algorithm, while putting too much emphasis on exploitation will increase the possibility of falling

into a locally optimal solution. The existing RL algorithms all attempt to balance out these two

tasks in their learning cycles (

Figure 18), but there is no guarantee that the best result can always be obtained.

Besides the exploration and exploitation dilemma, the RL algorithms have to employ value

distributions that inexplicitly assume that environment is static (i.e., no change), or it changes very

26

slowly and/or insignificantly. However, in many real applications, the environment rarely stays

unchanged. More than likely, the environment can be described in terms of states (

Figure 18) changes over the course of exploration. In this case, value distribution has nothing to

do with the problem at hand, and all the information obtained from the previous exploration efforts

become less, or totally irrelevant.

To effectively solve the aforementioned problems in reinforcement learning for a better UAV

exploration plan, the authors proposed a new algorithm based on the partitioning of the states set

and search of the shortest path in a directed graph that represents a RL method.

2.3 Preliminaries and Background

In this section, the basic structure of reinforcement learning (RL) algorithms will be surveyed,

with a particular focus on value-oriented methods. The exploration versus exploitation tradeoff in

RL will be formally defined. The literature demonstrates that RL can be mapped to various graph

representations, and these methods will be briefly described. Utilizing graph representations

allows RL to benefit from the extensive results in graph algorithms.

2.3.1 Value-oriented Method for the Exploration-Exploitation Tradeoff in RL

Most RL problems can be formalized using Markov Decision Processes (MDPs), and there are a

few key elements in RL as defined below:

1. Agent: An agent takes actions.

2. Environment: The physical world through which the agent operates.

3. States: A state refers to a specific and immediate situation in which the agent is located. In

this paper, stti denotes the state of the agent at time instance i, with set S containing all the

possible states that the agent can operate on. Thus, stti ∈ 𝑆.

4. Action: Agents choose among a list of possible actions. Denote ai as the action that agent

might perform at time instance i. Actions is defined as the set of all possible moves of the

agent can make (i.e., ai ∈ Actions).

5. Reward: A reward is the feedback that is used to measure the success of failure of an agent’s

action. Here a reward at time instance t is defined as Rt . Actions may affect both the

immediate reward and, through the next situation, all the subsequent rewards (Sutton and

Barto, 2017).

6. Exploitation: A task that makes the best decision given all the current information.

7. Exploration: A task that gathers more information to be used for making the best decision

in the future.

8. An episode: The behavior process cycle of the agent from the beginning of the exploration

to the beginning of the next exploration. When the interaction between the agent and the

environment breaks naturally into subsequences, which are referred as episodes. Each

episode ends in a special state called the terminal state, followed by a reset to a standard

starting state or to a sample from a standard distribution of starting states (Sutton and Barto,

2017).

27

In RL, the exploration-exploitation tradeoff refers to a decision-making process that chooses

between exploration and exploitation. Value-oriented RL methods have to deal with such

exploration-exploitation tradeoff through the value distribution as defined by the value function or

a probability that decides the chain of actions that lead to the target state all the way from the start

state through a series of awards. A decision chain refers to a series of decision-making taken by an

agent.

In order to strike a balance between exploration and exploitation, there are two main decision

methods that can be followed, the ϵ-greedy method, and softmax.

In ϵ-greedy method, the action is selected by, one has

 astt = {
astt

∗ with proability 1 − ϵ
random action with probability ϵ

 (10)

where astt
∗ is the action in which of the value function assumes the highest value:

 astt
∗ = argmaxa∈ActionsQ(stt, a) (11)

where Q(stt, a) is action-value function which evaluates each possible action while in the current

state. One drawback of ϵ-greedy action selection is that when it explores, all the possible actions

are given the equal opportunity, as indicated in Eq. (1). In a simple term, this method is as likely

to choose the worst-appearing action as it is to choose the next-to-best action. This gives rise to

the so-called softmax method that can vary the action probabilities through a graded function

below:

 π(a|stt) =
e

Q(stt,a)
τ

∑ e
Q(stt,a′)

τ
a′∈Actions

 (12)

Where π(a|stt) is the probability policy to choose an action from the specific state stt, and τ is a

“computational” temperature, and is an active-value function that evaluates each possible action

in the current state.

The problem of value-oriented method is due to its weak ability to eliminate exploration blindness

resulting from a large number of repeated explored states introduced by the values distribution

structure. The stochastic factors that are added to help the search process jump out of the loops

and balance exploration and exploitation actually come at the expense of more blindness of

exploration.

2.3.2 RL over Graphs

A RL can be represented as a directed graph, G<V, E>, where a vertex, vi ∈ V(G), corresponds to

a state stti in reinforcement learning and an edge, eij ∈ E(G), connects two vertices (two states

stti and sttj) with a decision action ai in reinforcement learning. In this graph, a path can be

regarded as decision sequences in reinforcement learning.

28

In literature, many RL methods are related to their graph representation. In PartiGame Algorithm

(Moore, 1994), the environment of RL is divided into cells modeled by kd-tree, and in each cell,

the actions available consist of aiming at the neighbor cells (Kaelbling et al., 1996). Dayan et al.

(Dayan et al., 1993) achieved speedup of reinforcement learning by creating a Q-learning

managerial hierarchy in which high-level managers learn how to set tasks for their lower level

managers. A hierarchical Q-learning algorithm (Dietterich, 1998) proves its convergence and

shows experimentally that it can learn much faster than ordinary “flat” Q-learning. None of these

methods, however, can solve the root problem concerning the dilemma of exploration and

exploitation.

2.3.3 Floyd-Warshall Algorithm

Denote SSA(G, ei, ej) as a shortest path search algorithm that is applied to G from vertice ei to

vertice ej that represents a RL. The classical shortest path algorithms like Dijkstra (Dijkstra, 1959),

and A* (Hart et al., 1968) are single starting point algorithms for the path-finding. The Floyd-

Warshall algorithm (Floyd, 1962) (FW), which is purseued to use in this study, provides the

shortest path between any two vertices in specified graph and it is found to be adaptive to the

change of the graph.

In the standard FW algorithm, two matrices (DIST and NEXT) are used to express the information

of all the shortest path in the graph. The matrix DIST records the shortest path length between two

vertices. The matrix NEXT contains a name of the intermediate vertex through which the two

vertices are connected through the shortest path. Because of the optimal substructure property of

the shortest path, no matter how many immediate vertices the shortest path passes through, simply

recording one of the intermediate vertices is sufficient to express the entire shortest path.

2.4 Convergence of Exploration and Exploitation

This section first defines the concept of a completely explored graph, which serves as the

foundation for a graph-based iterative framework for reinforcement learning. Within this

framework, the knowledge acquired from the RL exploration task can be recorded by the graph,

allowing for the shortest path search to determine the next decision chain. This new approach

effectively tracks changes in the graph caused by exploration and sometimes by a changing

environment. It will be demonstrated that with this framework, which involves the shortest path

search, exploration converges to exploitation. In simple terms, exploration will identify the shortest

path to achieve the same reward as exploitation.

2.4.1 Completely Explored Graph

Definition 1: A Completely Explored State is a state of which all its possible successor states have

already been explored. If one of a state’s successor states has been explored and at least one of its

successor states has not yet been explored, the state is called a Partially Explored State.

Definition 2: If the vertex set V in connected G<V, E> includes the start states of episodes and all

these states have been completely explored, and the edge set E represents all the action that need

29

to be taken to connect all the different states, graph G is called a Completely Explored Graph

(CEG).

Figure 19 shows an example of a CEG where each state (sttxx) is linked with up to 4 possible

actions: a0, a1, a2, a3. There are some explored edges which are omitted for simplicity, such as

action a1 for (stt20) and (stt01) with a0; they point to nonexistent state transitions.

Figure 19 An example of a completely explored graph. Nodes represent states and directed edges

between nodes represent actions. The shadowed area that includes all the State nodes (colored

yellow) and all the associated directed edges represents the CEG. The unfilled nodes outside the

shadowed area represent incompletely explored states, even though they connect to the CEG.

Suppose the complete action set Actions = {ai: a0, … , an} is known. State stti is a completely

explored state if any reachable next state of stti, denoted as stti+1, by taking a possible action ai ∈
Actions , is traversed. Let GU <V , E > represent a graph that contains all the traversed states,

including both the completely and partially explored states. We can define the predecessor state

set Setpredecessor(stt) as Setpredecessor(stt) = {s: (s ∈ SE) ∧ ({s, stt} ∈ E(GU))} and the

successor state set Setpredecessor(stt) is defined as Setpredecessor(stt) = {s: (s ∈ SE) ∧ {stt, s} ∈

E(GU)} where SE denotes the set V(CEG). If an environment feedback is denoted by Env, then

for a given action ak, the next state si+1 can be determined as si+1 = Env(si, ak).

2.4.2 Exploration Converges to Exploitation

From CEG, it can be proven that exploration converges to exploitation. Here, sttrwd is denoted

as a reward state.

30

Lemma 1. Suppose that exploration of each episode starts with state stt0, and ends in reward state

sttrwd after passing some intermediate states through a series of episodes. Of all the possible

episodes, one can see sttrwd ∉ SE.

Proof: Once the agent has landed in state sttrwd, the episode ends, so there will be no further

exploration originated from sttrwd. That is, the graph is a completely explored graph and the states

are completely explored states, according to definitions 1 and 2. Thus sttrwd cannot be a member

of the SE set. (End of proof)

Define the envelope set of set SE as SEE = {stti: (sttiSE) ∧ (Setsucessor(stti) ⊄ SE)}
Corollary 1. For stti ∈ SEE consists of members in SE, there exists at least one of the successor

states of stti does not belong to SE.

Proof: It comes directly from the definition of SEE. (End of proof)

Corollary 2. If stti ∈ (Setpredecessor(sttrwd) ∩ SE) is in an exploring episode, then irrespective

of the explore strategies adopted in the future, stti will always be part of SEE.

Proof: From lemma 1, one can see that if stti ∈ SE has a successor state sttrwd and it is impossible

for sttrwd to be a member of SE. By definition of SEE it is known that stti is always a member of

SEE. (End of proof)

Theorem 1. Assume there are a finite number of states and a SSA(CEG) is able to find the shortest

path in CEG, exploration becomes finding a path from the start state stt0 to the sttrwd. In other

words, exploration converges to exploitation.

Proof:

i During exploration, state stt0 can reach the SEE through SSA(CEG). That is, one needs to

find the shortest path, path k, among all the paths, such that:

 k = argmin
j

{L(stt0, sttj): sttj ∈ SEE} (13)

Where L(stti, sttj) is the length of the shortest path between state stti and state sttj. If sttk ∈

Setpredecessor(sttrwd) , then (stt0, … , sttk, … , sttrwd) from SSA(CEG) algorithm marks the

shortest path from stt0 to sttrwd . In this case, the conditions concerning exploration

convergence (defined in Definition 3) are met, and the exploration converges to the

exploitation.

ii If sttk ∉ Setpredecessor(sttrwd), CEG continues to evolve as exploration progresses.

iii As exploration continues, new members are added into SEE and they replace the old ones,

extending the shortest path, and according to Corollary 2, any new member

stti ∈ (Set
predecessor

(sttrwd) ∩ SE) will always be part of SEE.

31

iv When exploration ends, sttk that satisfies Eq. (4) will eventually meet the condition:

stti ∈ Set
predecessor

(sttrwd).

v The agent is bounded to pass the state sttk associated with the shortest path in the

Setpredecessor(sttrwd). If not, there would have a different sttks ∈ Set
predecessor

(sttrwd) from

sttk that otherwise makes L(stt0, sttks) < L(stt0, sttk) . If sttks ∈ SEE , it is impossible for

SSA(CEG) to choose sttk as a state in the shortest path. If sttks ∈ SEE, there must be a state

sttm ∈ SEE in sttks ’s predecessor chain that makes L(stt0, sttm) < L(stt0, sttk) . The

algorithm does not converge during this episode.

vi Putting all things together, one can see that exploration by SSA(CEG) must converge to

the shortest path from start stt0 to sttrwd.

As indicted in corollary 3, once the algorithm has found the shortest path from stt0 to sttrwd, the

path will be repeated with no change in the following episodes. In this case, the exploration is

readily to be halted. (End of proof)

2.5 Algorithm Implementation

Based on Theorem 1 described in the previous section, a framework for reinforcement learning is

proposed that addresses the exploration and exploitation dilemma. The framework consists of two

major components: CEG and incompletely explored states. It operates through two iterative steps,

as illustrated in Fig. 3.

i Based on the current CEG, an action decision, in the form of a single decision or a chain of

multiple decisions, will be made to guide the next exploration.

ii Update the CEG with the new knowledge acquired from the latest exploration. In a static

or nearly static environment, exploration will help continue to grow CEG , while in a

changing environment, CEG members can be added or deleted according to the exploration

result. Note that when the CEG is updated, nodes or edges can be added or deleted from the

graph. In a static environment, as the exploration progresses, the number of nodes and

edges tends to increase, while in a dynamic environment, the number of nodes and edges

may increase or decrease.

32

Figure 20 Graph iterative frame

2.5.1 Shortest Path Search in Dynamic Environment

The standard Floyd-Warshall Algorithm calculates matrices DIST and NEXT in batch divided by

the length of short path (the number of relay vertices here) for each vertex pair. For constantly

changing of vertices and graph structure that engages in exploration all the time, a more efficient

method is needed and thus proposed in this section.

During exploration in reinforcement learning, the completely explored states are discovered in

sequence, and subsequently, they are added to the CEG, after which the corresponding edges are

also added. In addition, if the agent wants to adapt to the dynamic environment, the removal of

vertex must also be taken into account. In this section, a modified FW algorithm is presented,

which is able to search for the shortest path in a graph that represents a dynamic environment.

In SFW, each time when a new vertex is added, it is not only to add the shortest path associated

with the new vertex directly tied to the two matrices as defined in FW, but also to compare the

length of the new path introduced by the new vertex against that of the shortest path obtained from

the prior iteration. These operations may result in the update of the two matrices. The major steps

of SFW are summarized follow:

If current state stt is to be added to set SE, do the following steps:

i Add and initialize a new row in matrices DIST and NEXT.

ii Add and initialize a new column in matrices DIST and NEXT.

iii Update the new column by computing the shortest paths from all the vertices to this new

vertex.

iv Update the new row by computing the shortest paths from the new vertex to all the other

vertices.

v Update matrices DIST and NEXT by comparing the length of each vertices pair between

33

the old shortest path recorded in the matrices and that of the new paths with the new vertex

added.

Denote Lset(stti, Setpredecessor(stt)) as the length of the shortest path from arbitrary state stti to

Setpredecessor(stt) as defined:

Lset (stti, Setpredecessor(stt)) = min
j

{L(stti, sttj): sttj ∈ Setpredecessor(stt) }

Matrices DIST and NEXT are updated by performing the following operations:

DIST(stti, stt) = Lset (stti, Setpredecessor(stt)) + 1

NEXT(stti, stt) = sttjmin

where jmin is the result of min
j

{L(stti, sttj): sttj ∈ Setpredecessor(stt) }.

In the same token, one can update the stt’s predecessor states set Setpredecessor(stt) with stt’s

successor states set Setsuccessor(stt). That is:

Lset(Setsuccessor(stt), stti) = min
j

{L(sttj, stti): sttj ∈ Setsuccessor(stt) }

DIST(stt, stti) = Lset(Setsuccessor(stt), stti) + 1

NEXT(stt, stti) = sttjmin

Correspondingly, matrix DIST in this case can be updated by

DIST(stt, stti) ← min {DIST(stti, sttj), DIST(stti, stt) + DIST(stt, sttj)}

If a path that passes through state stt is shorter than the previously obtained shortest path, then

matrix NEXT is updated by:

NEXT(stti, sttj) = stt

2.5.2 Guided Exploration

As proven, exploration finally converges to the shortest path that connects with the target state.

Since exploration and exploitation basically produce the same result, the proposed algorithm only

needs to consider one single task, exploration.

Table 1 Exploration algorithm

01 Set the current state to stt, if ∃ai ∈ Actions ⇒ sttrwd ≡ Env(stt, ai):

02 Return {ai}

03 If stt ∉ SE:

04 Asuxpl
(stt) = {a: Env(stt, a) is unexplored, a ∈ Actions}

34

05 If Asuxpl
(stt) ≠ ∅:

06 Choose {ak} randomly from Asuxpl
(stt)

07 Else:

08 Choose {ak} randomly from Actions

09 Else:

10 If stt ∈ SEE:

11 Asoutside(stt) = {a: Env(stt, a) ∉ SE, a ∈ Actions}

12 Choose {ak} randomly from Asoutside(stt)

13 Else:

14 Get the nearest edge state stten by SFW from current state stt
15 Build the shortest actions chain Aschain by SFW from stt to stten

16 Get Asoutside(stten)

17 Choose ak randomly from soutside(stten)

18 Aschain ← Aschain ∪ (ak)

19 Return Aschain

20 Return {ak}

There are several major steps in the algorithm listed in Table 1:

Step 1: If stt is a neighbor of sttrwd, the agent can take action ai directly, which transitions the

state to sttrwd.

Step 2: If stt is not a member of SE, a decision is randomly made by calling Asuxpl(stt).

Step 3: If stt is not a member of SE, a decision is randomly made by calling Asoutside(stt).

Step 4: If stt is a member of SE but not a member of SEE, the shortest path is obtained using SFW.

This path represents the decision chain by which the agent can exit SE in the most efficient way.

2.5.3 Update of the CEG

Before exploration starts, SE is empty, and the agent has no a priori knowledge of the environment.

Denote stt0 as the start state of each exploration episode. Once exploration begins, from the initial

state stt0, for each successor state stti, an action ak is selected from the actions set according to

SFW, after which the agent moves to the next state stti+1 by taking action ak obtained from the

feedback of the environment.

Exploration gets repeated. Whenever a new state is found, it will be added to the graph GU

immediately. When the current state is completely explored, it will be added to set SE, sometimes

to the SEE simultaneously. This algorithm is listed in Table 2. One can see that when a new

completely explored state, corresponding to a vertex in the graph can be added to the CEG, it must

generate some action decision reflected as edge changes in the graph. The new SEE by definition

can be readily derived from the updated CEG.

Table 2 Algorithm: update CEG

01 Initialize: SE = ∅

02 Repeat:

35

03 Agent takes action ak in state stti

04 Get next state stti+1 from environment

05 If (stti, sttj) ∉ E(GU):

06 E(GU) ← E(GU) ∪ {(stti, stti+1)}

07 If {(stti, sttj): sttj = Env(stti, ak), ak ∈ Actions ⊂ E(GU):

08 If stti ∉ SE:

09 SE ← SE ∪ {stti}

10 Update CEG

11 Update SEE

2.6 Experimental Results

The new graph-based algorithm detailed has been applied to solve a maze. Maze solving has been

widely adopted for the testing of RL algorithms. The agent in the experiment can be seen as a

ground robot roaming in a maze, and it can always sense its current position (state) as it moves

around. At the beginning of an experiment, the agent knows nothing about the maze, and it needs

to find the reward (target) position and complete its journey by passing through a path from a

specified starting position.

2.6.1 Setup of Experiment

The maze has a size of 16 rows by 16 columns for a total of 256 blocks. There are 4 types of blocks,

namely target, trap, obstacle, and ordinary pass. The fixed start position is treated as a normal pass

block. The agent gets a reward of 1 when it researches the target, but if the agent falls into a trap,

it will get a reward of -1. Both conditions will lead to the finish of the current episode, and the

agent will have to return to the start position and restart its exploration. Note that the agent can

keep the exploration information from all the previous episodes. There are 975 mazes in the

experiment, and they differ from each other in terms of the locations of the obstacle blocks. In our

experiment, there are 46 obstacles for each of the 975 mazes.

36

Figure 21 Maze settings

For each maze, the initial position of the agent is at the upper left corner (1, 1), and the target

position is set to be (9, 9). There are 4 fixed traps, located at (4, 4), (12, 4), (4, 12), and (12, 12).

Table 3 summarizes the main characteristics of the maze.

Figure 21 illustrates a sample of mazes. In these mazes, the red circle represents the agent, the gray

blocks represent obstacles, the black blocks represent the traps, and the rest are normal pass blocks.

Table 3 Maze design parameter

Parameter Value

Map Size 16×16

Map Amount 975

Target Amount 1

Trap Amount 4

Rate of Obstacles 0.18

Total Number of Episodes 100

The proposed algorithm, referred as SFW, is compared against the classical Q-learning algorithm

(ql) and an improved Q-learning algorithm (qlm). Table 4 tabulates the main parameter values for

ql. The main improvement of qlm over ql is that qlm can remember the locations of the obstacles

and traps found during exploration., and avoid them during the subsequent explorations. Even if

37

the next action is randomly selected based on some probability, qlm can filter out the obstacles and

traps.

Table 4 Q-learning parameter

Parameter Value

Learning Rate (α) 0.01

Discount (γ) 0.9

ϵ-greedy 0.9

2.6.2 Performance Comparison with Q-learning Algorithms

2.6.2.1 Single Maze Comparison

All three algorithms are compared in terms of number of steps per episode when they are applied

to solve all the mazes, and the results from maze 25 and 908 are plotted in

Figure 22 and

Figure 23, respectively. In solving both mazes, SFW is found to converge quickly than the other

two algorithms, and it requires less number of steps during the exploratory process. As expected,

the performance of qlm is better than that of classical ql.

Figure 22 The steps amount in the #25 maze per episode comparison. The X axis is the episode

number, and the Y axis represents the number of steps in each episode

38

Figure 23 The number of steps in the #908 maze per episode

All three algorithms are compared in terms of average exploration efficiency of each step in every

episode when they are applied to solve all the mazes, and again, the results from maze 25 and 908

are plotted in

Figure 24 and Figure 25, respectively. One can see that SFW is more efficient in exploration and

converges faster than the other two algorithms.

Figure 24 Average exploration efficiency while solving maze 25

39

Figure 25 Average exploration efficiency while solving maze 908

2.6.2.2 Statistical Performance Comparisons for All Mazes

The experiments in this section include all 975 mazes. The X axis of each figure corresponds to

the maze number.

The comparison of convergence speed of every maze is shown in Figure 26 and Figure 27, where

ql and qlm are compared with SFW separately. The Y axis of each figure is the number of episodes

when the agent for the first time arrives at convergence. In both figures, one can see that the

proposed algorithm converges more quickly than the other two algorithms, especially true when

there are a large number of episodes. Actually, the SFW algorithm converges after no more than

20 episodes, while the other two need as many as 100+ episodes.

40

Figure 26 Convergence speed comparison: ql and SFW

Figure 27 Convergence speed comparison: qlm and SFW

The lengths of the finally discovered paths by are reported in Figure 28 and Figure 29. One can

see that the paths found by SFW have shorter lengths, in the range of 15 to 20, while the paths

found by the other two algorithms are much longer. In quite a few cases, the paths found by ql and

qlm are twice longer than those found by SFW.

41

Figure 28 Steps length of convergence comparison: ql and SFW

Figure 29 Steps length of convergence steps comparison: qlm and SFW

The exploration efficiency obtained from solving every maze is shown in Figure 30, One can see

SFW outperforms qlm in this regard, and both algorithms are significantly better than ql. The X

axis represents the maze number. The Y axis is the ratio of the total number of explored states to

the total number of steps when the agent for the first time arrives at convergence.

42

Figure 30 Explore efficiency comparison

2.6.3 The Maze in the Dynamic Environment

Changes of environment are categorized as obstacle change and target position change. In this

subsection, the focus will be on examining how these changes may impact the performance of the

three algorithms.

2.6.3.1 Obstacle Change

Take maze #8 as an example, the changes of the obstacles are tabulated in Table 5.

Table 5 Dynamic obstacles, maze #8

Change episode Change State Convergence Episode # The Corresponding Figure

0 Init 16 Figure 31 (a) and (c)

18 (2,8) 18 Figure 31 (d)

24 (3,6), (3,7) 25 Figure 31 (e) and (f)

29 (9,8), (10,8) 34 Figure 31 (g) and (h)

Figure 31 shows the snapshot of exploration, convergence, environment change and adaptation.

The maze has undergone three major changes that occur to the locations of the obstacles in the

experiments. The green square in Figure 31 represent the member of SE, and the purple squares

represent dynamically increased obstacles that are located within the current convergent path.

43

Figure 31 Dynamic obstacles, maze #8

2.6.3.2 Changes of Target Positions

Table 6 summarizes the changes that occur in maze 243. Other mazes have gone through similar

changes. One can see that the target position is changed once, relocated from the center of the

maze to its lower left corner.

Table 6 Dynamic target, maze #243

Change episode Change State Convergence Episode # The Corresponding Figure

44

0 Init 14 Figure 31 (a) and (c)

18 (9,9)⇒(1,16) 21 Figure 31 (d)

Figure 32 Dynamic target, maze #243

The results of exploration, convergence due to target position changes and re-convergence are

shown in Figure 32. In episode 0, the reward is claimed at block (9, 9) (Figure 32 (a)). The

exploration converges in episode 14 (Figure 32 (c)). In episode 18 where the reward is moved to

block (1, 16) (Figure 32 (d)), the agent finds the right path to the target, after three episodes (Figure

32 (e)).

2.6.4 Computation Efficiency

All three algorithms are compared for their respective computation efficiency under the same

computation platform. The hardware used in the experiments has an Intel® Core™ i5-3210M CPU

running at 2.5 GHz, and a RAM size of 8 GB. The operating system is Ubuntu 64 bits. The tools

used to test CPU time and memory occupation are line_profiler and memory_profiler, respectively.

The average CPU time reported in Table 7 is the average time of solving all 975 mazes. The basic

45

memory usage in Table 7 refers to the stable memory usage collected from solving select 62 mazes.

One can se that SFW requires more memory space than the other two algorithms; the memory

usage for both ql and qlm is comparable. The peak memory usage of SFW is also higher than that

of ql or qlm.

Table 7 Algorithm complexity comparison

Parameter ql qlm SFW

Average CPU Time (s) 0.5382 0.8472 4.9307

Basic Memory Usage (MB) 60.634 60.352 70.148

Peak Memory Usage (MB) 61.024 61.500 74.135

2.7 Conclusion

In this phase, the authors presented a new graph-based reinforcement learning method for optimal

UAV path planning. Unlike classical Q-learning algorithm and improved Q-learning algorithm,

the proposed algorithm does not struggle with the exploration vs. exploitation tradeoff, as it was

proved that the two tasks of exploration and exploitation actually converge in the decision-making

process. As so, the proposed graph-based algorithm finds the shortest path during exploration,

which gives higher efficiency and faster convergence than the Q-learning algorithm and its variant.

Another big advantage of the proposed algorithm is that it can be applied to the dynamic

environment where the value-oriented algorithm fails to work. The efficiency and convergence

performance of the proposed algorithm comes at a cost of increased computational complexity.

2.8 References

1. Dayan, P., & Hinton, G. E. (1992). Feudal reinforcement learning. Advances in neural

information processing systems, 5.

2. Dietterich, T. G. (1998, July). The MAXQ Method for Hierarchical Reinforcement Learning.

In ICML (Vol. 98, pp. 118-126).

3. Dijkstra, E. W. (2022). A note on two problems in connexion with graphs. In Edsger Wybe

Dijkstra: his life, work, and legacy (pp. 287-290).

4. Floyd, R. W. (1962). Algorithm 97: shortest path. Communications of the ACM, 5(6), 345-

345.

5. Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). A formal basis for the heuristic determination

of minimum cost paths. IEEE transactions on Systems Science and Cybernetics, 4(2), 100-107.

6. Huang, B. Q., Cao, G. Y., & Guo, M. (2005, August). Reinforcement learning neural network

to the problem of autonomous mobile robot obstacle avoidance. In 2005 International

conference on machine learning and cybernetics (Vol. 1, pp. 85-89). IEEE.

7. Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement learning: A

survey. Journal of artificial intelligence research, 4, 237-285.

8. Lewis, F. L., Vrabie, D., & Vamvoudakis, K. G. (2012). Reinforcement learning and feedback

control: Using natural decision methods to design optimal adaptive controllers. IEEE Control

Systems Magazine, 32(6), 76-105.

9. Lewis, F. L., & Vrabie, D. (2009). Reinforcement learning and adaptive dynamic programming

for feedback control. IEEE circuits and systems magazine, 9(3), 32-50.

46

10. Matarić, M. J. (1997). Reinforcement learning in the multi-robot domain. Robot colonies, 73-

83.

11. Moore, A. (1993). The parti-game algorithm for variable resolution reinforcement learning in

multidimensional state-spaces. Advances in neural information processing systems, 6.

12. Smart, W. D., & Kaelbling, L. P. (2002, May). Effective reinforcement learning for mobile

robots. In Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat.

No. 02CH37292) (Vol. 4, pp. 3404-3410). IEEE.

13. Sutton, R. S., Barto, A. G., & Williams, R. J. (1992). Reinforcement learning is direct adaptive

optimal control. IEEE control systems magazine, 12(2), 19-22.

14. Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., ... & Hassabis, D.

(2017). Mastering chess and shogi by self-play with a general reinforcement learning

algorithm. arXiv preprint arXiv:1712.01815.

15. Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., ... & Hassabis,

D. (2017). Mastering the game of go without human knowledge. nature, 550(7676), 354-359.

16. Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., ... &

Hassabis, D. (2016). Mastering the game of Go with deep neural networks and tree

search. nature, 529(7587), 484-489.

17. Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

47

3 UAV-LIDAR-BASED GEOMETRY MEASUREMENT SYSTEM

3.1 Overview

After determining the optimal flight path for the UAV, the study was focused on assembling a

platform that included sensors, processors, and other necessary components for geometry

measurement.

3.2 Methodology

3.2.1 Data collection platform

The platform hardware (Figure 33) includes a DJI Matrix 600 as the carrier, an Ouster OS-1

LiDAR for point cloud data generation, a 3DM-GQ7 IMU for flight status tracing, and an Nvidia

Jetson Xavier Development Kit (or Jetson in short) for on-board data acquisition and processing.

Figure 33 Left: Data collection prototype description. Right: Data collection hardware at the test

site.

The UAV spans a dimension of 65 inches × 60 inches × 30 inches after propellers, frame arms,

and GPS mount are unfolded. It carries the LiDAR with its gimbal mount, the IMU, and the Jetson

(a total payload of about 11 lbs) for a continuous 20 minutes’ flight. The maximum takeoff weight

is approximately 33 lbs.

The Ouster OS-1 time-of-flight (ToF) LiDAR scans with a 360° rotational field of view (FOV)

horizontally and emits 128 laser channels covering 45°FOV vertically (key specifications in

TABLE 8). This LiDAR outputs the point cloud data in 3D Cartesian coordinates (xL, yL, zL) that

represent the surfaces of surround objects and their corresponding reflection intensity

measurements, each linked to a channel angel, corresponding channel ID ranging from 1 to 128,

an azimuth value spanning from 0° to 360°, and timestamps. This sensor can measure distance up

to 170 m with a range resolution of 0.1 cm. Both of its vertical and horizontal angular sampling

accuracy is 0.01°.

48

TABLE 8 Ouster OS-1 LiDAR key specifications.

Specifications Values

Range 295 feet

Minimum Range 1.6 feet

Vertical Resolution 32, 64, or 128 points

Horizontal resolution 512, 1,024, or 2,048 points

Rotation rate 10 or 20 Hz

Vertical FOV 45°

Angular sampling accuracy ±0.01°

False positive rate 1/10,000

Range resolution 0.04 inches

The IMU (key specifications presented in TABLE 9) is attached on top of the LiDAR so that it can

accurately capture the instant dynamic posture of the LiDAR via high-speed accelerometers and

gyroscopes. The IMU accelerometers measure linear acceleration along three orthogonal axes

(xI, yI, zI), while the gyroscopes measure the rotational speed (i.e., angular velocity) around each

of the three axes.

TABLE 9 3DM-GQ7 IMU key specifications.

Parameter Accelerometer Gyroscope

Range ±8 g ±300°/s

Random walk 20µg/√Hz 0.15°/√h

Bias instability 5 µg 1.5°/h

Noise density 20µg/√Hz 8.75°/h/√Hz

Note that these two sensors do not share the same coordinate axis (see Figure 34), where the

LiDAR x+ is the IMU x-, the LiDAR z+ is the IMU z-, the LiDAR pitch+ is the IMU roll+, and

the LiDAR roll+ is the IMU pitch-. Therefore, the IMU coordinate system is projected to the

LiDAR coordinate system using equations:

 [

xL

yL

zL

]=[
−1 0 0
0 1 0
0 0 −1

] [

xI

yI

zI

] (14)

 [

RL

PL

YL

]=[
0 −1 0
1 0 0
0 0 1

] [

RI

PI

YI

] (15)

where x, y, and z stands x, y, and z-axis of each sensor, while R stands for roll, P stands for pitch,

and Y stands for yaw, respectively. The subscript L and I stands for LiDAR coordinate and IMU

coordinate respectively.

49

Figure 34 Coordinate axis difference between the LiDAR and the IMU.

In the end, all data from the LiDAR and the IMU are transmitted to the Jetson, which serves as the

on-board data acquisition and processing unit because of its computational capacity for high-speed

large data transmission, and its compatibility with ROS for automated data collection and

processing.

During each data collection, the flight speed of the UAV was set at approximately 1 meter per

second (m/s), and the altitude was set between 3-5 meters above the ground to ensure the point

density on rails are acceptable. The UAV flew along three different flight paths: 1) in between the

test tracks, 2) about 2 m north to the test track, and 3) about 2 m south to the test track. This ensured

all three surfaces (i.e., top and sides) of the test tracks were scanned. The LiDAR scanned the rails

at 10 Hz, with 1,024 vertical resolutions, and in single return mode. The IMU was configured to

operate at 500 Hz. Both sensor data were streamed synchronously through ROS and stored on the

Jetson.

3.2.2 Data Analysis/Software

Raw PCD frames include both rails (i.e., object of interests) and other surrounding objects that are

of no interest. Therefore, to enable automated track geometry measurement, we need to

semantically segment PCD frames to identify rail surfaces, and register small vertical FOV PCDs

for large-scale curvature/profile measurements. Afterwards, outlier removal is performed to delete

incorrectly predicted points from the segmentation before calculating geometries. General flow of

the data processing procedure is displayed in Figure 35.

50

Figure 35 Flowchart of data processing.

3.2.2.1 PCD semantic segmentation

To realize automatic and accurate segmentation of railway point clouds for various numbers of

scenarios, a supervised machine learning algorithm should be implemented. However, no labeled

railway PCD is available for open access. Therefore, the first step is to annotate enough railway

PCD to train a network. To do so, the original LiDAR data stream was decoded and saved as .pcd

files for annotation. An open source PCD annotation platform, Supervisely was used to label rails

in each frame (see Figure 36 (a)), where cuboids were positioned to minimally encapsulate points

of interest. Since the rails are long and narrow, most of the points in a frame are background points.

Therefore, each frame is cropped to include rails and nearby points to reduce the data size. Figure

36 (b) shows a labeled and cropped frame.

Figure 36 Supervisely annotation process. Cuboids are used to label rail points.

Machine learning requires enough training samples to obtain a good model. To increase the

diversity of training samples, data augmentation techniques such as rotation, translation, and

noises were applied to the original labeled frames. Eventually, 358 PCD frames were manually

labeled, and augmented to a total of 1322 frames for the entire rail PCD dataset. The dataset was

further split with a 0.7:0.2:0.1 ratio for training, validation, and testing set, respectively.

A 3D semantic segmentation neural network is adopted and optimized (see Error! Reference

source not found.) for automated segmentation of railroad points. The network follows an

51

encoder-decoder structure. In the encoding stage, random sampling is used to down sample points.

The local spatial encoding (LocSE) modules, and the attentive pooling (AP) modules are used to

aggregate point features to maintain information of points sampled out.

The LocSE module selects one point pi with feature fi in the point cloud and calculate its K

neighboring points [pi
1, pi

2, … , pi
K] in terms of their relative point position information ri

k:

 ri
k = MLP(pi ⊕ pi

k ⊕ (pi − pi
k) ⊕ ||pi − pi

k||) (16)

where k = [1,2, . . . , K], MLP stands for multi-layer perceptron, ⊕ stands for concatenation, and

|| ∙ || calculates the Euclidean distance. The information ri
k are then concatenated to the feature of

point pi (i.e., f̂i
k = fi ⊕ ri

k), introducing a new set of neighboring features F̂i = [f̂i
1, f̂i

2, … , f̂i
K].

The AP module aggregates the set of neighboring point features F̂i . The attention score si
k is

computed through a shared MLP layer followed by softmax function:

 si
k = softmax(MLP(f̂i

k, W)) (17)

where W is the learnable weights for the shared MLP layers. The weighted features are then

calculated as:

 f̃i = ∑ (f̂i
k ∙ si

k)K
k=1 (18)

In the decoder stage, up-sampling modules and multi-layer perceptron (MLP) are used to predict

the label for each point in the original PCD frame. Since the number of points in the two classes

(i.e., “rail” and “background”) are severely imbalanced, where only 1-2 % of the total points are

rails, a more aggressive down sampling rate was adopted to decrease the effect of background

points when training the network.

The loss function used in this network is cross entropy with logits. The loss is calculated as:

 lossi = − ∑ yi,j ∙ lnpi,j
1
j=0 (19)

where yi,j stands for the ground truth for the j th point in the i th frame, and pij stands for the

prediction for the j th point in the i th frame. The final result is achieved by minimizing all losses.

To further address the data imbalance issue, a heavier penalty is put on the rail points predicted as

background points. The overall structure of the network structure used is shown in Error!

Reference source not found..

52

Figure 37 Network structure. (N, F) stands for N points and F dimension of features. FC: fully

connected layer. LFA: local feature aggregation. LFA consists of multiple LocSE and AP modules.

RS: random sampling. MLP: multi-layer perceptron. US: up-sampling. DP: dropout layer.

3.2.2.2 Point cloud registration

For rail curvature and profile that require the rail length no less than 62ft, the FOV of a single PCD

frame does not suffice. Therefore, multiple PCD frames need to be aligned into a single coordinate

system to generate a larger scene. To achieve this goal, a SLAM algorithm () is exploited to register

rail PCD frames with the fusion of IMU kinematic readings and engineered point cloud features.

3.2.2.2.1 IMU kinematics

Raw IMU readings are presented as follows:

 ŵt = wt + bt
w + nt

w (20)

 ât = Rt

BW(at − g) + bt
a + nt

a (21)

53

where ŵt and ât represent the readings from the IMU in world frame at time t, and wt and at are

the true readings at time t. These readings are interfered by a slowly varying bias bt and white

noise nt. Rt stands for the rotation matrix from world coordinate system to body coordinate system,

and g stands for the constant gravity vector in world coordinate system.

The motion of the LiDAR can now be inferred using these measurements. The velocity, position,

and rotation of the LiDAR at time t + ∆t can be computed as follows:

 vt+∆t = vt + g∆t + Rt(ât − bt
a + nt

a)∆t (22)

 pt+∆t = pt + vt∆t +
1

2
g∆t2 +

1

2
Rt(ât − bt

a + nt
a)∆t2 (23)

 Rt+∆t = Rt

WBexp ((ŵt − bt
w − nt

w)∆t) (24)

Using the preintegrated IMU method (), the relative speed ∆vij, relative position ∆pij, and relative

rotation ∆Rij between time i and j can be computed as:

 ∆vi,j = Ri
T(vj − vi − g∆ti,j) (25)

 ∆pi,j = Ri
T(pj − pi − vi∆ti,j −

1

2
g∆ti,j

2) (26)

 ∆Ri,j = Ri

TRj (27)

these values are jointly updated with point cloud feature matching.

3.2.2.2.2 Point cloud feature

To find point cloud features, the roughness ci,k of a point pi,k is calculated:

 ci,k =
1

|S|∙||pi,k||
|| ∑ (pi,k − pi,j)j∈S,j≠k || (28)

where S stands for the set of points with half of them on one side of point pi,k. Points with high

roughness are considered as edge features, and points with low roughness are considered as planar

features. A voxel map containing features from previous n frames is used for feature matching. A

new scan Fi+1 with edge feature Fi+1
e and planar feature Fi+1

p
 is matched to the voxel map through

planar to planar, edge to edge matching. This matching is calculated through equations:

 dek
=

|(pi+1,k
e −pi,u

e)×(pi+1,k
e −pi,v

e)|

|pi,u
e −pi,v

e |
 (29)

54

 dpk
=

|
(pi+1,k

p
−pi,u

p
)

(pi,u
p

−pi,v
p

)×(pi,u
p

−pi,w
p

)
|

|(pi,u
p

−pi,v
p

)×(pi,u
p

−pi,w
p

)|
 (30)

where dek
 represents the distance between the edge point pi+1,k

e to a line formed by the

corresponding edge points pi,u
e and pi,v

e , dpk
 represents the distance between the planar point pi+1,k

p

and the plane formed by corresponding planar points pi,u
p

, pi,v
p

, and pi,w
p

. GaussNewton method is

used to solve for the optimal transformation through:

 min
Ti+1

{∑ dekpi+1,k
e ∈F́i+1

e + ∑ dpkpi+1,k
p

∈F́i+1
p } (31)

where F́i+1 represents features transformed with preintegrated kinematic values. This optimization

procedure calculates the best estimate of the actual pose difference between two specific poses.

This estimated pose difference is used to align two frames in the world coordinate.

3.2.2.3 Outlier removal

First, all rail points in the registered point cloud map are rotated using principal component

analysis (PCA) so that the longitudinal direction of the rail points align with the x-axis, the lateral

width of the track aligns with the y-axis, and the height of the track aligns with the z-axis. The

track points are then divided into 11 segments (each segment is approximately 62 ft) along the x-

axis. Each segment is then rotated using PCA again so that they all fall around the origin with same

coordinate layout as mentioned above. Two quadratic regressions y = f(x) is applied onto the

points in the x − y plane, and another quadratic regression z = g(x) for the x − z plane to

approximate each track, respectively. The distance of each point to these two regressions in each

plane is then calculated. Points with distance larger than a determined threshold are removed.

3.2.2.4 Geometry measurement

3.2.2.4.1 Gauge

To simulate the standard method of measuring rail gauge, we need to first identify the ball of the

rail head, then locate the rail inner surface 5/8 inch below the ball of the rail head. To approximate

the ball of the rail head, we select the top 10% of the points each segment, and calculate their

average value in the z-axis to represent the ball rail head. Then, the innermost 10% of the rail

points that are 15.5 – 16.25 mm beneath this average value in the z-axis are selected as the inner

rail surface points for gauge measurement. Because PCD are innately sparse, direct measurement

would be difficult. Therefore, two linear regressions are fitted to interpolate these surface points.

A 5 m long sliding window is then used to select critical points, where (x1,1, y1,1), (x1,2, y1,2) are

two points on one linear regression line that are 5 m apart, and (x2,1, y2,1), (x2,2, y2,2) are the ones

5 m apart on the other linear regression line. The sliding gauge value is then be calculated as the

distance between the midpoint (x1,m, y1,m) = ((x1,1 + x1,2) 2⁄ , (y1,1, y1,2) 2⁄) to the other gauge

line at (x2,1, y2,1) and (x2,2, y2,2) ():

55

 dg =
Ng

√(y2,2−y2,1)2+(x2,2−x2,1)2
 (32)

The window shifts 0.5 m at a time.

3.2.2.4.2 Curvature measurement

To determine rail curvature, we employ an 18 m sliding window and focus on identifying the gauge

side of the reference rail. Ideally, points on the side of the rail head would be used to identify the

gauge side, but due to the sparse nature of the PCD, this approach can lead to inaccurate regression

fitting. Instead, all rail head points within the window are used for regression fitting in the

horizontal plane.

The top 10% of the rail points within each 18 m window are selected and fitted with a quadratic

regression in the x-y plane that represents the gauge side of the reference rail. The points at both

ends of the window are fitted with a linear regression to approximate the 62-foot chord in the x-y

plane. The rail curvature for that section is then calculated as the lateral distance between the

quadratic and the linear regressions at the window’s midpoint. This sliding window moves 3 m

every time along the rail for each subsequent calculation, providing a continuous measurement of

curvature along the track.

3.2.2.4.3 Profile calculation

Similar to calculating curvature, an 18 m sliding window is employed to analyze the rail profile.

Within each window, the top 10% of points are selected to represent the rail head. In the x-z plane,

these points are fitted with a quadratic curve, while the points at both ends are fitted with straight

lines. The rail profile measurement for that section is determined by calculating the vertical

distance between the quadratic curve and the linear fits at the window’s midpoint. This process is

repeated as the window moves along the rail at 3 m each time, providing a continuous profile

measurement.

3.3 Results

This section presents the platform measurement results using a custom collected. The data

collection was carried out at the Nevada State Railroad Museum located in Boulder City, Nevada,

USA. An almost 700 ft test section of mostly straight and slightly curved rail track was selected

for this experiment (see Figure 37). This was the only available track section at the museum.

56

Figure 37 Test site track section for data collection.

3.3.1 Semantic segmentation result

The precision of the track geometry calculations depends heavily on the accuracy of the semantic

segmentation process. During the training process, the batch size is set to 8, and the learning rate

is set to 0.01. Given the significant imbalance between the two classes of points in rail PCD, the

Intersection over Union (IoU) metric is employed to assess the model’s performance. During

testing, the model demonstrated a highest IoU of 82.4%, which is illustrated in Figure 38.

Figure 38 Testing IoU curve.

3.3.2 Point cloud registration result

The process of point cloud registration involves aligning and merging successive LiDAR frames

to create a comprehensive, detailed composite representation of the test site. Figure 39 presents

the registered point cloud data of the test site. This figure showcases the effectiveness of the

registration process, with the rails prominently highlighted in red. This coloration is based on the

predicted labels, clearly distinguishing the rails from other elements within the scene.

57

Figure 39 Registered test site point cloud map

3.3.3 Geometry calculation result

First, the outliers are removed using the threshold method. The thresholds are set to 7 cm in the x-

y plane, and 8 cm in the x-z plane. These numbers are selected based on the visual results after

removing outliers. In this dataset, 10,511 outliers are removed from 50,503 rail points.

All calculated results are compared to the field measurement results using specialized rail tools

(see Figure 40). Gauge values were measured every 5 meters. Curvature and profile values were

measured at 62 ft apart, with 11 measurements in total. All measurements started at the landmark

position.

Figure 40 Using specialized rail tools to measure gauge, curvature, and profile at the test site.

3.3.3.1 Gauge

Gauge is measured at 5/8 of an inch below the top of the ball of the rail. Figure 41 illustrates the

gauge calculation process in the PCD that simulates this measurement method. The inner surface

is identified by locating it approximately 15.5 - 16.25 mm below the rail head. Figure 44 (a)

58

presents a histogram of deviations between these two sets of gauge measurements. Notably, around

78.57% of these deviations are within 2cm.

Figure 41 Gauge calculation process. (TL) Selecting rail head. (TR) Finding 5/8 inch below rail

head. (BL) Finding inner surface. (BR) Calculating gauge.

3.3.3.2 Curvature

Curvature is assessed by measuring the gap between the 62 feet chord and the gauge side of the

reference rail. Figure 42 illustrates the curvature calculation process that simulates this method by

fitting a linear regression as the chord and a quadratic regression at the gauge side of the reference

rail in the x − y plane. Figure 44 (b) shows the histogram depicting the deviations between the

measured curvature and the calculated curvature values. Overall, 77.27% of the deviations fall

within 1 cm.

59

Figure 42 Curvature calculation process. (TL) Finding rail head points. (TR) Finding the points

on both ends for chord simulation. (BL) Fitting surface regression and cord regression. (BR)

Calculating the gap at the mid-ordinate.

3.3.3.3 Profile

Profile is measured by placing a 62 feet string line along the top of the reference rail and measuring

the distance from the midpoint of the string line to the top of the reference rail. Figure 43

demonstrates the profile calculation in the rail points through fitting a linear regression as the string

line and a quadratic regression as the top of the reference rail in the x − z plane. Figure 44 (c)

depicts a histogram of the deviations between the measured profile values and the calculated

profile values, where 77.27% of the deviations fall within 1 cm.

60

Figure 43 Profile calculation. (TL) Finding rail head. (TR) Finding chord location. (BL) Fitting

rail head and chord. (BR) Calculating profile gap.

Table 10 shows the mean, the standard deviation (Std), the root mean square error (RMSE), and

the average relative error percentage (AREP) of all three calculations. Although the RMSE values

for all three calculations are similar, the gauge measurement demonstrates a notably lower AREP

value. Given that the measured gauge values are around 1.435 m, the relative error percentage for

the gauge is only approximately 0.77%. In contrast, for curvature and profile, the relative error

percentages are notably higher. Therefore, this system shows particularly good performance in

measuring rail gauge.

Figure 44 Histogram of deviations of calculated values from measured values.

Table 10 Platform calculation result summary using RMSE

Parameter Mean (cm) Std (cm) RMSE (cm) AREP

Gauge 144.88 1.68 1 0.77%

Curvature -0.19 0.84 0.84 143.77%

Profile 0.124 0.35 0.87 111.20%

3.4 Conclusion

In stage two, the authors developed a UAV-LiDAR based rail track geometry measurement

platform capable of conducting inspections alongside normal rail operations. Built upon a UAV

platform equipped with a LiDAR sensor, the platform leverages ML for rail point segmentation,

LiDAR SLAM for expanding the point cloud FOV, regressions for outlier removal, and regressions

for geometry calculations. Compared to field measurements using specialized tools, the platform

demonstrates high accuracy in gauge measurement but relatively poor performance in curvature

and profile measurements. Future work will focus on improving measurement accuracy in

curvature and profile, as well as incorporating cross level and warp assessments.

61

REFERENCES

1. Cannon DF, Edel KO, Grassie SL, Sawley K. Rail defects: an overview. Fatigue & Fracture of

Engineering Materials & Structures. 2003 Oct;26(10):865-86.

2. Iwnicki S. Handbook of railway vehicle dynamics. CRC press; 2006 May 22.

3. Sadeghi J, Khajehdezfuly A, Heydari H, Askarinejad H. Development of railway ride comfort

prediction model: Incorporating track geometry and rolling stock conditions. Journal of

Transportation Engineering, Part A: Systems. 2020 Mar 1;146(3):04020006.

4. Zhang Y, Han J, Song H, Liu Y. Subway embedded track geometric irregularity safety limits.

Chinese Journal of Mechanical Engineering. 2021 Dec;34:1-0.

5. Federal railroad administration track safety standards fact sheet.

https://railroads.dot.gov/divisions/railroad-safety/track-safety-standards, 2013.

6. Federal Railroad Administration. Track Safety Standards Compliance Manual. Federal

Railroad Administration, 1 April 2007, https://www.fra.dot.gov. Archived from the original

(PDF) on 28 May 2008. Retrieved 13 November 2012.

7. Tsunashima H, Naganuma Y, Kobayashi T. Track geometry estimation from car-body vibration.

Vehicle System Dynamics. 2014 May 30;52(sup1):207-19.

8. Farkas A. Measurement of railway track geometry: A state-of-the-art review. Periodica

Polytechnica Transportation Engineering. 2020;48(1):76-88.

9. Chen Q, Niu X, Zuo L, Zhang T, Xiao F, Liu Y, Liu J. A railway track geometry measuring

trolley system based on aided INS. Sensors. 2018 Feb 10;18(2):538.

10. Escalona JL, Urda P, Muñoz S. A track geometry measuring system based on multibody

kinematics, inertial sensors and computer vision. Sensors. 2021 Jan 20;21(3):683.

11. Wang X, Pan H, Guo K, Yang X, Luo S. The evolution of LiDAR and its application in high

precision measurement. InIOP Conference Series: Earth and Environmental Science 2020 May

1 (Vol. 502, No. 1, p. 012008). IOP Publishing.

12. Arastounia M. Automated recognition of railroad infrastructure in rural areas from LiDAR data.

Remote Sensing. 2015 Nov 6;7(11):14916-38.

13. Arastounia M. An enhanced algorithm for concurrent recognition of rail tracks and power

cables from terrestrial and airborne lidar point clouds. Infrastructures. 2017 Jun 2;2(2):8.

14. Sahebdivani S, Arefi H, Maboudi M. Rail track detection and projection-based 3D modeling

from UAV point cloud. Sensors. 2020 Sep 13;20(18):5220.

15. Geng Y, Pan F, Jia L, Wang Z, Qin Y, Tong L, Li S. UAV-LiDAR-based measuring framework

for height and stagger of high-speed railway contact wire. IEEE Transactions on Intelligent

Transportation Systems. 2021 May 24;23(7):7587-600.

16. Zhang L, Wang J, Shen Y, Liang J, Chen Y, Chen L, Zhou M. A deep learning based method

for railway overhead wire reconstruction from airborne LiDAR data. Remote Sensing. 2022

Oct 21;14(20):5272.

17. Manier A, Moras J, Michelin JC, Piet-Lahanier H. Railway lidar semantic segmentation with

axially symmetrical convolutional learning. ISPRS Annals of the Photogrammetry, Remote

Sensing and Spatial Information Sciences. 2022 May 17;2:135-42.

18. Lin S, Xu C, Chen L, Li S, Tu X. LiDAR point cloud recognition of overhead catenary system

with deep learning. Sensors. 2020 Apr 14;20(8):2212.

19. Wang Y, Song W, Lou Y, Zhang Y, Huang F, Tu Z, Liang Q. Rail vehicle localization and

mapping with LiDAR-vision-inertial-GNSS fusion. IEEE Robotics and Automation Letters.

2022 Jul 12;7(4):9818-25.

https://www.fra.dot.gov/

62

20. Dai X, Song W, Wang Y, Xu Y, Lou Y, Tang W. LiDAR-Inertial Integration for Rail Vehicle

Localization and Mapping in Tunnels. IEEE Sensors Journal. 2023 Jun 20.

21. Supervisely. Supervisely Computer Vision platform. Supervisely Ecosystem [Internet].

Supervisely; 2023 Jul [cited 2023 Jul 20]. Available from: https://supervisely.com

22. Maharana K, Mondal S, Nemade B. A review: Data pre-processing and data augmentation

techniques. Global Transitions Proceedings. 2022 Jun 1;3(1):91-9.

23. Hu Q, Yang B, Xie L, Rosa S, Guo Y, Wang Z, Trigoni N, Markham A. Randla-net: Efficient

semantic segmentation of large-scale point clouds. InProceedings of the IEEE/CVF conference

on computer vision and pattern recognition 2020 (pp. 11108-11117).

24. Shan T, Englot B, Meyers D, Wang W, Ratti C, Rus D. Lio-sam: Tightly-coupled lidar inertial

odometry via smoothing and mapping. In2020 IEEE/RSJ international conference on

intelligent robots and systems (IROS) 2020 Oct 24 (pp. 5135-5142). IEEE.

25. Forster C, Carlone L, Dellaert F, Scaramuzza D. On-manifold preintegration for real-time

visual--inertial odometry. IEEE Transactions on Robotics. 2016 Aug 31;33(1):1-21.

26. Alexander DC, Koeberlein GM. Elementary geometry for college students. Houghton Mifflin;

1999 Jan.

27. Soilán M, Sánchez-Rodríguez A, del Río-Barral P, Perez-Collazo C, Arias P, Riveiro B. Review

of laser scanning technologies and their applications for road and railway infrastructure

monitoring. Infrastructures. 2019 Sep 20;4(4):58.

28. Jixian ZH, Fei LI. Review of visual SLAM environment perception technology and intelligent

surveying and mapping application. Acta Geodaetica et Cartographica Sinica.;52(10):1617.

29. Saadat S, Stuart C, Carr G, Payne J. FRA autonomous track geometry measurement system

technology development: past, present, and future. InASME/IEEE Joint Rail Conference 2014

Apr 2 (Vol. 45356, p. V001T05A002). American Society of Mechanical Engineers.

30. Keylin A. Measurement and Characterization of Track Geometry Data: Literature Review and

Recommendations for Processing FRA ATIP Program Data.

31. Tratman EE. Railway track and track work. Engineering news publishing Company; 1908.

32. Khan MU, Zaidi SA, Ishtiaq A, Bukhari SU, Samer S, Farman A. A comparative survey of

lidar-slam and lidar based sensor technologies. In2021 Mohammad Ali Jinnah University

International Conference on Computing (MAJICC) 2021 Jul 15 (pp. 1-8). IEEE.

33. Escalona JL, Urda P, Muñoz S. A track geometry measuring system based on multibody

kinematics, inertial sensors and computer vision. Sensors. 2021 Jan 20;21(3):683.

34. Alpaydin E. Machine learning. MIT press; 2021 Aug 17.

35. Naganuma Y, Yada T, Uematsu T. Development of an inertial track geometry measuring trolley

and utilization of its high-precision data. International Journal of Transport Development and

Integration. 2019 Aug 14;3(3):271-85.

36. Chen Q, Niu X, Zuo L, Zhang T, Xiao F, Liu Y, Liu J. A railway track geometry measuring

trolley system based on aided INS. Sensors. 2018 Feb 10;18(2):538.

37. Lim KG, Siruno D, Tan MK, Liau CF, Huang S, Teo KT. Mobile machine vision for railway

surveillance system using deep learning algorithm. In2021 IEEE International Conference on

Artificial Intelligence in Engineering and Technology (IICAIET) 2021 Sep 13 (pp. 1-6). IEEE.

https://supervisely.com/

63

4 LIDAR CAMERA DATA FUSION

4.1 Overview

Given the results in Chapter 3, the authors proceeded to work on integrating multi-modal (i.e.,

multiple sensors) data with the aim of improving measurement accuracy. Naturally, the authors

decided to include a camera as the second data source. The inclusion of a camera sensor brings

several benefits that cannot be achieved with LiDAR alone. These benefits include:

1. Enhanced Detail Capture: Camera sensors can capture fine details and textures that LiDAR

might miss, providing a richer dataset.

2. Color Information: Unlike LiDAR, which typically provides only distance, intensity,

reflectivity data, etc., cameras can capture color information, aiding in more

comprehensive scene understanding.

3. Improved Object Identification: The visual data from cameras can assist in identifying and

classifying objects more accurately, which is particularly useful in complex environments.

To integrate camera data effectively, several critical tasks must be performed.

1. Image data semantic segmentation: Rail segmentation in image data, preferably through

unsupervised methods, is necessary to help achieve high accuracy in rail localization.

Without knowing the rail location in images, fusing image data to point cloud data is

meaningless.

2. Camera intrinsic calibration: The intrinsic parameters of a camera depend on how it

captures the images. It is necessary to determine these parameters to ensure accurate

geometric measurements.

3. LiDAR camera extrinsic calibration: Precise calibration between the LiDAR and camera

systems is essential to align their data streams into one coordinate.

Consequently, this phase of the project encompasses unsupervised rail image semantic

segmentation, camera intrinsic parameter calibration, and LiDAR-camera extrinsic parameter

calibration.

4.2 Literature Review

In this section, techniques used in the experiment are reviewed, including unsupervised semantic

segmentation in image, camera intrinsic parameter estimation, and LiDAR camera extrinsic

parameter estimation.

4.2.1 Unsupervised semantic segmentation in image

Unsupervised image segmentation is a crucial task in computer vision, aiming to partition an image

into meaningful regions without prior labeling or training data. Over the years, various approaches

have been proposed to tackle this challenge.

64

One study (Felzenszwalb and Huttenlocher, 2004) introduced an efficient graph-based method for

image segmentation. The algorithm adapts to local image characteristics, producing segmentations

that respect global properties of the image while being computationally efficient. This work has

been widely cited and implemented in various applications.

Another study (Shi and Malik, 2000) proposed the normalized cuts algorithm, which treats image

segmentation as a graph partitioning problem. This method considers both the total dissimilarity

between different groups and the total similarity within groups, providing a balanced approach to

segmentation. This paper has been influential in both computer vision and spectral clustering

research.

Achanta et al. (Achanta et al., 2012) introduced the Simple Linear Iterative Clustering (SLIC)

algorithm for generating superpixels. Although primarily designed for superpixel generation, SLIC

has been widely used as a preprocessing step in many unsupervised segmentation pipelines due to

its efficiency and ability to adhere to image boundaries.

Kim et al. (Kim et al., 2013) proposed a nonparametric higher-order learning approach for

unsupervised image segmentation. Their method learns higher-order relations between superpixels

using a nonparametric Bayesian framework, allowing for more flexible and accurate

segmentations.

4.2.2 Camera intrinsic parameters estimation

Camera intrinsic calibration is a fundamental task in computer vision, crucial for applications

requiring accurate 3D measurements and corrections for lens distortions. Over the years, various

methods and algorithms have been proposed to enhance the accuracy and efficiency of camera

calibration. Zhang (Zhang, 2000) introduced a flexible new technique for camera calibration that

uses a planar pattern observed at a few different orientations. This method, known as Zhang’s

calibration, became widely adopted due to its simplicity and effectiveness, requiring only a printed

checkerboard pattern and a set of images taken from different angles. A four-step calibration

procedure (Heikkilä and Silvén, 1997) involving image acquisition, corner extraction, parameter

estimation, and re-projection error minimization. This method also addressed the issue of radial

distortion and offered a comprehensive solution for camera parameter estimation. Tsai (Tsai, 1986)

developed a two-stage camera calibration approach that combined 3D reference points with a

coplanar grid pattern. This method significantly improved the accuracy of intrinsic and extrinsic

parameter estimation and has been influential in both academic research and industrial applications.

Sturm and Maybank (Sturm and Maybank, 1999) explored a method for plane-based camera

calibration that employed vanishing points and lines for parameter estimation. Their approach

demonstrated robustness in handling various distortion models and provided a versatile framework

for different camera setups. Bouguet (Bouguet, 2004) developed a comprehensive camera

calibration toolbox for MATLAB, which became a standard tool for researchers and practitioners.

This toolbox implements Zhang’s method and provides an easy-to-use interface for both intrinsic

and extrinsic camera calibration.

65

4.2.3 Camera LiDAR extrinsic parameters estimation

Extrinsic calibration between cameras and LiDAR sensors is crucial for multi-sensor fusion in

autonomous vehicles and robotics (6). Many studies have been conducted regarding this topic.

One method (Zhang et al., 2004) uses a checkerboard for 2D laser rangefinder and camera

calibration, achieving automated calibration with minimal human intervention. This pioneering

work laid the foundation for subsequent research. Geiger et al. (Geiger et al., 2012) extended this

approach to automatically calibrate multiple cameras and LiDAR sensors using a single shot of

multiple checkerboards, improving efficiency in multi-sensor setups.

As research progressed, limitations of planar targets became apparent. To address issues with

horizontal edges, one study (Tóth et al. 2020) introduced a method using spherical targets,

achieving more accurate and viewpoint-invariant calibration. In a similar vein, another study (Park

et al., 2014) employed a polygonal planar board, demonstrating improved feature extraction in

LiDAR scans.

While target-based methods offer high accuracy, they can be impractical in some real-world

scenarios. This realization led to the development of targetless calibration techniques. Researchers

(Moghadam et al., 2013) developed a method extracting line segments from natural scenes,

eliminating the need for special calibration objects. Their approach showed robust performance in

urban environments. Leveraging advances in computer vision, one study (Zhu et al. 2020) utilized

semantic segmentation of camera images for calibration, demonstrating increased robustness to

noise and low-resolution LiDAR data compared to traditional edge-based methods. This approach

opened new possibilities for calibration in complex, real-world settings.

4.3 Experiment

This section outlines the experimental process for data fusion. The authors employed several

techniques for image segmentation, including canny edge detector-based method, Segment-

Anything model, and unsupervised image segmentation.

4.3.1 Unsupervised image segmentation

Various techniques were experimented by the authors to extract rails from the image using

unsupervised image segmentation, including canny edge detection coupled with Hough transform

and a threshold-based region growing algorithm, Segment-Anything, and a semi-supervised image

segmentation method.

4.3.1.1 Canny edge detection-based method

Rail tracks can be characterized as approximate straight lines with distinct coloration compared to

their surroundings, forming continuous connected as show in Figure 45 (a). Therefore, the task

becomes identifying long tangent lines with continuity. To do so, a combination of inverted binary

transformation (Figure 45 (b)), edge detection algorithms (i.e., canny edge detection), line

detection algorithms (i.e., Hough transform)), and a threshold-based region algorithm (i.e., binary

threshold) is implemented for rail labeling.

66

Figure 45 Rail images. (a) Rails in original condition. (b) Inverted binary image.

4.3.1.1.1 Canny edge detection

To detect edges, noise reduction using a 5×5 Gaussian filter is first applied to the image. Then, the

smoothened image is filtered with a Sobel kernel in both horizontal and vertical direction to get

first derivative in horizontal direction (Gx) and vertical direction (Gy). The edge gradient and

direction of each pixel is than calculated as:

 G = tan−1(
Gy

Gx
) (33)

After getting gradient magnitude and direction, a full scan of images is done to remove any

unwanted pixels which may not constitute the edge. For this, at every pixel, pixel is checked if it

is local maximum in its neighborhood in the direction of gradient (

Figure 46).

Figure 46 Non-maximum suppression. Point A is on the edge in the vertical direction. Gradient

direction is normal to the edge. Point B and C are in gradient directions. Point A is checked with

point B and C to see if it forms a local maximum. If so, it is considered for next stage, otherwise,

it is suppressed by setting to zero. Image taken from

https://docs.opencv.org/4.x/da/d22/tutorial_py_canny.html

https://docs.opencv.org/4.x/da/d22/tutorial_py_canny.html

67

Furthermore, to get thin edges, hysteresis thresholding is applied to suppress edges that are not

connected to edge greater than maxVal (

Figure 47).

Figure 47 Hysteresis thresholding. Edge B is removed becasue it is not connencted to any edge

larger thant maxVal. Edge C is preserved because it connects to edge A. Image taken from

https://docs.opencv.org/4.x/da/d22/tutorial_py_canny.html

4.3.1.1.2 Hough Line Detection

Canny edge detection would detect all edges. To detect the straight edges for the rails, Hough Line

detection is applied. The equation used for detecting straight lines in the Hough Transform is given

by:

 ρ = xcosθ + ysinθ (34)

where ρ is the perpendicular distance from the origin to the line, θ is the angle between the x-axis

and the line perpendicular to the detected line, and (x, y) are the coordinates of any point on the

line. For each edge point (x, y) detected by the Canny edge detector, the Hough transform considers

all possible lines that could pass through that point. Each of these possible lines is represented by

a pair of (ρ, θ) pairs are plotted in the Hough space, creating sinusoidal curves. When multiple

sinusoidal curves intersect at a point in the Hough space, it indicates that the corresponding edge

points in the original image lie on the same straight line.

4.3.1.1.3 Threshold-based Region Algorithm

Hough line detection might pick up other straight lines in the images that are not part of the track.

Therefore, a threshold-based region algorithm is applied to help filter out false positive edges. A

binary threshold method is used to filter out weak edges, where:

 dst(x, y) = {
maxval if (x, y) > thresh

0 otherwise
 (35)

https://docs.opencv.org/4.x/da/d22/tutorial_py_canny.html

68

where maxval is the max value for each pixel. In this experiment, the maxval is set to 255, and

the threshold value is set to 100.

4.3.1.2 Segment-anything

The Segment Anything Model (SAM) (Kirillov, 2023), developed by Meta AI, is a versatile tool

designed to segment virtually any object in an image, even those it hasn’t encountered before. This

characteristic aligns perfectly with the requirements of this experiment, given the lack of open-

source labeled rail images. SAM’s ability to generalize to novel objects makes it an ideal choice

for the task of rail image segmentation in diverse environments.

SAM operates based on user-provided prompts, which can be points, boxes, guiding the model to

segment specific objects of interest.

4.3.1.3 Semi-supervised segmentation

The authors also explored a semi-supervised segmentation approach. Instead of labeling the entire

rail using polygon, the contours of each rail are determined using assisted labels and then used to

infer rail labels. The flowchart of the entire process is depicted in

Figure 48.

Figure 48 Flowchart of unsupervised image segmentation

This method initiates with manual identification of critical points along the rails in the images (

Figure 49 left). Subsequently, a polynomial regression is applied to these key points to determine

if any outlier exists in these points. The outliers are determined if the number of pixels between

the point and the regression line is more than a preset threshold. These critical points are uniformly

sampled to generate a better line. The uniformly distributed critical points are then visually

checked to see if they align with rails in each image. If not, the manual labels are modified to

reduce the difference between the two. For the ones that pass visual check, the points undergo

69

tenfold interpolation to create a more detailed contour. Areas between each set of contour lines are

determined as rail points (

Figure 50). Then, a U-net like network, shown in

Figure 51, is employed to predict this label.

Afterwards, a U-net like network, shown in

Figure 51, is employed to predict this label. The model is trained on 46 labeled samples, and tested

in a one-shot testing setup. The input of this network are images of size (1024, 1280, 3), while the

output consists of masks of the same resolution as the input images, with two channels indicating

“rail” or “background”.

70

Figure 49 Key points. Left: Manually selected key points. Right: Uniformly sampled key points

(red).

Figure 50 Cover ROI

Figure 51 U-net like model to predict point wise labels. Conv2d: 2D convolution. MaxPool2D:

2D max pooling. UpSampling: up sampling. Dashed line: skip connection.

4.3.2 Camera intrinsic calibration

71

Calibrating the intrinsic parameters of a camera is essential to understand the internal

characteristics of the camera, such as the focal length (fx, fy), optical center (cx, cy), and lens

distortion. The camera matrix K is unique to a specific camera, and can be expressed by focal

length and optical length through a 3×3 matrix:

 K = [
fx 0 cx

0 fy cy

0 0 1

] (36)

Two major kinds of distortion are radial distortion and tangential distortion. Radial distortion

causes straight lines to appear curved. Radial distortion becomes larger the farther points are from

the center of the image. Radial distortion can be represented as follows:

 xrd = x(1 + k1r2 + k2r4 + k3r6) (37)

 yrd = y(1 + k1r2 + k2r4 + k3r6) (38)

where (x, y) is the undistorted coordinate of a point, (xrd, yrd) is the radially distorted coordinate,

p1 and p2 are the tangential distortion coefficients, r2 = x2 + y2 is the squared radius from the

optical center.

Similarly, tangential distortion occurs because the image-taking lens is not aligned perfectly

parallel to the imaging plane. Therefore, some areas in the image may appear nearer than expected.

The amount of tangential distortion can be represented as:

 xtd = x + [2p1xy + p2(r2 + 2x2)] (39)

 ytd = y + [p1(r2 + 2y2) + 2p2xy] (40)

where (xtd, ytd) is the tangentially distorted coordinate. Therefore, the distortion coefficients need

to be determined include (k1, k2, p1, p2, k3).

The calibration mechanism involves using the identified corner points to solve a series of equations

that relate the 2D image points to the 3D points on the calibration pattern. The transformation from

3D world coordinates to 2D image coordinates can be expressed as:

 s [
u
v
1

] = K[R t] [

X
Y
Z
1

] (41)

where [u v 1]T are the homogenous coordinates of the 2D image points, [X Y Z 1]T

represents the coordinates of the 3D world points, R and t are the rotation and translation matrices,

and s is a scaling factor.

72

The calibration process aims to determine the camera intrinsic matrix K . Additionally, lens

distortions are calculated to correct image distortions caused by the camera lens. By solving

equation 41 using a sufficient number of calibration images, the intrinsic parameters and distortion

coefficients are optimized to minimize the re-projection error, resulting in an accurate camera

model.

The authors selected OpenCV camera intrinsic calibration library for camera intrinsic calibration.

This calibration requires at least 10 images with a certain test pattern. A CM3-U3-13Y3C-CS

FLIR camera (Figure 52) is used to capture images of a 6×9 checkerboard with 1.1cm × 1.1cm

squares, as shown in Figure 53. 88 images are captured in total for intrinsic calibration.

Figure 52 FLIR camera setup for data fusion

Figure 53 Checkerboard for camera intrinsic calibration. Left: original image. Right: corner

feature identified.

73

In the data, corner features of the chessboard is extracted using cv.findChessboardCorners function.

This function extracts all the corner points on the chessboard given the pattern size (Figure 53).

Then, cv.calibrateCamera function is used to calculate camera matrix, distortion coefficients,

rotation and translation vectors etc. These parameters are used in the extrinsic parameter

calibration.

4.3.3 LiDAR camera extrinsic calibration

LiDAR sensors and cameras are commonly used together because a LiDAR sensor collects 3D

spatial information while a camera captures the appearance and texture of that space in 2D images.

Fusing the data from these sensors correctly can potentially improve object detection and

classification. The process of LiDAR-camera calibration estimates a 4 × 4 homogeneous

transformation matrix that gives the relative rotation and translation between the two sensors. The

matrix is represented as follows:

 H = [
R T
0T 1

] (42)

where R is a 3×3 rotation matrix, T is a 3×1 translation vector, and 0T is a row vector of three

zeros. The rotation matrix R describes the orientation of the LiDAR sensor relative to the camera.

It has a 3×3 orthogonal matrix with the following properties:

 RRT = RTR = I (43)

 det(R) = 1 (44)

where I is the identity matrix. The translation vector T represents the position of the LiDAR sensor

relative to the camera. It is expressed as:

 T = [

tx

ty

tz

] (45)

where tx, ty, and tz are the translation components along the x, y, and z axes, respectively.

Given a 3D point PLiDAR in the LiDAR coordinate system, the corresponding point Pcam in the

camera coordinate system can be obtained using the transformation matrix H:

 Pcam = H × PLiDAR (46)

Expressed in homogeneous coordinates, this transformation can be expressed as:

74

 [

xcam

ycam

zcam

1

] = [
R T
0T 1

] [

xLiDAR

yLiDAR

zLiDAR

1

] (47)

With the camera intrinsic matrix K, the 2D image coordinates (u, v) of LiDAR points in a image

can be expressed as:

 [
u
v
1

] = K [

xcam

zcam
ycam

zcam

1

] (48)

The MATLAB LiDAR and camera calibration toolbox (Zhou, 2018) is used to estimate the

extrinsic parameters. This calibration requires a series of test patterns in terms of image and point

cloud (

Figure 54). This multi-modal data was collected using the FLIR camera and an Ouster OS1-128

LiDAR. The pattern used is a chessboard of size 5×7 with 9.5cm × 9.5cm squares. The corners

and planes of the checkerboard are extracted from both LiDAR and camera data to establish a

geometrical relationship between their coordinate systems to perform calibration. In image data,

the checkerboard corner features are identified through estimateCheckerboardCorners3d function.

In LiDAR data, checkerboard plane features are identified through detecRectangularPlanePoints

function. Then, function estimateLidarCameraTransform is applied to estimate the rigid

transformation matrix (Equation 48) between the LiDAR sensor and the camera.

Figure 54 LiDAR camera calibration process. Image taken from

https://www.mathworks.com/help/lidar/ug/lidar-and-camera-calibration.html

4.4 Results and analysis

4.4.1 Unsupervised image segmentation result

4.4.1.1 Canny edge detection-based method

https://www.mathworks.com/help/lidar/ug/lidar-and-camera-calibration.html

75

This method can successfully detect the rails in the image as shown in Figure 55, where rails in

Figure 45 (a) are detected. The detection process involves identifying linear line features in the

image that correspond to the rails. However, since the surrounding environment includes ties,

warehouses, etc., those edges would be detected as well, affecting the segmentation result.

Therefore, this method is not suitable for the current dataset. With dataset void of significant

background objects, this method may be effective.

Figure 55 Canny edge detection-based method result.

4.4.1.2 Segment-Anything result

This method is capable of segmenting the rails out of the background with a high accuracy (Figure

56), where rails are clearly separated from the rest of the areas. Nevertheless, running this

algorithm does not generate the same label for rail every time, meaning the rails cannot be

segmented even though there is a label for them. In addition, each rail is given an individual label,

making it difficult to find all rails. Therefore, this method is not suitable for adding label to image

data.

Figure 56 Segment-Anything result. Left: result one. Right: result two.

4.4.1.3 Semi-supervised segmentation

76

This method uses semi-automated method to find segments. As shown in Figure 57, this method

is capable of segmenting rails when the camera is placed along the rail. However, the semantic

segmentation is severely affected by the view angle (Figure 58). This is likely caused by a lack of

data, where most of the rails are placed vertically in the collected images.

Another drawback of this method is the cost of time. To achieve a high accuracy, critical points

need to be selected carefully to ensure a higher quality label. An incorrectly selected critical points

at the beginning would affect the quality of regressions, and in turns affect the accuracy of contour

labels.

Figure 57 Segmentation result when camera is placed along the rail.

Figure 58 Segmentation result from sideview

4.4.2 Calibration result

The calibration results are evaluated using both checkerboard data and field data. Figure 59

presents the lab calibration result with the checkerboard data, where the error appears negligible.

Figure 60 displays a frame of the calibrated result from the field data. In this image, where the red

labels represent the output of point cloud segmentation described in Section 3.2.2.1, while the

77

green labels are generated from camera data segmentation detailed in Section 4.3.1.3. The

discrepancy between these two label sets is readily apparent.

Based on this visual comparison, it is evident that the current calibration is not sufficiently accurate

to perform reliable data fusion, regardless of the segmentation accuracy. One potential factor for

misalignment in rail data but not the checkerboard data is because rail is significantly smaller than

checkerboard, where negligible error cannot be omitted. The noticeable misalignment between the

red and the green labels indicates that further refinement of the calibration process is necessary to

achieve the precision for effective sensor fusion in this application.

Figure 59 Lab calibration result. Top left: Calibrated result of point cloud overlapping with

image. Top right: Grey scene represents calibrated area

Figure 60 Field data calibration result

78

4.5 Conclusion

In this stage, the authors explored the possibility of integrating camera data to LiDAR to enhance

track geometry measurement. Due to time constraints, semi-assisted supervised image semantic

segmentation was utilized, achieving high segmentation accuracy when the rails were vertically

aligned in the images. The calibration results were highly accurate with checkerboard data but

showed significant errors when applied to rail data. Consequently, the current data fusion approach

is not suitable for the geometry measurement platform discussed in Section 3. Future research aims

to achieve more comprehensive image segmentation and improve LiDAR camera calibration

accuracy.

4.6 References

1. Zhang, Z. (2000). A flexible new technique for camera calibration. IEEE Transactions on

pattern analysis and machine intelligence, 22(11), 1330-1334.

2. Heikkila, J., & Silvén, O. (1997, June). A four-step camera calibration procedure with implicit

image correction. In Proceedings of IEEE computer society conference on computer vision

and pattern recognition (pp. 1106-1112). IEEE.

3. Tsai, R. Y. (1986). An efficient and accurate camera calibration technique for 3D machine

vision. In Proc. IEEE Conf. Computer Vision and Pattern Recognition, 1986 (pp. 364-374).

4. Sturm, P. F., & Maybank, S. J. (1999, June). On plane-based camera calibration: A general

algorithm, singularities, applications. In Proceedings. 1999 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition (Cat. No PR00149) (Vol. 1, pp. 432-

437). IEEE.

5. Bouguet, J. Y. (2004). Camera calibration toolbox for matlab. http://www. vision. caltech.

edu/bouguetj/calib_doc/.

6. Wang, Y., Li, J., Sun, Y., & Shi, M. (2021, September). A survey of extrinsic calibration of

LiDAR and camera. In International Conference on Autonomous Unmanned Systems (pp.

933-944). Singapore: Springer Singapore.

7. Zhang, Q., & Pless, R. (2004, September). Extrinsic calibration of a camera and laser range

finder (improves camera calibration). In 2004 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566) (Vol. 3, pp. 2301-2306).

IEEE.

8. Geiger, A., Moosmann, F., Car, Ö., & Schuster, B. (2012, May). Automatic camera and range

sensor calibration using a single shot. In 2012 IEEE international conference on robotics and

automation (pp. 3936-3943). IEEE.

9. Tóth, T., Pusztai, Z., & Hajder, L. (2020, May). Automatic LiDAR-camera calibration of

extrinsic parameters using a spherical target. In 2020 IEEE International Conference on

Robotics and Automation (ICRA) (pp. 8580-8586). IEEE.

10. Park, Y., Yun, S., Won, C. S., Cho, K., Um, K., & Sim, S. (2014). Calibration between color

camera and 3D LIDAR instruments with a polygonal planar board. Sensors, 14(3), 5333-5353.

11. Moghadam, P., Bosse, M., & Zlot, R. (2013, May). Line-based extrinsic calibration of range

and image sensors. In 2013 IEEE International Conference on Robotics and Automation (pp.

3685-3691). IEEE.

12. Zhu, Y., Li, C., & Zhang, Y. (2020, May). Online camera-lidar calibration with sensor semantic

information. In 2020 IEEE International Conference on Robotics and Automation (ICRA) (pp.

4970-4976). IEEE.

79

13. Felzenszwalb, P. F., & Huttenlocher, D. P. (2004). Efficient graph-based image

segmentation. International journal of computer vision, 59, 167-181.

14. Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transactions on

pattern analysis and machine intelligence, 22(8), 888-905.

15. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., & Süsstrunk, S. (2012). SLIC superpixels

compared to state-of-the-art superpixel methods. IEEE transactions on pattern analysis and

machine intelligence, 34(11), 2274-2282.

16. Kim, S., Nowozin, S., Kohli, P., & Yoo, C. (2011). Higher-order correlation clustering for

image segmentation. Advances in neural information processing systems, 24.

17. Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., ... & Girshick, R. (2023).

Segment anything. In Proceedings of the IEEE/CVF International Conference on Computer

Vision (pp. 4015-4026).

18. Zhou, L., Li, Z., & Kaess, M. (2018, October). Automatic extrinsic calibration of a camera and

a 3d lidar using line and plane correspondences. In 2018 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS) (pp. 5562-5569). IEEE.

80

5 ACKNOWLEDGEMENTS

This study was conducted with the support from the USDOT Tier 1 University Transportation

Center on Railroad Sustainability and Durability.

81

6 ABOUT THE AUTHOR

Lihao Qiu, M.S.

Mr. Lihao Qiu was a MS student and is a Ph.D. student in Electrical and Computer Engineering

while he worked on this research project. He received his B.S. degree from Shanghai Maritime

University.

Ming Zhu, Ph.D.

Dr. Ming Zhu is the Electrical Engineering Laboratory Director of the Department of Electrical

and Computer Engineering at the University of Nevada Las Vegas. His research interests include

circuits and VLSI design, robotics and automation, AI/machine learning algorithms and

applications, computer and network architectures, computation algorithms and system design. He

has a Ph.D. in Electrical Engineering from the University of Nevada Las Vegas.

Jee Woong Park, Ph.D.

Dr. Jee Woong Park is an Associate Professor of Civil and Environment Engineering and

Construction. He is specialized in construction management, asset management, construction

automation, and informatics. He has his MS degree from Stanford University and his Ph.D. from

Georgia Tech.

Yingtao Jiang, Ph.D.

Dr. Yingtao Jiang is a professor in the Department of Electrical and Computer Engineering at the

University of Nevada, Las Vegas. His research interests include semiconductors, microelectronics,

computer-aided design, unmanned vehicle systems and applications, AI/machine learning

algorithms and applications, sensors and instrumentations, computer architectures, wireless

communications and STEM education. He has a Ph.D. in Computer Science from the University

of Texas at Dallas.

Tianding Chen, Ph.D.

Dr. Tianding Chen is a professor at College of Physics and Information Engineering at Minnan

Normal University. He received his Ph.D. in Communication Engineering from Zhejiang

University. His research interests include robot vision-based navigation, intelligent image and

scene understanding, and machine learning and deep learning.

Han Li, Ph.D.

Dr. Han Li is a professor at College of Electrical and Electronic Engineering at Wenzhou

University. He received his Ph.D. degree in Communication from Zhejiang University. His

research interests include artificial intelligence, including machine learning, deep learning, and

computer vision.

82

Dr. Haijian Shao, Ph.D.

Dr. Haijian Shao was an Associate Professor at the Jiangsu University of Science and Technology,

Zhenjiang, Jiangsu, China when he worked on this research project. He specializes in computer

science and image processing.

Hualiang (Harry) Teng, Ph.D.

Dr. Hualiang (Harry) Teng is a Professor of Civil and Environmental Engineering and Construction.

He is specialized in railroad system, intelligent transportation system, and highway safety. He

received his Ph.D. from Purdue University.

	DISCLAIMER
	EXECUTIVE SUMMARY
	1 TRACK GEOMETRY BACKGROUND
	1.1 Overview
	1.2 The Basics of Track Geometry
	1.2.1 Track Irregularities
	1.2.2 Absolute vs. Relative Track Geometry
	1.2.3 Space Curve
	1.2.4 Chordal (Versine) Measurements
	1.2.5 Additional Track Geometry Variables

	1.3 Types of Track Geometry Measurement Systems
	1.3.1 Relative and Absolute TGMS
	1.3.2 Platform
	1.3.3 Principle of Operation
	1.3.4 Autonomous TGMS
	1.3.5 Vehicle Response Measurement

	1.4 References

	2 DEVELOPING OPTIMAL UAV FLIGHT PATH
	2.1 Overview
	2.2 Introduction
	2.3 Preliminaries and Background
	2.3.1 Value-oriented Method for the Exploration-Exploitation Tradeoff in RL
	2.3.2 RL over Graphs
	2.3.3 Floyd-Warshall Algorithm

	2.4 Convergence of Exploration and Exploitation
	2.4.1 Completely Explored Graph
	2.4.2 Exploration Converges to Exploitation

	2.5 Algorithm Implementation
	2.5.1 Shortest Path Search in Dynamic Environment
	2.5.2 Guided Exploration
	2.5.3 Update of the CEG

	2.6 Experimental Results
	2.6.1 Setup of Experiment
	2.6.2 Performance Comparison with Q-learning Algorithms
	2.6.2.1 Single Maze Comparison
	2.6.2.2 Statistical Performance Comparisons for All Mazes

	2.6.3 The Maze in the Dynamic Environment
	2.6.3.1 Obstacle Change
	2.6.3.2 Changes of Target Positions

	2.6.4 Computation Efficiency

	2.7 Conclusion
	2.8 References

	3 UAV-LIDAR-BASED GEOMETRY MEASUREMENT SYSTEM
	3.1 Overview
	3.2 Methodology
	3.2.1 Data collection platform
	3.2.2 Data Analysis/Software
	3.2.2.1 PCD semantic segmentation
	3.2.2.2 Point cloud registration
	3.2.2.2.1 IMU kinematics
	3.2.2.2.2 Point cloud feature

	3.2.2.3 Outlier removal
	3.2.2.4 Geometry measurement
	3.2.2.4.1 Gauge
	3.2.2.4.2 Curvature measurement
	3.2.2.4.3 Profile calculation

	3.3 Results
	3.3.1 Semantic segmentation result
	3.3.2 Point cloud registration result
	3.3.3 Geometry calculation result
	3.3.3.1 Gauge
	3.3.3.2 Curvature
	3.3.3.3 Profile

	3.4 Conclusion
	REFERENCES

	4 LIDAR CAMERA DATA FUSION
	4.1 Overview
	4.2 Literature Review
	4.2.1 Unsupervised semantic segmentation in image
	4.2.2 Camera intrinsic parameters estimation
	4.2.3 Camera LiDAR extrinsic parameters estimation

	4.3 Experiment
	4.3.1 Unsupervised image segmentation
	4.3.1.1 Canny edge detection-based method
	4.3.1.1.1 Canny edge detection
	4.3.1.1.2 Hough Line Detection
	4.3.1.1.3 Threshold-based Region Algorithm

	4.3.1.2 Segment-anything
	4.3.1.3 Semi-supervised segmentation

	4.3.2 Camera intrinsic calibration
	4.3.3 LiDAR camera extrinsic calibration

	4.4 Results and analysis
	4.4.1 Unsupervised image segmentation result
	4.4.1.1 Canny edge detection-based method
	4.4.1.2 Segment-Anything result
	4.4.1.3 Semi-supervised segmentation

	4.4.2 Calibration result

	4.5 Conclusion
	4.6 References

	5 ACKNOWLEDGEMENTS
	6 ABOUT THE AUTHOR

