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ABSTRACT 
 

The primary purpose of this study is to evaluate the use of Doppler Lidar sensors for assessing 

track weakening that would indicate early stages of track instability.  Such track weakening could 

lead to gage widening or track buckling due to rail thermal expansion.  A series of tests were 

performed at the Transportation Technology Center’s High Tonnage Loop, where two sections of 

track were “doctored” to have weaker lateral strength, one on a tangent and another one in a curve.  

Multiple tests were performed at speeds ranging from 10 – 40 mph during which the lateral and 

vertical deflections of the rail were measured under the weight of the passing wheels of a heavily 

loaded gondola.  The track weakness is created by removing the rail spikes from eight consecutive 

ties.  The measurements from the soft sections were compared with a track section on a tangent 

length of track that is determined to have nominally sufficient (“good”) stiffness.   

  

The measurement system consists of four Doppler Lidar units, two oriented toward the rail gage 

face to measure lateral rail movement and two directed to the top of the rail to measure vertical 

rail movement.  The combination of the vertical and lateral measurements is used as an indicator 

of lack of rail stability if larger-than-normal movement of the rail is detected in either direction.  

 

The data collected is analyzed through various methods designed to differentiate sections of track 

including Gaussian Mixture Model sorting algorithms, inspection via Short Time Fourier 

Transforms, Discrete Wavelet Transforms, and manual inspection. None of the methods can be 

done automatically.  They each require a different amount of set up and pre-processing before the 

raw data can be made suitable for the analysis offered by each. The pre-processing can account for 

dropped data and can be used to identify some false positives such as switches or lubricators. 

 

The test results indicate that the system provides a distinctly different measurement in the sections 

that are doctored to have less track stability than the section with nominally sufficient stiffness. 

The detection of the loose track in the tangent sections, however, proved to be less reliable.  For 

those, a mostly ad hoc approach was necessary to match the measured data with video images to 

pinpoint the exact location of the measurements.  It is not clear to what extent such approaches 

would be feasible in practice 

 

Further evaluations of the test data may be used to shed more light on practical analysis methods—

possibly wavelets—that are more automated and less ad hoc.  They can also provide alternative 

system setups or design of experiments for future tests at the Transportation Technology Center 

(TTC) or on revenue service tracks  
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Chapter 1 Introduction 
 

The purpose of this study is to explore and validate the potential for a non-contact system to 

identify sections of laterally weak or damaged track in revenue service. For the past several years, 

the Center for Vehicle Systems and Safety (CVeSS) has used its Doppler Lidar system to 

investigate dynamic components of train and track conditions. One of the issues has been the lack 

of ground-truth validation of the capability of the Lidar system to differentiate loose or damaged 

track from track in good condition. Previous implementations of the Lidar systems implemented 

by CVeSS has yielded promising results, enabling assessing railroad track condition in a somewhat 

automated manner. 

 

Although the revenue-service test results were promising, they did not offer for an independent 

assessment against ground truth data. Specifically, it has not been possible to independently 

crosscheck and validate the predictions against track measurements or even track engineers’ 

observation. The main challenge remaining has been the time elapsed between when the 

measurements are made and when the analysis is completed, and any changes to the track made in 

the meantime. Another challenge has been the lack of exact spatial correlation between the data 

and track events. If the data indicates a particular track issue, it is often difficult to pinpoint the 

location from GPS data, mainly due to inaccuracies in the GPS measurements and their 

asynchronous relation to the Lidar measurements. 

 

One of the main questions raised by previous tests has been what types of track conditions were 

being detected by the Doppler Lidar system. While we knew that sections such as switches, 

junctions, and bridges would contain data indicative of deviations from normal track 

measurements, we were not able to determine the exact cause or validity of these other locations 

with sufficient reliability. We knew of several cases that could cause a change in track response, 

such as poor tie fasteners, a disjointed or cracked rail, or faulty ballast. We did not, however, have 

confirmation that we knew exactly how these phenomena would present themselves in the Lidar 

data, and as such which forms of track issues we were identifying with the greatest consistency. If 

an anomaly was detected, then the question remained as to its cause, and so we did not know if it 

was a broken rail, poor tie connection, or some other track irregularity. 

 

The tests described in this study are intended to better connect the Lidar data with track events, 

by possibly determining the various track events that appear in the data through ground truth 

measurements in a controlled environment. 
 

1.1 Motivation 
 

The motivation of this study is to evaluate the effectiveness of the Doppler Lidar sensing system 

to evaluate track conditions while connected to a moving train. In particular, this study focuses on 

track which has a significantly reduced connection to its ties due to loose or removed tie spikes. 

The reduced connection of the track to the ties would cause a change in the stiffness and damping 

between the two of them, and as such would produce a greater deviation from the normal 

movement of the track. This additional movement is dangerous as unintended changes in the track 

geometry can cause accidents or derailments. 
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Additionally, the types of disconnection from the tie can influence the ways that the track might 

respond. Loose vertical or lateral retaining spikes each influence the direction in which the track 

responds. Beyond the translational effect, these changes could be made even more notable via 

orbital changes in the track position. 

 

 
Figure 1-1: Rail motion as defined by: a. vertical translation b. lateral translation c. orbital 

rotation 

 

As stated, the changes of these track dynamics are of great importance to the railroad and their 

operators because large deviations in track positioning could pose a risk for causing additional 

wear-and-tear or even for catastrophic failure in the case of derailment. If the track shifts far 

enough away from its expected position, the wheel could shove the rail out of the way enough to 

fall within the width of the track, and hence would result in a derailment. Alternatively, it could 

shift the orientation of the bogeys, causing the wheels to roll over the outside of the rail. While 

loose ties themselves may not be solely responsible for this result, they could combine with other 

track conditions to generate issues for the track. 

 

As such, an evaluation of the Lidar system used to measure these phenomena is necessary to 

determine to what extent we can measure the track dynamics and prevent excess track motion. 

Evaluating the speeds and reliability with which the sensor system can measure these conditions 

at also allows for the appropriate implementation of them for future data collection. 

 

1.2 Objectives 
 

The objectives of this project are to: 

 

1) Evaluate the capabilities of the Doppler Lidar sensors to measure changes in track 

conditions in both tangent and curved track, 

2) Compare the effect of speed on the reliability of the track condition detection, 

3) Assess the application of different analytical tools to determine if an automated detection 

process is feasible, and 
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4) Provide recommendations for further study into the measurement of track dynamics with 

Doppler Lidar systems. 

 

1.3 Approach 
 

On-track testing was conducted to evaluate the capabilities of the Doppler Lidar system. These 

tests were conducted on the 2.7-mile long Hight Tonnage Loop at the Transportation Technology 

Center. Tests were conducted from between 10 to 40 miles per hour, and recorded both vertical 

and lateral motion of both ties using the Lidar sensors. Two roughly 15-foot sections of track had 

their vertical ties removed, one in a tangent, the other in a curve. After the data was collected, it 

was analyzed through various processes to determine if the sections of loose rail could be identified 

or automatically detected. From these results, further suggestions were made for the continued 

evaluation of the Doppler Lidar system. 

 

1.4 Contribution 
 

This study furthers the validation of Doppler Lidar system developed by the Center for Vehicle 

Systems and Safety (CVeSS) in the use of characterizing railroad track conditions. In particular, 

this study provides information on the limits of detecting removed vertical tie spikes, but these 

processes could be applied to other conditions such as lateral track looseness or other damaged 

track conditions such as cracks. Expanding the range of applications for which Doppler Lidar can 

be used in allows for greater reliability when monitoring track conditions. 

 

1.5 Report Organization 
 

This document has seven chapters. Chapter 1 introduces the study. Chapter 2 provides background 

information on the current sensing practices of the railroad industry for at-risk rail conditions, as 

well as previous implementations of Lidar systems in the use of vehicle safety systems and 

measuring velocity. It also discusses the technical characteristics of our sensors and information 

on the track which the experiment was conducted on. Chapter 3 describes the process of developing 

the test, as well as the steps taken to prepare and conduct the data collection. Chapters 4 through 

6 analyze the data collected; first through the use of an unsupervised sorting algorithm, then from 

a frequency domain analysis, and finally a manual review of the data. Chapter 7 provides the 

summarized results of the analysis as well as further recommendations for research.  
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Chapter 2 Background 
 

This background provides information on the track conditions and their evaluations, along with a 

background in Lidar sensing systems. This chapter starts with a review of track irregularity 

classifications and the current monitoring methods. It then provides information on the function of 

Lidar sensors and the specifics of the Lidar system developed for this study. The additional sensors 

in the track evaluation system are also described. Finally, this chapter includes the reasoning for 

our choice of track used in this test. 

 

2.1 Track Irregularities 
 

When built, railroad tracks are built to within tolerances specified for their class of rail, but during 

operation, repeated loading and rocking of the train, along with other impact and frictional forces, 

can cause damage to accrue on the tracks. Failures from these conditions present themselves as 

growing rail defects or irregular track geometry. They can also cause changes to the track structure 

itself. The rail defects often grow from small cracks, holes, and fractures until rail failure occurs. 

Changes in track geometry conditions alter the orientation or structure of the track out of its 

prescribed alignment. 

 

The rail defects can be categorized into external and internal defects. These defects are spots from 

which the damage grows and potentially threatens worse conditions for the rail. The external 

defects can be found via visual inspection of the rails, but the internal failures need other advanced 

inspection tooling to identify [1]. Rail defects can be created from many different causes, some of 

which include irregularities during manufacturing, impact forces, friction forces, and corrosion. 

All rail defects, if not prevented and allowed to grow, pose a threat to the continued safe function 

of the track and should be detected and fixed before that point. 

 

The track geometry also has a significant role in the safety of a railroad track. As with rail defects, 

if the track geometry is allowed to deviate from the prescribed values, it poses a threat to safe use 

of the track. Some examples of important elements of track geometry are: the alignment of the 

track, the profile, gage, and cross level.  

 

In this following section, these track alignment conditions are expanded upon. 

 

2.1.1 Alignment 

 

The track alignment is defined as the lateral deviation of the rail gage face from its designed 

position, or in other terms is a measurement of its uniformity/straightness. It can be measured 

manually by placing the ends of a string of a set length (in the US, typically around 62 feet) along 

the side of the rail and measuring the distance from the midpoint of the string to the face of the 

rail. In a tangent section of track, any distance from zero is a deviation in the alignment of the 

track. 

 

2.1.2 Profile 
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Similar to alignment, track profile is defined as the vertical deviation of the rail from its designed 

position. It can also be measured through the same string method; however, deviations of the track 

profile indicates either hump or dip deviations for higher and lower deviations from the rail. 

 

2.1.3 Gage 

 

The gage of the track is the distance between the left and right rail as measured from 5/8” below 

the top of the railhead. Gage can be measured manually via a gage measuring stick. Gage can also 

refer to the change in distance from left and right rails compared to its prescribed distance, with 

positive being measured as an increase in distance and negative a decrease. US railroads have 

nominal gage distance of 56.5”. 

 

2.1.4 Cross Level 

 

The cross level of the tracks is the change in the vertical distance between the track heights 

compared to their set height. A set height difference of greater than zero is referred to as the 

superelevation of the track. A positive cross-level is when the left rail is comparatively higher than 

the right rail, while negative is when the right rail is comparatively higher than the left. It is 

measured from a right angle from the top of a reference rail and is done under load. 

 

While all of these track conditions are relevant to safe track operation, the Doppler Lidar system 

in this study does not measure these conditions directly. Rather, it is designed to inspect the overall 

motion of the rails, outliers in which could represent issues with alignment or with defects in the 

rails themselves. As such, the system might be able to detect problems caused by rail defects or 

irregular track geometry. Locating sections of the track with irregularities improves the monitoring 

and inspecting capabilities of railroad inspectors. The next section expands upon the current 

inspection methods used to detect track irregularities. 

 

2.2 Track Inspection 
 

The railroad tracks are inspected regularly in order to make sure that rail defects don’t grow and 

that the track geometry is maintained within allowable constraints. The frequent and accurate 

inspection of the rails, ballast, wheels, and cars is important to prevent the building up of damage, 

which could lead to permanent damage to the structures, or even endanger passengers. As such, 

many methods are used in conjunction with one another to inspect a large variety of conditions 

related to railroad and train health. 

 

The derailment of the trains is of great concern, and so care is taken to try to prevent these instances 

from occurring. Of the primary causes of train derailment, broken rails and/or welds is the largest 

contributor across all classes of rail. The conditions of improper track geometry, excluding wide 

gage, is the second most prominent for class 2 rail and above. The second most common cause of 

derailment for class 1 rail, and the third most common for higher class rail is gage widening [2]. 

In the case of hazardous material releases, the frequency of mainline accidents caused by rail 

conditions follows this same pattern of being most frequently caused by broken rails or welds, 

followed by bad track geometry and then wide gage [3]. 
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To combat these issues, tracks are frequently inspected to prevent accidents. Of the current 

commonly used practices, manual inspection is the dominant method of inspecting the health of 

the track. The Federal Railroad Administration requires that all track of class 1 through 3 to be 

inspected between one to two times a week depending on the frequency and cargo of the train [4]. 

This is commonly done with the inspector walking the tracks or riding on a high-rail vehicle. This 

process must be conducted slowly enough (around 5 mph) that the inspector can sufficiently 

observe the rail and track, and is limited to the observation of only surface defects without the 

addition of tools to measure the track geometry conditions [1,4]. 

 

In addition to the manual visual inspection of the rails, track geometry cars are commonly 

implemented to inspect the conditions of the track geometry. These cars are capable of measuring 

the gage, horizontal and vertical alignments, cross-level variance, and twist of the track [5]. These 

geometry cars can also include inertial measurement and optical systems to measure the car 

accelerations caused by the track and to include additional visual inspection data [6]. 

 

While these methods have proven useful for the detection of issues in both rail geometry as well 

as track or weld damage, they are slow, and can interfere with the operations planning for many 

railroad companies, along with being labor-intensive and exposing inspectors to potentially 

hazardous conditions [1]. As such, new methods are often explored to try to improve the reliability 

of inspection, or to improve the speed at which inspections can be conducted. 

 

One method of improving the reliability of maintenance and damage detection is through the use 

of historical data collected by these current methods and generating predictive models. From data 

collected repeatedly on a track which measures the changing conditions and correlating them to 

the emergence of damage, models can be generated to improve the planning and prediction of 

maintenance needs [7,8]. 

 

Beyond these inspection methods, several others are being explored or implemented on some rails. 

These new methods especially focus on automated inspection methods in order to increase the 

speed and improve maintenance and inspection decisions. These inspection methods include 

ultrasonic, induction, eddy current, Lidar, and inertial sensing, along with the implementation of 

computer vision. Some of these methods do not necessarily increase the speed at which the 

inspection can be conducted, but do allow for more reliable detection of faults within rails, and 

can detects issues not found via visual inspection or measurements of track geometry. 

 

Ultrasonic inspection of the rails allows for the inspection of the structural conditions of the rails 

through the generation of an ultrasonic output into the rail head, where damage in the rail head 

produces a change in the outgoing ultrasonic frequency. This method does not need direct contact 

with the rail, although some implementations currently being explored induce the ultrasonics 

through direct contact with custom wheels [9]. The implementation of this method can also be 

done manually through the use of a sled or cart pushed along the rail by an inspector. 

 

In addition to ultrasonic sensing, eddy current sensing is also able to detect changes in track health 

through a close-range non-contact sensing. Current eddy sensors generate a magnetic field by 

summing an alternating current through a coil, which when near the rail produces an opposite 

secondary field. These sensors measure the change in either the amplitude, phase, or both of these 
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fields, and through doing so can distinguish sections of track indicative of damage [10]. This 

process can only sense to a shallow depth into the track as the electric field falls off rapidly as the 

distance increases from the magnetic field. Ultrasonic sensing and eddy current sensing can be 

combined when inspecting rails, which works to increase their speed and effectiveness of 

inspection [11]. 

 

In a similar fashion to the eddy current sensor, induction testing works by creating an 

electromagnetic field across the top of the railroad track. Instead of generating a magnetic field 

from a coil, the field is generated by placing a pair of electrodes 120 cm from each other on the 

rail and providing a DC current between the two of them. An induction sensor above the rail then 

measures the magnetic field, where damage to the rail will present itself as a distortion. This 

method, however, is limited to around 22 mph [1]. 

 

As stated before, inertial sensors and visual inspection modules can be attached to track geometry 

cars. The inertial sensors are used to monitor the changes in acceleration of the train in sections of 

the track to analyze and eventually predict when repairs will be necessary. Computer vision also 

works to improve these sensing characteristics by monitoring the track for any changes in 

contraction, or by looking for missing or damaged track supports [11,12]. 

 

Lidar sensors have also been used in several different applications for railroad and track 

monitoring. This active sensing technology is able to measure accurately even while moving at 

high speeds, and to measure the distance and velocity of its target. For the application of our 

experiment, I will expand on the current implementation of Lidar technology for the purposes of 

sensing and instrumentation. 

 

2.3 Doppler Lidar technology 
 

Doppler Lidar systems work by generating a specific frequency laser pulse which is directed 

towards the target. The light which hits the target is scattered backwards and detected by the sensor. 

Based on the relative speeds of both the sensor and the target, the wavelength of the light emitted 

is shifted due to the Doppler effect when scattered back. The system measures the time of flight of 

the pulse as well as the Doppler shift in the returning frequency of the laser to determine the relative 

velocity of the target. 

 

This shift occurs due to the change in apparent frequency caused by the differences in the velocity 

of the sensor and target. With respect to the target of the sensor, the apparent shift in the frequency 

of light emitted can be expressed as 

 

𝑓1 = 𝑓0 (1 +
∆𝑣1

𝑐
) (21) 

 

where the ∆𝑣1 is the difference between the velocity of the target and the sensor as expressed by 

∆𝑣1 = 𝑣𝑠 − 𝑣𝑡 with 𝑣𝑠 being in-line component of the velocity of the sensor and 𝑣𝑡 being the in-

line component of the velocity of the target. 𝑐 is defined as the speed of light in a vacuum. We also 

assume that for practical applications, the velocity of the sensor and the target are significantly 

smaller than 𝑐. The light is then scattered by hitting the target, and is then detected by the sensor. 
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This new apparent frequency at the sensor with respect to the scattered frequency can be expressed 

by  

 

𝑓2 = 𝑓1 (1 −
∆𝑣2

𝑐
) (22) 

 

With the change in velocities having the opposite sign since the direction of the light has been 

reversed and ∆𝑣2 representing the negative of the difference between the two velocities. Together, 

these two equations create the function 

 

𝑓2 = 𝑓0 (1 +
∆𝑣1 − ∆𝑣2

𝑐
) (23) 

 

And given that ∆𝑣1 = −∆𝑣2, with the Doppler shift defined as 𝑓𝐷 = |𝑓2 − 𝑓0|, the representation 

of a Doppler shifted frequency becomes 

 

𝑓𝐷 = 2𝑓0

∆𝑣1

𝑐
 (24) 

 

From (2-4) it is clear that the returning frequency is only a function of the emitted frequency and 

the relative velocity between the sensor and the target. The frequency of the emitted laser is known, 

as it can be directly calculated from the wavelength of the laser. As such, the relative velocity can 

be calculated by measuring the shifted frequency of the returning laser.  

 

Since the relative velocity is limited to the vector direction between the two bodies, the only speed 

measured is that in the radial direction from the Lidar sensor. For example, if a stationary sensor 

was looking at a moving object at angle 𝜃, then the velocity component in the Doppler shift 

equation would be ∆𝑣1 = 𝑉 cos 𝜃 where 𝑉 is the magnitude of the velocity of the target. The effect 

of the angle between the movement of the object and the sensor needs to be included in the 

calculation if the sensor cannot be fully aligned with the direction of the motion of interest. 

 

 
 



9 
  

Figure 2-1: When an object is not moving directly in line with the path of the laser, the 

component of the velocity measured is a function of the angle of difference. 

 

The same effect is true if the sensor itself was moving rather than the target, since the velocities of 

interest are relative in nature. In our application, the sensor is mounted to the train which acts as a 

moving platform but the equation holds true whether the target is moving or the sensor is moving. 

 

2.4 Virginia Tech’s Lidar System 
 

The Lidar sensor system developed by CVeSS uses these same Doppler Lidar principles when 

measuring the velocity of the rails. This allows for the fast and accurate non-contact sensing of the 

relative velocity between the rail and the train. The sensors attach to the underside of the train and 

have two pairs of laser beams which are aimed at the rails. One pair of lasers are aimed at the 

inside gage face of the left and right rails while the other pair is aimed at the top of each rail. As 

seen in  
Figure 2-2, the solid red arrows represent the outgoing beam and the dashed blue arrows show the 

reflected beam which is used to measure the Doppler shift. 

 

 
 

Figure 2-2: Virginia Tech’s Lidar system design for measuring the relative speed between 

the rails and the sensors 

 

The Lidar system transmits the beam through a pair of telecommunication optical fibers. These 

fibers guide the laser to the lenses, which both emit the laser at the track head, and also receive the 

returning scattered laser. The returning light data is then passed through a High-Fidelity RF device 

and then processed by a National Instruments PXI central processing unit. This unit generates a 

Fast Fourier Transform (FFT) of the data, which is used to determine the velocity of the object 

based on the Doppler shift in the frequency of the data. From the transformed data, the PXI 

calculates the velocities of each rail and the data is displayed on a monitor and saved to the hard 

drive. The saved data is later post-processed for further investigation of the motions of the rails to 

determine locations of laterally weak rail. 
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Figure 2-3: Block diagram of the Lidar system processing and storage for non-contact 

sensing 

 

The laser is a homodyne instrument, which will return only the absolute value of the speed it 

measures. As such, if the changes in speed measured of an object is about zero, the results would 

not differentiate between positive and negative velocity. As such, an offset is needed, and in this 

case, the forward speed of the train allows for this addition. A nominal forward angle of 10 degrees 

is applied to the sensors aimed at the rails, which incorporates a slow changing longitudinal 

velocity offset to the data. With a known angle, the lateral and vertical velocity components can 

be calculated, and a high pass filter is applied to remove the longitudinal speed of the train. 

 

As stated before, two pairs of Lidars were implemented as part of the system, with one pair sensing 

the lateral motion of the track and aimed at the inside gage face of the rails, and the other sensing 

the vertical motion of the track and aimed at the top of the rails. The vertical motion inspection 

system was nicknamed the Corsair system, and so information recorded by it is referred to as 
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Corsair data. The lateral system’s nickname was Blackbeard, and as such its data is Blackbeard 

data. For both of these systems, a channel 0 and a channel 1 were designated. The channel 0 signal 

refers to the left rail and will typically be colored in green, while the channel 1 signal refers to the 

right rail and will typically be colored in red. Hence, we had four Lidar lenses implemented to 

record the conditions of the track: Blackbeard Channel 0 and Channel 1, and Corsair Channel 0 

and Channel 1. 

 

2.5 Lidar in industry 
 

Several industries have already implemented Lidar technologies in widespread use. Autonomous 

vehicles have been taking advantage of the capabilities for Lidars to accurately measure distances 

rapidly for their application in sensing surrounding objects. Rather than just aiming at a single 

target, the Lidar, or battery of Lidars, scan the surrounding area and return the distances of objects 

around the car [13,14]. These methods use a time-of-flight implementation of the Lidar sensors, 

however other applications in autonomous driving use Doppler Lidar to sense for pedestrians 

through a combination of both time of flight and distance sensing [15]. 

 

Doppler Lidars in specific find widespread use in the measurement of atmospheric conditions. The 

Doppler Lidar is able measure small particles to indicate information regarding the growing of rain 

droplets [16] or wind and dust effects [17]. The application of this technology has proven useful 

in these fields. 

 

Even within the field of railroad track inspection, Lidars are currently being explored for their 

usefulness in detecting faults or helping to predict and manage maintenance. Time of flight 

sensors, which implement a point cloud system similar to that found in autonomous vehicles can 

be used to extract information from aerial vehicles for the purpose of identifying track [18]. 

 

In addition to this point cloud implementation used for track identification, the Doppler Lidar 

system of measuring the velocity of the rail has been tested for use in track analysis. The 

application of Doppler Lidar has been used for the measurement of track curvature from the 

differences in velocities between the left and the right rail, as well as the distinguishing track 

irregularities [19]. 

 

This last type of Lidar application is the one which this experiment aims to expand on. The analysis 

of rail conditions through Doppler Lidar has been promising, however the extent and full 

capabilities of the technology have not been completely explored. In this study, Doppler Lidar 

sensors are implemented in an attempt to monitor for conditions that could be indicative of laterally 

weak rail, which could pose issues for gage widening or other track safety conditions. 

 

2.6 Additional Sensors 
 

To support the CVeSS Lidar system, a surrounding series of other sensors was included, including 

an accelerometer and a pair of GPS receivers. We also included a manual signal switch attached 

to the data acquisition system to allow for the manual identification of locations of note throughout 

the track by an operator. To review for any issues found during testing, a pair of GoPro™ Hero 8s 

were mounted to the underside of the train and filming the location of the rails which were being 
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measured by the Lidars. On the side of the track, fish scales were implemented on the ties to 

measure the maximum lateral displacement of the track head during testing. 

 

The accelerometer was constructed with an ADXL327 triaxial accelerometer. The accelerometer 

has a full range of +/- 2 g and was configured to sense at 50 Hz. The GPS units were Garmin RS 

232 marine sensors. The receiver was a GPS 19x HVS, which had up to a 10 Hz update rate. They 

also could track GLONASS, GALILEO, and QZSS. The receivers were housed in IPX7 

waterproof housing pole mounts. All of these sensors were connected through a Measurement 

Computing USB-1608FS which is a 16-bit 8 channel A/D converter. The A/D converter was 

controlled through a Lenovo ThinkPad PC and was set to collect at a rate to match the Lidars with 

a sample rate of 33 Hz. 

 

While the GPS receivers had up to a 10 Hz update rate, the actual rate was a function of the 

computation necessary to determine its location. As such, it did not have a consistent sample rate, 

nor was the location measured consistent. Through testing, there also was clearly a delay in the 

update which caused the GPS location to lag behind the rest of the data. 

 

 
 

Figure 2-4: The pair of Garmin RS 232 Marine Sensors connected to the  

top of the freight car 

 

The fish scales measure the maximum field side lateral deflection of the head of the rail during a 

test. The sensors are rods positioned laterally at the same height as the rail head, with the end of 

the rod placed against the side of the track. After the train has passed, the change of the rod’s 

displacement indicates the maximum field side deflection the rail experienced as the train passed 

that location. This can be measured and reset between each trial. 
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Figure 2-5: A fish scale connected to field side gage face of the rail. 
 

2.7 Track Classes 
 

In addition to the sensors needed to validate the Doppler Lidar system, the track is important to 

the test. Railroad track can be classified into different classes of rail, which determines the speed 

which the train can operate at as well as the limits for the required parameters of track conditions. 

The classes as defined by the Track Safety Standards are presented as class 1 through class 5 track, 

with maximum allowable speeds set for both freight trains and passenger trains. 

 

Table 2-1: Maximum Allowable Train Speeds based on Track Classification 
 

Track Classification Maximum operating speed 

for freight trains (MPH) 

Maximum operating speed 

for passenger trains (MPH) 

Excepted 10 NA 

Class 1 10 15 

Class 2 25 30 

Class 3 40 60 

Class 4 60 80 

Class 5 80 90 

 

In addition to the maximum allowable speeds, the allowable deviated conditions of the track are 

also based on the class of rail. For example, the alignment of class 1 tangent track is allowed to be 

up to five inches offset from the mid-point of a 62-foot line, while class 5 track is allowed no more 

than a ¾” deviation from the mid-point of a string of the same length. If a track fails to meet one 

or more of its requirements, it is considered the next lowest class of track. 

 

The different classes also tend to be used for different purposes. Class 1 rail is common for yard 

and short line travel, and class 2 is common for branch lines and secondary main lines. The most 

common class of track for passenger and long-haul freight is class 4 rail.  

 

2.8 Track Selection 
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The Transport Technology Center (TTC) was selected as the location for our testing due to both 

our already established contact with Transportation Technology Center, Inc. (TTCI), now known 

as MxV Rail, as well as their extensive capabilities for trackside testing. The center has 10 tracks 

on ground, including the Railroad Test Track (RTT), Wheel/Rail Mechanism Loop (WRM), and 

the High Tonnage Loop (HTL). These tracks all form continuous loops, which allows us to easily 

conduct several tests in succession without needing to reverse directions. 

 

 
 

Figure 2-6: The as-built plans for the Transportation Technology Center testing tracks 

 

The TTC also has a large selection of locomotives, passenger cars, and freight cars. Because the 

site is designed for testing track conditions already, they match our needs exceptionally well, and 

can provide us with the resources to test. Specifically, they could provide us with a closed off 

track, the cars necessary to create a consists containing a locomotive, passenger car, and freight 

car, as well as the ability to change some of the conditions of the track. They also had the necessary 
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staff both to coordinate and to conduct the experiments. The additional people on the track allows 

for the addition of track-side measurements to validate the deflection of the rail at our points of 

interest, and to compare those results with the information gathered by our Doppler Lidar system. 

Working with the staff, we were able to set up a date for our experiment to be conducted over a 

week-long period during the summer. 

 

The selected track on which we were to conduct our experiment was the High Tonnage Loop. The 

HTL is a short track, with a length of about 2.7 miles, including two tangent sections, three 5-

degree curves, and one 6-degree curve. This track is Class 4 rail with an operating speed of up to 

40 mph.  The loop is designed for heavy and overloaded trains, which allowed us to deflect the 

track by the greatest amount due to the weight of the train. 

 

The track was also selected since it would potentially have additional “weak” sections that could 

be used for further Doppler Lidar characterization given its high tonnage use. The track accrues 1 

million gross tons a day for standardized testing and 140 million gross tons a year of freight testing 

wear. The track also has other common elements such as a bridge, concrete ties, lubricators, 

switches, etc. which would provide an environment typical of natural track. These elements are 

useful for seeing if the Doppler Lidar system can characterize or distinguish between them and 

irregular track. 

 

 
 

Figure 2-7: Additional elements found on the HTL such as switches, bridges,  

concrete ties, and a lubricator 

 

The track also contains both tangent and curved track, which allows us to test the capabilities of 

the Doppler Lidar system in detecting laterally weak rail in both tangent and curved track. In one 

of the tangent sections, section 40, a set of eight ties was selected as the control section as the on-

site workers determined them to be typical of the condition of the track. In this same tangent 

section, a different set of eight ties had their vertical tie spikes completely removed to emulate an 
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extremely loose vertical connection to the ties. In one of the curved sections, section 25, we also 

selected eight ties to be decoupled vertically from the track. Section 25 was a 6-degree curve with 

about 3 degrees of superelevation 

 

 
 

Figure 2-8: Locations of control and altered track on the HTL 

 

While we were not able to know the models of locomotive, passenger car, or freight cars ahead of 

time, we knew that we would have a consist containing one of each. We planned to have the freight 

car loaded as heavily as reasonably possible in order to excite the rail to the greatest extent and 

hence to produce the strongest signal. The freight cars used on the HTL regularly have a weight of 

315,000 pounds. With this large weight causing a significant deflection, we also planned to connect 

our Lidar sensors, GPS units, and accelerometer to the freight car for testing. 
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Chapter 3 Test Preparation 
  

This chapter reviews the process of preparing for and collecting the data to validate the Doppler 

Lidar system. For the data collection session in Colorado, we knew we were going to run our tests 

on the HTL with a consist containing a locomotive, passenger car, and freight car. While preparing 

for our tests, however, we did not know what models of each we would have access to. Due to the 

scheduling issues related to MxV moving to a new location, we would be shown what was 

available to use on the first day of our testing. To prepare for this, in addition to our Lidar testing 

practice and preparation, we designed several possible mounting options to account for a variety 

of different mounting conditions that could be presented. To start with, we practiced using the 

Lidar sensors to understand their capabilities and limitations. 

 

3.1 Lidar Practice 
 

Our first key step in the pre-test preparation process was getting familiar with the mechanics of 

the Lidar sensors. After being provided a description of their operation, we first mounted the lasers 

to a desk in the lab and aimed them at a rotating disk which provided a known and consistent 

rotational velocity for us to measure. We practiced the steps of turning on, collecting, and exporting 

the data collected by the Lidars. From there, using the same setup, we moved the lenses closer and 

farther from the disk to observe what the data would look like if the target was too close or too far 

from our focal distance. In either case, the result was that the signal would drop to zero if the target 

was outside of the lens's focal range, and that there was inconsistency in the signal near the edges. 

In the same experiment, we also observed the changes in the data as the disk was rotated from 

completely perpendicular to completely parallel to the lens. At either extreme, no signal was 

detected. Once the disk was angled between either of these extremes, the signal returned. When 

the disk was close to perpendicular, the signal indicated a slow speed, while at an extreme angle, 

the velocity was measured to be much greater. This reflects the Doppler Lidars measure the 

velocity component directed in line with the target itself. 
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Figure 3-1: Lidar measuring the velocity of a rotating disk (left); Lidar measuring the 

radial component of velocity relative to the lens (right) 

 

From there, to familiarize ourselves with the data collection process while attached to a vehicle 

and as an initial practice with mounting, we connected the Lidar sensors to the lab truck and drove 

the truck in the parking lot of the laboratory, recording the velocity of the ground beneath the truck. 

This improved our practice with identifying curves in the data as well as observing the impact of 

vibrations or slow speeds on the data. From driving in the lot around the lab, we were able to 

correctly determine the velocity of the truck through the Lidar data. We also found that at speeds 

at around 2 mph or less, the returned signal lost clarity and had an increase in outlying speed 

measurements. We then mounted the lenses to the truck a second and third time, with a laser angle 

which was too shallow and then too deep. During these tests, we also mounted the GPS receivers 

to the roof of the truck, which we used to normalize the observed speeds of the test to compare 

between each other. From these results, we were able to see the extent to which the angles of the 

sensors affected the precision of the results. Since the Lidar software accounts for an assumed 10-

degree angle to the surface, the shallower and steeper angles each needed to be scaled larger or 

smaller to represent the correct speeds. At an angle close to perpendicular with the ground surface, 

the results were precise but were less able to differentiate between upwards and downwards 

movement of the road due to the homodyne laser. The near parallel mounting to the surface of the 

road required greater scaling to account for the angle and had less precision in the speed. Figure 

3-2 shows an example set of data using the GPS to normalize Doppler Lidar data. The channel 1 

lens was mounted with a shallower angle to the surface of the road. 

 

 
 

a. 
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b. 

 

 
 

c. 

 

Figure 3-2: Results of initial truck mounted Lidar testing with the (a) raw results, the (b) 

corrected results, and (c) the GPS data for basic road testing. 

 

We also found that the GPS signal lagged behind the location of the car and that there were some 

sections not representative of the motions actually taken during our tests. The cause of this issue, 

we found, was an insufficient connection of the GPS receivers to the satellites. During the trials 

with worse representations of the path of travel, we found that there were only around two to three 

satellites connected to the system. When we drove into a more open location, and were connected 

to six to nine satellites, the representation of the path of travel was significantly more accurate. 

With a better understanding of the Lidars and their capabilities, we needed to prepare a method to 

mount them to the train for testing. 

 

3.2 Sensor Mounting 
 

Having practiced using the Lidars and GPS receivers, the next step of preparation was to design a 

mounting system for the train in the Colorado test. We knew that we needed to determine the 

location of the connection for the lenses. We reviewed the images of previous mounting 
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configurations and tests conducted with this Lidar sensor system. Since we still did not know 

exactly what kind of locomotives or cars we had available to us, we considered both locomotive 

and freight car mounting configurations. As such, we considered each of the challenges that either 

style would present to us. 

 

For mounting the Lidar sensors to a locomotive, the undercarriage of the train would provide a 

challenge, especially with regards to the lateral laser setup due to the large amount of fuel and 

machinery underneath. The undersides of locomotives have little space beneath them, and tend to 

not have easy access to locations to fix lenses to. Previous tests that mounted to a locomotive 

solved this by finding a section beneath the stairs at the front of the train which allowed for enough 

of an angle to spot the inside of the opposite rail. These types of mounting also tended to connect 

via the stairs, either in the front of the locomotive or off of the rear. Of course, with all 

configurations, the lasers needed to be positioned near the wheels, and so the exact model of 

locomotive would impact our choices greatly. In addition to the physical capability of mounting 

to the train, the issue of the lasers falling off the top of the track while rounding corners presented 

itself as a consideration. The laser’s distance from the wheels and the length of the locomotive 

were the two main factors in determining the degree of curvature which would cause the laser to 

fall off the track. Hence, even though we were not sure whether the locomotive would be a viable 

mounting platform, we purchased mounting options such as c-clamps and rail clamps to allow us 

to mount to the train staircases if the opportunity presented itself. 

 

 
 

Figure 3-3: Staircase mounting locations on a locomotive 

  

In the case of needing to mount to a freight car, we also reviewed our previous mounting 

configurations from prior years’ tests. In contrast to some of the previous locomotive mounting 

setups, which used clamps and optical posts, the previous freight car Lidar setup used a purpose-

built frame which clamped to either side of the car. This frame, while a great and stable platform 

to mount the Lidars onto, was unfeasible as a choice for our purposes, as it would require specific 

knowledge of the dimensions of whichever freight car we would have access to on the day of the 

test. With a purpose-built frame out of the question, we considered what other mounting options 

we could produce. We considered if the prior tools such as the C-clamps that were used to mount 

to the locomotive would have issues finding an appropriate surface to clamp onto. 
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Figure 3-4: Purpose built frame from the 2021 testing attached to the NS 38 track geometry 

car  

 

There were several different types of freight cars that could have been provided to us, and each of 

them have their own potential issues when trying to mount onto them. For example, different 

freight cars have different distances between their wheels and the front/rear of the car, and some 

of those cars will have stairs and others will not. As such, the option to mount to stairs on freight 

cars, like with locomotives, was not guaranteed. In addition, if the freight car contains hoppers, 

they could make mounting to the undercarriage a much more difficult prospect, as the hoppers 

would not provide anything protruding to clamp onto and cause the underside of the car to have 

less space since they are lower down. The height of the underside of the freight car could also 

provide its own challenges. High undercarriages could make lowering the lenses to an appropriate 

height while still not inducing interfering vibrations due to long rods much more difficult. 
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Figure 3-5: Hopper freight car (top) with lack of easy connection points and a boxcar 

(bottom) with open space beneath 

 

We considered and tested several other mounting options, one of which was the option to use 

heavy duty magnets to connect to the train cars. While we found that most of the body of the train 

cars would be made out of aluminum, the frames of the cars tended to be made of steel, which 

would provide a good surface for mounting the magnets to. We also already had a couple of 

Magswitch 400’s and Magswitch 600’s in the lab, which had a hold force of 400 and 600 lbs. 

respectively. We considered whether one magnet would be appropriate or not, and ultimately 

created modular brackets that could combine two Magswitch 600 magnets. These would also allow 

for the connection of an 80/20 structure or optical posts to either a single magnet or a pair of 

magnets. 
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We also practiced mounting these magnets, but since we did not have a freight car frame to practice 

with, we instead used the metal frameworks of our workbenches as practice. From this, we also 

found that any optical posts which were greater than a foot in length would contain too much 

vibration for a consistent and accurate signal. The 80/20 beam mounting provided a much more 

stable platform to mount onto for longer reaching setups. We then returned to the truck and 

mounted the lenses via the magnets for additional mounting practice with both the Lidars and the 

magnetic platforms. 

 

 
 

Figure 3-6: Magnetic Lidar test mounting on the lab car frame 

 

From this, we had two main mounting platforms that we had practiced with for the attachment of 

the Lidar sensors; the clamp-style attachments and the magnet mounts. With these, we planned to 

be able to modify our configuration to match whatever model of either locomotive or freight car 

we were provided for testing. A large number of optical posts and 80/20 supplies were set aside 

for mounting, including swiveling optical post connectors which would allow for compound angles 

without chaining several small posts together with 90-degree connectors. These posts were used 

in previous tests to create the angles and positions of the lenses necessary to align with the track, 

and were ½” in diameter.  

 

3.3 Track Setup 
 

In order to verify the capability of our Lidar system to detect sections of laterally weak rail while 

in service, we decided to gather data on a track where we had sections purposefully altered to have 

reduced connections to their ties. To do this, the experiment was set up at the Transportation 

Technology Center on their High Tonnage Loop. The loop allowed us to conduct our tests at 10, 

20, 30, and 40 mph with a heavily loaded freight car. 

 

With the help of the MxV employees who worked on the HTL, we selected three parts of the track 

to be our points of interest. Two of these sections had their vertical tie spikes removed to reduce 

their stability, and the third was selected as a reference to compare to. One of the sections with 

removed ties was placed in a tangent section of track in section 40, with the vertical tie spikes 
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removed from ties 301 to 308.  The other loose section was placed in the curved section 25. The 

vertical spikes were removed from ties 551 to 558. The reference section was also on the tangent 

track in section 40, specifically the ties 201 to 208. This would allow us to observe the impacts of 

reduced track stability both in tangent track and curved track, which are the two types of track 

which we are most interested in confirming our efficacy on. The reference section was selected by 

the MxV employees for its representative stiffness of the track. This selection should hopefully 

provide a more distinct difference between the control and emulated loose track than if the two 

sections were chosen from different locations on the track. 

 

 
 

Figure 3-7: Labeled HTL track sections 

 

The ties are spaced longitudinally apart from one another by about 20-21”, which makes each 

section of interest roughly 14 to 15 feet long. Additionally, in order to measure the maximum 

lateral displacement of the head of the rail at the points of interest, fish scales were mounted on 

the field side of the rails. Fish scales measure the maximum lateral displacement of the head of the 

rail as the train passes that section of track. The locations of these removed ties and fish scales are 

as follows. 

 

Table 3-1: Locations of interest and their ties 
 

Zone Range of Ties Removed Tie Spikes Fish scales 

Control in Section 40 Ties 201 to 208 None Ties 202, 205, 208 

Tangent Test in Section 

40 

Ties 301 to 308 All vertical spikes Ties 302, 305, 308 

Curve Test in Section 25 Ties 551 to 558 All vertical spikes Ties 552, 555, 558 
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The consecutive sets of “loose” ties should provide enough instability to be detectable in our data. 

With too short of a section, the train might not even excite the rail in a way that is different from 

its fully supported condition. Too long of a section, and the structure of the track itself might be at 

risk, and so for safety we limited the length of the removed spikes to within 15 feet. Once both the 

Lidar mounting options and track conditions were prepared, we went to the HTL and began 

preparing for our data collection. 

 

3.4 Lidar Configuration 
 

For our testing at the Transportation Technology Center, we needed to prepare all of the sensors, 

equipment, and mounting methods to allow us to collect the data we needed. This included the two 

paired sets of Lidars, the pair of GPS sensors, the accelerometer, as well as the fish scales track-

side. Once we were on site, we began to prepare the specifics for the experimental setup. 

 

Given that the Lidar sensors measure the radial velocity component with respect to the sensor, we 

implemented both a vertical and lateral Lidar sensor to measure the vertical and lateral motions of 

the rails. Each sensor was mounted behind the front wheel set of the freight car on the train consist. 

The Lidars were mounted to the front of the loaded freight car for two main reasons. The first was 

that the higher weight of the freight car would cause the rail to experience a large loading force 

and hopefully deflect the rail. The second was that the Lidar sensor needed to be close to the point 

of contact so that it can measure the deflection before the track settles back into its original 

position. The front of the freight car was also the closest to the passenger measurement car, and 

therefore offered the easiest wiring between the two. They were mounted in the wheel well of the 

freight car since the frame of the car had two flanges that allowed for the magnets to mount to 

them on each side, as well as supports that were positioned almost above the rails. These offered 

easy mounting locations for the clamps holding the vertical Lidars to measure the vertical 

component of the rails. In  
Figure 3-8, the mounting configuration of the Lidars can be seen. 
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Figure 3-8: Lateral Blackbeard mounting (left) and vertical Corsair mounting (right) 

 

The lateral Lidars are affixed to the center steel frame through the pair of the magnet mounts, with 

optical posts bolted to their frame. Each optical post then extends downwards where additional 

posts are extended outwards to accommodate for the focal range of the sensors; the end of which 

holds the posts that directly mount to the lenses.  

 

The vertical Lidars were initially going to use the 7-inch focal length lenses, but the distance which 

the optical posts would have needed to be lowered to be in range caused vibrations which seen to 

the naked eye during the mounting process, so we switched to the 22-inch lenses. To mount these 

vertical lenses, the clamps were bolted to the flange connecting the wheel well to the bottom of 

the frame, where a foot and a half long, one-inch beam of 80/20 extended straight downwards. 

Along that beam, one of the optical posts extended straight backwards, where the lens and its 

mounting post were connected. 
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Figure 3-9: Lidar mounting locations for the lateral lasers 

 

All four of the Lidars’ angles were calculated by connecting a visible red laser to the lenses. Once 

they were connected, the lenses were aligned vertically to the track, marking the location of the 

lasers, and then using similar triangles to calculate how far forward the laser needed to be moved 

to be as close to the 10-degree angle as possible. Using a ruler along the rail, we measured the 

target distance and moved the laser to that point. To start, we aligned the lasers to the center of the 

tops and sides of the rail head. The calculated distances, as well as the final distances measured at 

the end of testing and adjustments are shown in   

Table 3-2. 

 

  
 

Figure 3-10: Lidar mounting locations for the vertical lasers 
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Table 3-2: Target focal ranges and mounting distances for Lidar lenses 
 

Laser Target Focal 

Dist. (inch) 

Longitudinal 

Dist. (inch) 

Lateral Dist. 

(inch) 

Vertical Dist. 

(inch) 

Actual Dist. 

(inch) 

Blackbeard, 

Left 

43 6.5 42 7.25 43.1 

Blackbeard, 

Right 

43 7.25 42 6.75 43.1 

Corsair, Left 22 3.5 0 22 22.3 

Corsair, Right 22 3.5 0 22.25 22.5 

 

The fiber optic cables that connect the lenses and the Lidar box were strain relieved through the 

use of loosely affixed zip ties and tape, taking care to prevent small loops from occurring in the 

cable. We also made sure that if a sudden pull on the cables were to happen, the cables would not 

be able to yank directly on the computers themselves. Finally, in the case of extreme failure on the 

parts of the mounting methods, the Lidars, magnets, and clamps were zip tied in several places to 

the frame of the train so that they could not fall on the tracks or get caught in the wheels in the 

case of a disconnection. 
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Figure 3-11: Fiber optic cable connected from the rear of the passenger car to the frame of 

the freight car and down into the wheel well 
 

3.5 Additional Sensors and Onboard Computers 
 

Both the accelerometer and the GPS receivers were attached to the loaded freight car as well. 

Unlike the Lidars, and due to the much shorter cable connections, the accelerometer was attached 

to the front of the freight car, and the GPS receivers were attached to the top front of it. This placed 

both the accelerometer and GPS sensors about 9 feet in front of the lasers. The GPS receivers were 

placed at the top of the freight car to maximize their exposure to the sky. The greater the exposure 

of the GPS receivers to the sky, the more reliable their results should be as a greater number of 

satellites can connect and corroborate their location. 

 

All of the sensor cables were connected back into the passenger car where the Lidar boxes, 

desktops, junction box, and monitors were contained. All of the on-board electronics were powered 

by a generator on the passenger car. The equipment was either strapped or taped down to prevent 

it from sliding or hitting things during operation. The test operators also were given chairs to sit 

and observe the data during the tests and to communicate with the engineer about the speeds and 

number of loops that were intended to be conducted. 
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Figure 3-12: Onboard setup of sensor interfaces  

 

The computers themselves were placed on a table with the chairs in front of them. The location of 

the table and the chairs at the rear of the passenger car allowed for the short GPS and accelerometer 

cables to access the freight car, and also for the test operators to observe the movement of the 

freight car itself. 

 

3.6 On-location Test Preparation 
 

This section describes the steps taken at the HTL to mount and calibrate our system to the consist 

provided to us.  

 

3.6.1 Track Setup 

 

Working with the staff at the TTC, they prepared the HTL for us before we arrived. As stated 

earlier, the vertical railroad spikes were removed from ties 201 to 208 and 551 to 558. Additionally, 

they placed the fish scales on some of these ties to measure the maximum lateral displacement of 

the rail relative to the ties. In section 40, the fish scales were placed on ties 202, 205, and 208 as 

well as on ties 302, 305, and 308. In section 25, the fish scales were placed on ties 552, 555, and 

558. We had also printed forms to be filled out with the corresponding displacements for each of 

the fish scales by the people on the sides of the track who were monitoring them. 

 

The track was cleared for use, and the days for all the tests were clear and hot. There was no 

noticeable wind, and the sun was out. The weather on all of the days was consistent. In addition, 
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there was no other traffic on the HTL during our testing, and so the train consist was the only 

system which couple have produced a change in the track condition aside from slightly varying 

track temperatures during the day. 

 

3.6.2 Mounting Process 

 

When we first arrived at the HTL, we were given a consist which had a locomotive and a passenger 

testing car, but not a freight car. In order to prepare the Lidars, we had to find a location for the 

computers as well as a place for the Lidars to be mounted. The best location for the sensors with 

regard to signal strength was just in front of or just behind a heavily loaded wheel since it would 

best show the displacement of the rail caused by heavy loading. While we had planned to mount 

to a freight car, they could not provide one to use that morning, and as such we first began to mount 

to the underside of the passenger car. This was a suboptimal location since the passenger car 

weighed significantly less than a loaded freight car and therefore would cause significantly smaller 

displacements. 

 

Throughout this process, we were discussing what other options for cars would be available to us 

for use during our testing. After a few hours, we had managed a preliminary setup of the Lidar 

sensors on the passenger car, however we were offered a fully loaded freight car as another choice 

to mount our Lidars to. We decided the extra weight of the car and more convenient mounting 

locations was worth the loss of time unmounting from the passenger car and remounting the lenses 

to the loaded freight car. Thankfully, the car had an exposed frame support that the magnets could 

attach to, as well as a few other flanges that made the use of our clamp mounts convenient, 

especially since they were located just a few inches out from the center of the top of the rail. This 

freight car had an unloaded weight of 24 tons, and was fully loaded with a weight of 133 tons, for 

a total of 157 tons.  

 

We also had to determine the best location for the Lidar computers within the passenger car. The 

on-board power requirements for our setup meant we needed to be within range of one of the 

outlets with the use of an extension cord. Additionally, with a 25 ft cable for the accelerometer, 

the table with the junction box needed to be placed near the rear of the consist. A folding table was 

set up, where it was pinned between our Pelican cases used to transport the sensors and the wall. 

The computer towers were placed under the table and ratchet straps were used to connect them to 

the table legs so they were less likely to fall over in the event of the train rocking. On top of the 

table was the pair of monitors, junction box, and laptop so that all of the data could be observed 

during collection. This allowed us to look for any discrepancies between the physical and digital 

events and to monitor the health of the data. Finally, the pair of chairs were placed by the table so 

that the observers would be able to watch both data health and to mark with the digital flag the 

locations of interest as we passed them. 
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Figure 3-13: Onboard setup of sensor electronics and cables 

 

With the freight car chosen, we began to mount the lenses to its frame. The process of mounting 

these lenses started with identifying the locations which would work best for mounting the lenses 

with the hardware available. A tape measure was placed across the rails and aligned perpendicular 

to them. Using the distances previously calculated for the target angles, we were able to identify 

which sections on the underside of the train would work best for mounting. Once the magnet 

mounts were attached to the steel frame, the optical posts were adjusted to get as close as possible 

to the correct distance from the rail. Several methods were used to verify this distance and the 

starting angle of the lasers. Using a combination of the red laser attached to the lenses, and 

verifying the alignment with the rulers and tape, the angles were derived by similar triangles. 

Afterwards, once the red laser was replaced with the operation-ready Lidar infrared laser, an 

infrared reactive card was placed to verify the final location of the laser point. This step was 

challenging to complete in the starting building because the building’s floor between the rails was 

raised to the height of the top of the rails. This elevated floor interfered with the laser’s direct line 

of sight to the rail and as such the final position on the side of the rail had to be estimated. 
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Figure 3-14: Elevated floor within the staging building 

 

A similar process was followed for the vertical Lidar lenses. The initial setup involved a pair of 

14-inch optical posts, but during the mounting process, clear vibrations were observed at a light 

touch. To solve this, one of the optical posts was replaced with an 80/20 beam to reduce the amount 

of vibration. In addition, a shorter secondary post was used. This substitution meant changing from 

the original 7-inch focal length lens to a 22-inch focal length lens. The same process of using the 

red lasers and measuring tape followed by confirming the distances with the in-use infrared laser 

and IR reactive card was used for confirming the location of the vertical lenses. 

 

After the lenses were mounted to the frame and aligned as best as possible while within the staging 

area, we connected the fiber optic cables to the computers in the passenger car. The cables were 

run out the rear through the passenger car. Using a combination of zip-ties and tape to prevent the 

loose cable from falling into the gap between cars and getting caught or damaged in the linkage, 

the cables were connected to the lenses. 

 

The GPS cables were also connected to the freight car through the rear opening on the passenger 

car. The GPS sensors themselves were attached to the top of the ladders on the front of the freight 

car using zip ties, as seen in the figure below 
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Figure 3-15: GPS receivers and accelerometer mounted to the freight car 

 

The sensors were placed at the top of the car so that the frames of the surrounding cars would not 

interfere with their connection to the satellites and to get a more accurate and consistent reading 

of our location. In addition to the GPS mounting, the accelerometer was also attached to the front 

of the rail car. Instead of being placed at the top, however, it was mounted to the front of the freight 

car. It was oriented in a vertical position, so that the X-reading indicated lateral motion, the Y-

reading indicated vertical motion, and the Z reading indicated longitudinal motion. 

 

3.6.3 Calibration 

 

Once all the sensors were connected, we did some preliminary testing before moving the consist 

to run on the track itself. While the accelerometer orientation was confirmed during installation, 

the GPS system would not provide a signal while inside of the building. Additionally, we started 

preliminary validation of the initial mounting of the Lidars. We did this through the use of the 

same spinning disk as discussed in the previous chapter, as well as the use of a sheet of paper 

sliding back and forth to simulate moving rail. The disk provided a consistent speed to compare 

the sensitivity of each of the lenses with, however it presented a challenge due to the offset from 

the rail caused by the thickness of the disk. As such, the sheet of paper was moved back and forth 

over the rail with another person looking at the live data feed. This would allow for testing of the 

lenses on a target which had a negligible offset from the rail surface. Once more, the issues of the 

raised floor meant that we were forced to measure the lateral laser positions offset from the rail 

and to look for a much weaker signal when validating the data feed. 
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After this initial check, the train was brought out of the staging building and we were able to finish 

our initial calibrations. Here, we were able to see that the GPS receivers were connected to their 

satellites, and we were receiving GPS data that seemed reasonable for our location. They were 

connected to at least seven satellites consistently throughout testing. We also were no longer 

hampered by the raised floors from inside the building and could finish the sensor calibrations 

using both the IR reflective card and the disk and paper methods to check the signal strength itself, 

this time positioned correctly on the inside face of the head of the rail. 

  

After the sensors were confirmed to be in working condition and we were ready to check the 

quality of the data, we started collecting data and watched the signal while we went from the front 

of the staging building to our starting position on the HTL. During this travel, we noticed that the 

signals would drop out for significant portions of the time for both the vertical and horizontal 

Lidars on both sides. As such, before we went around our first track run, we continued to adjust 

the sensors to correct what we thought was a combination of general misalignment and the lasers 

falling off the track due to the effects of curvature. 

 

Our first loops around the track were also used for further calibration of the sensors, and while we 

succeeded in getting the majority of the data to show measured track velocity, there was still a 

clear presence of data dropping. These effects can be seen in Figure 3-16, where the vertical lines 

indicate that the sensor is not receiving a sufficient or accurate signal. 
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Figure 3-16: Raw vertical and lateral velocity data for the second 10 mph trial  

 

These first calibration runs were recorded; however, they were not intended to be included in the 

data processing because the lenses were adjusted after each run. They were useful, however, 
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because we were able to see the issues occurring during the entire loop around the HTL. During 

these runs, we found that the lasers would fall off the rail for a large proportion of the loop. 

Additionally, we had to tighten the mounting connections for all of the sensors, which helped a 

significant amount with reducing the dropouts. While we were unable to maintain consistent data 

without dropouts for the majority of the run, we got the best sections to mostly overlap with our 

sections of interest, so these were the orientations we settled on for the final data collection. 

 

After the first calibration runs of each of the run speeds, and the general location of the sensors 

was set, we attached our GoPro cameras to the wheel well. The cameras were mounted in the 

center of the undercarriage, one for each side, and were positioned to see the lenses, track, and 

wheels on each side. The cameras were mounted through the use of high strength double sided 

tape on their base plates and additional duct tape for security. This type of mounting provided no 

issue with regards to camera vibration when reviewing the footage. 

 

 
 

Figure 3-17: GoPro cameras mounted to the center frame of the freight car 
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3.7 Data Collection 
 

Each loop in the data collection process followed a similar procedure but the order and 

combinations of speeds were varied throughout. In general, for each pass around the HTL the 

Lidar, accelerometer, GoPros, and GPS sensors recorded during the entire loop. In addition, 

several people were stationed at the point of interest in section 25 and the two points of interest on 

the tangent section in section 40. After the train had passed these points of interest, and it was 

signaled safe to do so, the people on the side of the track would record the maximum displacement 

of the track for each loop and reset the fish scales. 

 

 
 

Figure 4-1: Fish scales mounted on the tie to measure the lateral deflection of the rail 

 

The method of data collection throughout the experiment varied based on which trial was being 

conducted. The first two runs of each speed (the first of which being the test runs for sensor 

adjustment) were conducted with the train at the start position in section 5, following the loop, and 

then stopping at the same position. The data collection was then stopped, named, and saved, and 

the next data recording session set up for the next trial. The time spent between these runs was 

used to validate that there was enough time to safely check and reset the fish scales before the train 

would have finished a loop, as well as to check on the sensor system to make sure it has not 

loosened up or fallen out of alignment. 

 

After each of these beginning trials, we stopped the train and got out to check the sensor 

configurations. The cameras were confirmed to still be recording, the lasers were checked for their 

alignment, and the optical posts were tightened. We also verified that the GPS system was 

connected to enough satellites. The posts did not need to be tightened in the large majority of trials 

and as such it was assumed that more infrequent checks could be used for future tests. 
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The third run for each of the speeds was then done continuously. As such, the 10, 20, 30, and 40 

mph loops were run back-to-back in successive order without stopping either the train or the data 

collection. Finally, for the remaining runs, they were conducted back-to-back within their own 

speeds. For 10 and 20 mph, there were three continuous loops, and for the 30 and 40 mph runs, 

two continuous loops were conducted. This generated a total of six 10 and 20 mph trials, and five 

30 and 40 mph trials. 

 

Initially, we had planned to conduct the experiment with 6 runs for each speed, however we 

removed the final 6th run for each of the 30 and 40 mph speeds due to both running out of time 

for that day of testing as well as the lower quality of data for speeds greater than 20 mph. 

 

3.8 Issues Encountered 
 

Several issues presented themselves during the data collection process. The most apparent of these 

problems was the health of the data collected. We believe we have identified two main reasons for 

this issue, as well as a few thoughts on what might have caused additional issues regarding the 

health of the data. First, it seems that the track was not within the focal range for sections of each 

run, which could be caused either from focal range issues or errors with aligning to the track face. 

Another source of the data health problem was the vibration and rocking of the freight car. 

 

Regarding the laser’s ability to stay within focus and on the face of the rail, many issues presented 

themselves. For the focal range itself, while we spent much of the previous day and that morning 

on measuring and aligning the lenses, we did not find a fully clear position which produced as 

strong of a signal strength as seen in the lab. This could certainly be indicative of issues in 

alignment angle or distance, but our final measurements show that the angles and distances we had 

were still within the operating ranges for the lenses. Another possible issue we identified, which 

was much harder to address, was the effects of the combination of the curve of the track and the 

superelevation within those curves. The curve of the track moves the vertical laser's position away 

from the center of the top of the rail’s head. For example, a clockwise curve of the track would 

push the right vertical laser further to inside of the rail. The lateral lasers would also be subject to 

this change of focus position due to curvature. These lateral lasers would need to travel a longer 

distance to reach the inside face of the track, and as such could be pushed to the edges or beyond 

of the laser’s focal range. 
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Figure 4-2: Vertical laser offtracking during a curve  

 

In addition to the curvature of the track, the HTL curves contained superelevation of about 3 

degrees [20]. This would further shift the focal ranges and focal points of the lasers on the track. 

With the freight car loaded on an angle, its center of gravity was shifted off the centerline of the 

track, which the suspension responds to by compressing further on the side of heavier loading. 

This angled body position would lift the outside lasers and lower the inside lasers. It would also 

have an even more distinct effect on the lateral lasers, where they could be pushed below the head 

of the rail or fully over the top of it. This explanation seems to hold some validity due to the 

observed issues in our first few runs since the right rail lateral laser on counterclockwise curves 

would not just have inconsistent information but would sometimes fully lose signal in its entirety, 

which could be demonstrative of the shift in center of gravity pushing the outward facing laser 

over the top of the rail. For the vertically aligned lasers, the effect was even more prominent, with 

the right laser falling off the track around left curves and the left laser getting more drop outs 

during right curves. 
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Figure 4-3: Effect of the superelevation on the lateral Lidar lasers 

 

Another issue found during the data collection was the rocking of the freight car; it would oscillate 

by rolling back and forth. Its bogeys would also shift back and forth laterally, inducing an 

oscillating yawing motion. This could also contribute to the lasers falling off the track as mentioned 

above. The rocking continued throughout the entire loop, but was worse going into or coming out 

of the curved sections of the track. This rocking, however, provided us information about the track-

train interaction dynamics, but it forces us to process the data through a different method than 

initially intended to observe it. The interplay between the rocking train and the track conditions 

influences how they both are observed, as the rocking train could excite the rail motion to a greater 

extent, while changing track stiffness can shift the speed and extent to which the freight car rocks. 

Rather than filtering out the motion of the train, some use could be found by keeping the data 

coupled between the two of them, as will be discussed in chapter 6. 

 

Finally, one of the issues we found with our Lidar system was the broadened bandwidth of the 

absorbed laser frequency. This expanded bandwidth reduces the detectability of the exact velocity 

as the Doppler shift becomes less clear, and if the bandwidth is too broad, will produce no output. 

This could also be one of the main contributing factors to the dropout rate in our data. While the 

laser being on the edge of its focal range could produce this result, it is also possible that 

environmental factors were the perpetrator. For example, the reflectivity of the target impacts the 

returning signal strength, so if the track was heavily lubricated, or there was a sufficient amount 
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of dust on the lens, these could produce this broadened bandwidth as the returned laser was 

diffused. 

 

The conditions of the fibers themselves could also add to the broadened bandwidth. This could be 

produced a couple different ways during testing. The first of these being caused by kinks, bends, 

or pressure on the fiber optics, as this would change the path of the light, or even damage the 

connection itself. Another way the cable connections could have interfered with the signal strength 

is the connection to the lens itself. After our first couple runs around the HTL, we disconnected 

and reseated the fiber optic cable to the Lidar sensor lens and tightened it further. This did produce 

a noticeable difference in the power returned during testing, somewhere in the range of an order 

of magnitude greater. One concern with this process, however, was that of the fragility of the fiber 

optic cables and the danger that overtightening could have on the condition of the cable itself. As 

such, we did not attempt to tighten it further than a strong hand tightening. 

 

While all of these issues could contribute to the weaker signal strength and the inconsistent signal, 

we took steps to solve or mitigate them. Many of these have been discussed in the sections 

describing the test setup and procedure such as verifying the lens alignment. We also inspected the 

lenses after returning to the lab and found that they were not dusty or otherwise interfered with the 

signal strength themselves. We also worked to address these issues in the data quality through the 

processing of the data to condition it for analysis. These include the implementation of data 

cleaning procedures to remove the drop-ins and drop-outs found within the sets of data. The 

accelerometer results when aligned with the GPS signals allowed for the correction of small 

variations in the angles of the Lidar sensors to the track. Overall, while the data health was not to 

the level we were hoping for, the results, combined with our other sensor data, allowed us to make 

use of the data for the evaluation of the efficacy of non-contact Doppler Lidars in detecting laterally 

loose rail. We then approached this collected data with our previously used data analysis methods 

combined with several new approaches to fully understand the capabilities of the Doppler Lidar 

system. The next three chapters approach the problem of data analysis from different lenses, first 

starting with data cleaning and implementing an unsupervised sorting algorithm. 
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Chapter 4 Gaussian Mixture Model Method 
 

Once the data was collected, the goal was to identify sections of the track that indicated weak rail, 

or rail with increased vibrations. Sections of loose rail should produce several observable 

phenomena including a greater deflection distance and a less damped vibrational system. These 

excess motions of the track negatively impact the safety of the rail, as the train is more likely to 

derail or cause additional damage to the track. Overall, the purpose of these tests and data analyses 

were to corroborate or identify the locations along the track which were purposefully designed to 

be “loose” through the removal of vertical tie-plate spikes.  

 

The first method used to inspect an evaluate the data collected from these trials is the 

implementation of a Gaussian Mixture Model, which sorts points in a data set into groups, which 

the differentiation of can indicate rail of interest. Before that method, or any other analysis method, 

could be conducted, the data needed to be cleaned and prepared first.  

 

The processes in this chapter have been applied multiple times in previous examinations of the 

Doppler Lidar data collected from the CVeSS system. As such, much of the work presented in this 

chapter is applied from previous works by this lab. Even during this field evaluation, other 

members of CVeSS developed and executed the following procedures to analyze the data for 

characteristics of weak track as measured on the HTL. [21] 

 

4.1 Data Cleaning and Preparation 
 

In order for any of the data processing methods to work effectively, the raw data must be prepared 

and processed into a form that most represents the measured movement. The first step in this 

process was to mark the start and the stop of the run. This included any sections which contained 

time where the train was stopped, as the Lidar may produce unreliable data due to noise peaks in 

the RF noise floor at sufficiently low speeds. As such, a threshold based on the GPS speed was 

applied to the data to remove sections which contained speeds lower than 2 mph. Additionally, 

cleaning techniques were implemented to remedy the issue of drop-ins which occur due to the 

reduced signal-to-noise ratio and therefore have a much higher or lower indicated speed than what 

it should have been measured. Through the comparison with the GPS velocity, any Lidar data 

which was two times greater or smaller than the velocity was removed. An example of the impact 

of these first two steps can be seen on this example from the 2021 Roanoke to Norfolk data set in 

image b. of Figure 4-1. 
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a. 

 

 
 

b. 

 

 
c. 

 

Figure 4-1: 2021 Roanoke to Norfolk: (a) raw data, (b) low speeds removed, and (c) the 

dropouts removed [21] 

 

The next step in the data cleaning and preparation process was to remove sections indicating rapid 

changes in forward velocity. The momentum and inertia of the train prevents rapid changes in 

speed from being possible, and as such, large changes in measured velocity indicate additional 

outliers. The method implemented for cleaning these outliers was to once more remove data which 

falls outside of a reasonable threshold, which in this case was a change of more than 20% the 

average of the prior second of velocity. 
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The removed data from these previous steps needed to be replaced. This was implemented through 

a linear interpolation of the data surrounding the removed data, which created a vector of velocity 

without discontinuities. Here is an example of the data collected from the Roanoke to Norfolk test 

after completing this interpolation process. 

 

 
 

Figure 4-2: 2021 Roanoke to Norfolk – removed data replaced with interpolated data [21] 

 

Due to the lateral and vertical Lidar data being recorded on different computers, the data was not 

recorded at the exact same time. The next step in the data preparation and processing was to 

synchronize the two sets of data. This was done by aligning the start of both of their runs as well 

as the start of their recorded acceleration data. This allowed for the comparison of both the lateral 

and vertical data simultaneously, and therefore to be able to observe coupled lateral and vertical 

motion. 

 

The delays in the peak seeking algorithm of the Lidar produced a non-uniform data acquisition 

rate and needed to be corrected. In order to generate a uniform sample rate, a Piecewise Cubic 

Hermite Interpolating Polynomial (PCHIP) was implemented. This allowed for some of the future 

data processing methods such as the linear time invariant filters to be applied on the now prepared 

data. The resulting data from this PCHIP implementation was a time vector with uniform spacing, 

rather than the initially varying time vector resulting from delays, along with the interpolated 

velocity data. 

 

Finally, our interest in track dynamics lies in the lateral and vertical motion of the rail. In order to 

extract these components from these data sets, they must be decoupled from the longitudinal 

component they were combined with due to their forward angled mounting conditions. The prior 

scaling of the data matched the Lidar data velocities with the forward velocity of the train as 

presented by the GPS. To remove this forward component, the data was processed through a high-

pass filter with a 3rd order Butterworth with a cutoff frequency of 0.65 Hz. This filter results in 

the extracted orthogonal rail motion, which further data processing methods will be conducted on. 

The first processing method used, and the focus of this chapter being the implementation of a 

Gaussian Mixture Model. 

 

4.2 Sorting Via Gaussian Mixture Model 
 

One of the methods implemented by the lab was the sorting of the data through an unsupervised 

sorting algorithm. Each run was divided into sections, dubbed micro-trips, which provided bounds 
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for the data to be analyzed. This algorithm would take the velocity data of each micro-trip and 

produce results which indicate points of interest for loose track conditions. In the case of our tests, 

since the track was sufficiently small, the micro-trips included the entire length of the track for one 

revolution. 

 

These micro-trips were then subdivided further via segmentation. The resulting segments were 

used to sort the sections of the track via their velocity characteristics. These velocity characteristics 

include the average velocity as well as the variance in that velocity for that section. A greater 

variance would tend to indicate a greater amount of deviation of the rail, and as such is one of the 

criteria used in the sorting algorithm. That, in combination with the average velocity in the lateral 

and vertical direction of the track, act as the inputs for the sorting algorithm.  

 

One of the issues with evaluating the stability of the track as a measure of deviance is that higher 

speeds will produce a greater deviation, even if the rail is not any weaker. This is due to a 

correlation of the lateral and vertical motions to the speed of the train. As such, rather than 

producing a threshold which may not be sufficient to consistently observe instability at slower 

speeds than greater ones, the data must be weighted to counteract this effect. 

 

The weighting of the data during filtering aimed to normalize the variance to become consistent 

across the speeds. The first step in this process was to fit a linear regression to the velocity data, 

where the velocity data was the independent variable and the forward velocity was the dependent 

variable. The residuals of this regression were squared followed by a second-order regression line 

on the forward velocity. The squaring of the residuals acted to bring the values all in the positive 

domain, since the average tended around zero. The weights used were the inverse of the calculated 

regression line. Using these weights to normalize the data, the variances in velocity were 

decoupled from the speed of the train. 

 

The instability of the track impacts the dynamics of the rail both before and after the particular 

points of instability. The division of the track into segments allows for the analysis of not just exact 

points in time, but the overall impact and result of the dynamics at the locations across the track. 

Each micro-trip was divided into 300 ft segments via spatial segmentation for this purpose. 

 

The transient vibrations associated with other rail structures like switches, railroad crossings, and 

bridges can be observed in the data even if they are structurally sound. These vibrations would 

present themselves in the data as false positives for loose track conditions, and therefore should be 

differentiated in some way so as to enable observers to detect sections of track that are 

uncharacteristically unstable. To this end, through the use of GPS data overlaid with Google Earth, 

the track segments were categorized by the existing structures within them, which should allow 

for the distinguishing of “loose” rail conditions as a result of structures versus as a result of track 

behavior. 

 

When dividing the segments based on their characteristic structures, they were divided into 5 

different categories. These categories were switches, road crossings, bridges, tangents, and curved 

track. A significant portion of the track is characterized by either tangent or curved track, within 

which large variations in velocity could be indicative of potentially weak track segments. The 

remaining segments containing rail structures were excluded to improve the reliability of track 
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evaluation of weak segments and to reduce the false positives that would result from their 

inclusion. 

 

The types of instability found within the track conditions can be found through slightly different 

means depending on how they present themselves. For example, if a segment contains a large 

lateral or vertical velocity component, its large motion could indicate the entire segment is subject 

to instability. If, for example, a segment contains relatively low variance in the velocity content, 

but a smaller portion of the data has a much greater variance, the measure of the mean absolute 

velocity would not be sufficient to recognize this section as possibly containing loose track 

sections. To address this issue, the comparison of the number of points that deviate from the 

variance of the segment could be used to indicate segments where smaller portions of the data 

contain potentially unstable conditions. 

 

Hence for both the lateral and vertical Lidar data, the number of points which fall beyond two 

standard deviations from the mean absolute velocity along with the mean absolute velocity of the 

segments themselves were chosen to be the representative criteria for the segment. These 

parameters were scaled to a range of 0-1 to compare along similar scales. The HTL was divided 

into 48 segments of 300 ft each, and as seen below in the figure, the segment containing the 

emulated loose rail in section 25 emerges with the greatest average absolute lateral velocity of the 

track. 

 

 
 

Figure 4-3: Mean absolute lateral velocity of each segment from the 

 second 10 mph trial [21] 

 

The sorting algorithm for these data points is a clustering method. The current algorithm uses a 

Gaussian Mixture Model to sort the segments. This style of data modeling has been used in other 

applications to evaluate the extent of damage a structure has suffered; however, they analyzed the 

same structure as a function of time to observe changing damage characteristics [22]. Rather than 

comparing a response to its earlier undamaged state, our implementation attempted to find sections 
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of the track that were sufficiently different from the known structurally stable track. A necessary 

step for the implementation of this model was the selection of the optimal number of clusters to 

sort the data into. To determine this optimal number, the Elbow method and the Bayesian 

Information Criterion (BIC) were applied for this current rail analysis. As the number of 

parameters increases, the likelihood to differentiate the data increases, but so does the likelihood 

of overfitting. The BIC uses a penalty function to prevent overfitting when selecting the number 

of parameters likely to represent the model. Typically, the lower the result the better, but for clarity, 

these results are presented as the inverse of their BIC values, and as such the higher the better. 

From the selected bounds, we can see that using 4 clusters was the optimal choice for the potential 

to detect the phenomena we were hoping to see. Fewer clusters would decrease the reliability of 

the results and a greater number would cause overfitting and overly complex algorithms.  

 

 
 

Figure 4-4: BIC to determine the optimal number of clusters for the Gaussian Mixture 

model [21] 

 

The clustering analysis was performed on all runs from the TTC testing. To present and discuss 

these results, the four parameters were divided into four plots, each containing a relationship 

between three of the parameters. These four graphs together cover each combination of parameters 

which could be grouped together. The results of each parameter are scaled to a 0-1 range, and each 

graph shows the 48 segments as positioned based on their characteristics. The color of each data 

point represents which cluster it was sorted into. From this figure, we can see that cluster 3 stands 

out to the greatest extent when compared to the rest of the data and this segment also contains our 

point of interest in the curved section of track. 
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Figure 4-5: GMM clustering along all four parameters [21] 

 

Cluster 3 also contains the points which had the greatest absolute values with regards to the vertical 

and lateral average velocities. In comparison, cluster 1 contains the points with relatively small 

absolute orthogonal velocities and low amounts of deviation. Clusters 0 and 2 present larger 

parameter variations. When looking at one of the parameters, in this case the mean absolute lateral 

velocity, the points in cluster 0 are associated with the starting and stopping motion of the train 

while cluster 2 presents itself surrounding the loose track sections. 
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Figure 4-6: Sorted GMM results compared to the data [21] 

 

From these results, cluster 3 was selected as the parameter in this case to indicate which section of 

the track was most likely to demonstrate loose characteristics. Out of the 16 loops performed at 20 

MPH and below, 13 of the results demonstrated the emulated weak track being positioned within 

this cluster of interest. These results validate the possibility of detecting weak track conditions 

through the use of machine learning algorithms and the implementation of non-contact Lidar 

sensing. Above 20 mph, however, the data was not strong enough to use for reliable detection of 

the loose points of interest in the track. Additionally, even at low speeds, only the loose track in 

the curved sections was detectable. 

 

This method, however, is spatially imprecise as each section represents 300 feet of rail. In an 

attempt to increase the spatial precision of the data processing, the data was analyzed with regards 

to the frequency domain. 
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Chapter 5 Frequency Domain Analysis 
 

Processing and analyzing the data in the frequency domain allows for inspection of patterns in the 

rail motion or changes in vibrational characteristics of the rail. It can be used to analyze the data 

for information that would not be observable via direct inspection.  

 

5.1 Implementation of the Short Time Fourier Transform 
 

After the sorting algorithm, the next data processing technique which was applied to the TTC data 

was the use of a Fourier Transform. A Fourier transform is a technique used to convert data from 

the time domain to the frequency domain, or in our case, since we are interested in the location of 

the points of interest, from the spatial domain to the frequency domain. The Fourier transform 

accomplishes this through decomposing a signal into its component sine or cosine signals and 

returning its power across the frequency spectrum. The classic Fourier transform, however, is a 

summation from negative infinity to positive infinity, and is operated on a continuous data set. The 

data for each run was obviously bounded within finite limits and used discrete data rather than the 

continuous data as assumed in the Fourier transform. In order to accommodate for this, the use of 

the Fast Fourier Transform (FFT) was implemented on the data. 

 

5.1.1 Background 

 

The purpose of analyzing our data through the use of harmonics can be illustrated by treating the 

track as a spring-mass-damper system. Previous analysis of track vibration through the use of the 

Fourier transform uses this model, based on a Timoshenko beam. These previous studies, however, 

tend to focus on higher frequency responses, in the range of 500 Hz or greater [23] to analyze the 

squeal effects of the rail, which our system was incapable of measuring. Additionally, these 

previous studies tend to focus primarily on just the wheel and rail interaction, as the body 

suspension causes the natural frequency of the rest of the train to be significantly lower than the 

frequencies of interest. Our experiment, however, was interested in the lower frequency deflection 

motions of the rail rather than the surface roughness and squeal effects prior Fourier inspections 

analyzed [24]. In this consideration of the track structure, the track itself acts as a mass while the 

mechanics of its stiffness and damping comes from its connection to the ties as well as the 

mechanics involved in the tie’s ballast’s interaction. The track is effectively a beam with an infinite 

length compared to the localized vibrations, with a traveling point of vibration. Loose connections 

to the ties or ballast could produce a much greater vibration or a change in the vibration frequency.  
Figure 5-1 shows a simplified representation of the stiffness and damping relationships between 

the ballast, the ties, and the beam as a series of spring-mass-damper systems. 
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Figure 5-1: Railroad track and ties represented by a series of springs and dampers in the 

vertical direction 

 

Under normal operation, the damping and stiffness of the rail is quite high, and as such acts without 

much in the way of a harmonic resonance, and with a high natural frequency. If, however, the 

damping and stiffness was reduced, the excitation and forced movement of the train onto the track 

could cause the response to grow. It would also cause a different frequency response as compared 

to the non-” loose” sections of the track. This apparent lack of damping could come from a bad 

connection to the ties or through issues with the ballast and its strength and damping capabilities. 

As such, while we do not know what form the looser rails will take in terms of their presentation 

on future tracks, it seems appropriate to attempt to analyze its movement through the use of 

frequency analysis, and in specific the implementation of a Fourier Transform. 

 

In order to use the Fast Fourier Transform, the data must be of a number of points that is a power 

of 2. As such, due to the data not directly being a power of two when collected, two options remain 

when attempting to conduct an FFT. The first was to trim the data until it reached the largest power 

of two that was smaller than the number of data points collected. The second was to pad the 

remaining data with zeros until it reached the next largest power of two. Both of these methods 

had issues, however, for practical implementation. With regards to trimming the data, with a large 

data set, this could involve cutting out a significant portion of the recorded data since up to half of 

the data set could fall outside this range. For example, with the second 10 mph Corsair data we 

would lose 43% of the data set, which would remove a large portion of the track response. 
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Figure 5-2: Second 10 mph Corsair full data (left) and cut down data (right) 

 

As such, cutting down the data was not a viable solution. In contrast, padding the data set with 

zeros also produced undesired results. This would have greatly altered the frequency distribution 

of the resulting Fourier transform. To mitigate some of these issues, padding the remaining 

numbers with the average value of the data set, or even the average of the initial/final values could 

serve to reduce the sharp drop off that would happen at either the beginning or the end of the data. 

The results, however, would still be unrepresentative of the overall characteristics of the track. 

 

Additionally, using a Fourier or Fast Fourier Transform on the entire data for a loop provided very 

little useful information. The goal of this data processing was to identify the locations on the track 

where there were changes in conditions, and more specifically, to identify the locations of the track 

where we purposefully removed vertical tie spikes. The Fourier transform retains no time or spatial 

information, and as such a single transformation cannot be used to identify the locations of 

differing track dynamics. One method to account for this issue is to partition the data into smaller 

sequences and to conduct a Fourier transform on each of the smaller sections. 

 

The method of conducting a Fourier Transform on subsections of data in time or spatial order is 

known as a Short Time Fourier Transform (STFT). This transform allows for the observation of 

changing harmonic components throughout the data set; however, the issue of uncertainty has not 

been fully removed. It also can work to solve the previously noted issue with regards to the 

application of the Fast Fourier transform. When the data is divided into smaller segments, each of 

which are of a power two, the possible unusable data is significantly smaller than what it would 

be as a part of a single transform. In this case, the question of padding or cutting can be quickly 

addressed since the final section of the data was when the train was not moving and therefore the 

loss of this data was meaningless when used for analyzing the track conditions. Even in cases 

where the train did not stop or stopped close enough to the end of the recording session that there 

was still some movement in the final segment, these locations were far enough away from our 

points of interest that it did not impact our results. 

 

The STFT has been applied in several other fields as a method of detecting damage or changing 

surface conditions as a function of time. They have been found to be accurate in the modelling and 



54 
  

monitoring of changing conditions regarding the life of bearings and the use of grinding on metal 

[25,26]. And the monitoring of bearing health has been applied to those on trains in as well [27]. 

 

One of the considerations when implementing the STFT was selecting the size of the segment 

divisions. The larger the segment size, the more precise the representation of the overall frequency 

content the results will be, however the ability to identify locations of changing conditions, 

especially those with shorter time effects, will diminish. In the other direction, segment sizes which 

are too small wouldn’t allow for much analysis of the frequency content due to lack of resolution, 

even though the locations were much better defined. This tradeoff can be pushed to either extreme, 

the largest of which represents just the Fourier Transform conducted over the entire data set, and 

the smallest of segment sizes being representative of just the raw time domain data. 

 

Within this experiment, a single choice of segment size was not implemented. Instead, due to the 

changing sizes of data files especially due to the changing times from faster speeds, the segment 

size was determined individually for each run. While this might present itself as a difficult decision 

to make, the trials were similar enough to one another that the changing sizes only varied by a 

couple powers in either direction. In most cases, the segment sizes would not range smaller than 

64 or greater than 1024, though those external sizes were still looked at. Below are examples of 

the STFT results for the smaller and larger bounds of segment sizes. 

 

 
 

Figure 5-3: Fourth 20 mph Blackbeard data segment size of 64 (left) and segment size of 

1024 (right) 

 

These examples were shown on the fourth 20 mph trial Blackbeard data, and it is clearly visible 

that both extremes lack sufficient information to either make a determination of the frequency 

content or the location of the content within each segment. The starting segment size was typically 

around 512, and then be reduced sequentially until a balance of spatial and frequency resolution 

was found for that speed. 

 

For this data processing technique, we needed the time, GPS speed, and the channel 0 and channel 

1 data sets. The same process was repeated for both the lateral and vertical data sets, and so the 

two channels represent the left with channel 0, and the right with channel 1. The following 

described process was written and executed through MATLAB. After the refined data set was 
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imported into the MATLAB workspace, each data set was trimmed to exclude sections of the data 

where the train was stopped. The data at low speeds around 2 mph or less was both generally 

inaccurate due to the broad-spectrum input of the returning signal (and therefore lower 

detectability), and also not of particular relevance to the identification of the points of interest 

because the train stopped and started well away from these points. 

 

Due to the variable processing times and therefore the inconsistent sample rate of the Lidars, the 

average sampling rate of the data was collected to serve as the general sampling rate when 

calculating the cutoff for filters. Due to the mechanics of how the on-board Lidar system processes 

the incoming data, the processing time was not the same during each evaluation. There was a 

minimum processing time for the Lidar sensors, in this case limited to a maximum of 34 Hz, 

however if the time taken to calculate the velocity was longer than this minimum time, it was 

delivered and saved to the system at that slower rate. As such, the average sampling rate had an 

upper bound of 34 Hz and a significant portion which was calculated at some slower rate. 

 

 
 

Figure 5-4: Average sampling rate for the second 10 mph Blackbeard data 

 

The above example, from the second 10 mph run on the Blackbeard data, clearly depicts this upper 

sampling bound with lower frequency samples interspersed throughout the entire data set. The 

sampling rate, when calculated, shows that the effective sampling rate was lower than the 

prescribed sampling rate of around 34 Hz, but is actually closer to 27.9 Hz. This is calculated by 

averaging the inverse of the time difference between consecutive segments. 

 

Due to the 10-degree angle of the Lidar lasers to the track, the data needed to be corrected to only 

represent the vertical or lateral motion of the rail. The purpose of the forward cant on the Lidar 

lasers was to impart a velocity offset on the lateral and vertical velocity data. Due to the homodyne 
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velocity acquisition, the offset imparted by the forward velocity of the train allowed the sensor to 

measure whether the motion was towards the laser or away from it. Both the lateral and vertical 

data sets were processed to remove this offset through the use of a high pass filter. Due to the 

length of time necessary to change speeds rapidly in the longitudinal direction, this high pass filter 

removed the forward component of the data and resulted in just the lateral or vertical component 

of that set. As seen in this example, the second 10 mph Blackbeard unfiltered data followed the 

GPS speed throughout the run. 

 

 
 

Figure 5-5: Velocity vs time from second 10 mph Blackbeard trial, raw (left) and filtered 

(right) 

 

A 3rd order Butterworth high pass filter with a cutoff frequency of 0.318 Hz was selected to 

remove the longitudinal velocity of the train at 10 mph. This frequency corresponds to a track 

length of around 46 feet. This removed slow changes in speed such as the acceleration and 

deceleration of the train, and left us with the faster effects of the rail as measured by the lateral and 

vertical Lidar sensors. 

 

Once the data had been trimmed and filtered, it needed to be divided into the segments necessary 

for the STFT. One consideration when dividing the segments for analysis was the level of overlap 

between each segment. This, with the combination of the choice of segment size, determined the 

data division. In the case of all of the TTC trials, an overlap of 50% was implemented. This overlap 

choice was settled on because the size of the segments was generally kept small irrespective of 

speed, and so excess overlap could produce less readable results due to apparently slowly changing 

conditions. The 50% overlap also ensured that every piece of data was included in two of the 

segments, and wouldn’t be lost if a point of interest was bisected by a segment division. An 

example of the split data segments can be seen below in  Figure 5-6, with the first example using a segment length of 1024 and the second a length of 256 

on the lateral data from the second 30 mph run after it was processed through the high pass filter. 
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Figure 5-6: Segments division for a size of 1024 (left) and 256 (right) 

  

In order to identify the locations which contained points of interest, a few different methods were 

implemented. The first of these methods was to create a threshold which would act as a reference 

to define when a component of the frequency stood out from the noise. In RADAR detection, the 

threshold for detectability is defined by a 6 dB for a returning signal, and as such was chosen to 

be the starting threshold to apply for this trial [28]. No standard dB threshold was prescribed for 

determining whether a component of the signal indicated a resonant frequency, but the 6 dB 

threshold exceeded the noise of the signal which was about 3 to 4 dB above the linear regression 

of the data. 

 

This approach identified locations which contained harmonic components that deviated from the 

normal regression of the FFT output. While this doesn’t provide a method of differentiating 

between locations or selecting for changing conditions, it does illustrate points in the data which 

contain a clear harmonic component. Several steps were used to get to the point of monitoring 

whether a signal had a component that cleared the detectability threshold. The first step in this 

process was to conduct a running average filter over the decoupled data. This running average 

allowed for a better regression line to be implemented in the further steps, as well as to clarify the 

shape of the STFT mesh for manual inspection if necessary. The running average filter was a 30-

point moving average filter, and acted like a low pass filter, which helped to clean up some of the 

frequency noise present. 
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a. 

 
b. 

 

Figure 5-7: Left rail lateral velocity (a) Short Time Fourier Transform and (b) running 

average STFT 
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A linear regression line could not be applied directly to the resulting full FFT, since the shape of 

the power spectrum is clearly not linear. One of the assumptions made in this evaluation was that 

the shape of the FFT spectrum could considered linear after its “shoulder” location. As seen below, 

the linear regression line accurately reflects the shape of the frequency output. 

 

 
 

Figure 5-8: Linear regression line for a sample FFT segment 

 

This linear regression line was then raised above the starting position by 6 dB, which reflects the 

doubled amplitude of the signal. This raised linear regression acted as the threshold to determine 

whether a response within the power spectrum was sufficiently differentiated from the background 

frequencies. This threshold detection method works for a signal with a sufficiently narrow 

frequency range within the spectrum, as too broad of a frequency distribution would impact the 

linear regression line. With this raised threshold, if a part of the signal is greater than the raised 

regression line, it can be claimed to be distinct and detectable. 

 

This detectability only refers to one particular form of track motion which was found through the 

STFT, which is that of a harmonic excitation of the track beam. If an excitation in this form was 

found, it would indicate that the track was being excited at or about a natural frequency and that 

the damping was not sufficient to attenuate the motion. While developing this process we used 

examples from prior data sets collected by the Lidar system. One of the runs, the data collected on 

our study from the Norfolk Southern 2019 Hyrail test demonstrated a clearly detectable harmonic 

component. As can be seen in  Figure 5-9, the STFT results exceed the threshold developed by the linear regression curves, and 

even without such a threshold are clearly apparent. 
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Figure 5-9: 2019 Hyrail test STFT with detectability threshold (left) and STFT running 

average (right) 

 

This result lines up with the section of track which was previously manually selected from a visual 

inspection of the data to be loose or unstable. In addition to demonstrating the purpose of this 

approach, the example above can also provide a clear demonstration of the tradeoff between the 

frequency and positional specificity when determining segment size. If, for example, the segment 

size chosen was doubled, the harmonic would still exceed the threshold, but its location would 

decrease in precision. From a manual inspection of the raw velocity data, the harmonic at this 

location persisted from mile 307.946 to mile 308.06. At the segment size of 1024, the threshold 

was exceeded from mile 307.86 to 308.066, while at the doubled segment size of 2048, the 

threshold was pierced from mile 307.676 to mile 308.132. The segment size of 1024, therefore, 

overestimated the location by around 1.8 times while the segment size overestimated by 4 times. 

These expand the range of detected track from 600 feet to around 1090 and 2410 feet respectively. 

This approach was intended to be used in conjunction with adjusting the segment sizes to find the 

optimal clarity of deviating frequencies. 

 

Of course, if there did exist some effect which occurred over a broad range of frequencies, or that 

the effect of note was transient, analysis of a single segment of FFT data would not produce any 

useful evidence towards that fact. For example, the broadest frequency input would be that of an 

impulse, which when transformed into the frequency domain would convert a unit impulse into a 

frequency response of unity. Hence, a large impulse or several smaller impulses in the segment 

would result in a broad raising of the FFT response in comparison with its surrounding segments, 

but would not change the distribution of that FFT curve. As seen in this example from the 2012 

data collected from the Wayne to Chicago test, a pair of broad frequency responses can be clearly 

seen in  Figure 5-10. 
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Figure 5-10: Wayne to Chicago STFT presenting the result of impulses 

 

Additionally, if a harmonic result is found within a segment, but that harmonic remains relatively 

unchanged throughout the run, as in this example from our 2011 gauge corner testing in Figure 

5-11, this could be the result of a persisting mechanical effect present on the entire track or on the 

train itself. 

 

 
Figure 5-11: 2011 Gauge corner testing STFT depicting a persistent pair of elevated 

frequency responses 
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If the train were to rock, or to have uneven wheels, these could be conditions of dynamics on the 

train which would result in this effect. We can also see that these excitations are at 4.14 and 8.28 

Hz respectively, and, given that one is an exact multiple of the other, they might indicate that there 

is an aliased effect presenting itself as harmonics. 

 

5.1.2 Non-Point-of-Interest Locations detected by Rail Inspection 

 

The processes described above were then conducted on the collected data from the testing at the 

Transportation Technology Center on their High Tonnage Loop. From these trials, we did not see 

any results which contained harmonic components in excess of the detectability threshold of 6db 

above the linear regression. Additionally, reducing this threshold value did not yield useful results 

as no set of data contained a response narrow enough in frequency. While this was the case, it still 

proved useful to manually review the results and observe and record their effectiveness at 

identifying the loose rail. From this process, several locations stood out as consistently 

differentiated throughout the HTL. Several of these locations were seen equally through both the 

Blackbeard and Corsair systems, while some of them were more clearly apparent with regards to 

their intensity and distinction in just one. The clarity in one direction of detection over the other 

came from the interaction between vertical, lateral, and orbital translations of the rail head. 

 

Of the sections identified which were not the “loose” rail, the most reliably detected location was 

the switch occurring after the curve coming out of section 40. This switch could be easily seen in 

the STFTs of both Blackbeard and Corsair data for all speeds and for each trial. It was one of the 

most prominent peaks in all of the STFT meshes, and could be found at any reasonable tradeoff 

between segment size and frequency precision. The frequency distribution also was relatively 

broad, indicating there may have been impulses in that section, which would raise the energy 

without exciting any particular frequency. This explanation would also help explain how the 

location was clear at all speeds, since the higher speeds may impact with higher force, and therefore 

raise the energy to match, along with the impacts of impulses not being affected to the same extent 

from the spatial sampling rate. In addition to the clear broad-frequency response at the switch, and 

most apparent in the Blackbeard data, there seemed to be an additional low frequency response at 

around 3.4 Hz. 
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Figure 5-12: Lateral vibrations STFT for the third 10 mph trial showing the location for 

the switch in section 35 along with the corresponding GPS location of that point 
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Figure 5-13: Blackbeard (left) and Corsair (right) switch STFT of the left rail data for the 

third 10 mph trial along with their GPS locations 

 

In addition to the switch in section 35, several other features of the track were detected with relative 

consistency. The lubricator was detected in all trials of the Blackbeard data and in the majority of 

trials in the Corsair data. As with the switch, the response of the signal to the lubricator involved 

a broad-frequency elevation of energy. The lubricator is located in section 24 of the HTL and the 

same explanations as with the switch apply to the form the responses took here. The largest 

distinction was that the intensity of this signal was not as significant as the switch, and was 

therefore not detected in every trial, but was found in around 90% of trials in the lateral data, and 

around 60% of trials in the vertical data, with a sharp drop off at higher speeds. 
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Figure 5-14: Lateral lubricator STFT response in the right rail of the third 30 mph trial 
 

 
 

Figure 5-15: GPS location of the Blackbeard lubricator response 
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Figure 5-16: Location of the lubricator on the HTL 
 

The final non-point-of-interest locations that were found when analyzing the data were the 

beginnings and ends of the curve spanning section 25, the curve in section 7, and at the midpoint 

of section 3. All of these presented relatively similarly to each other. Taking the second 20 mph 

Blackbeard run as an example, we can see how all of these curves did not extend as broadly across 

the frequency spectrum as the other signatures, and tended to fall off around 7 Hz.  
Figure 5-17 through  

Figure 5-20 shows how in the Blackbeard data, this seemed to persist as the cutoff frequency for 

each speed, and the 10, 20, and 30 mph results each show this relatively steep drop-off. In contrast, 

the 40 mph runs did not depict this same drop at higher frequencies, but this may be explained by 

the much lower frequency resolution that comes with the smaller segments. In comparison to the 

256 and 128 segment sizes of the slower speeds, the 40 MPH runs were analyzed at segment sizes 

of 64 to maintain distinction in the locations, but as a result it was much more difficult to identify 

changes in the frequency distribution. 

 

  
 

Figure 5-17: Section 7 lateral left rail STFT response and location in the  

second 10 mph trial 
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Figure 5-18: Section 7 lateral left rail STFT response and location in the  

second 20 mph trial 
 

 
 

Figure 5-19: Section 7 lateral left rail STFT response and location in the  

second 30 mph trial 
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Figure 5-20: Section 7 lateral left rail STFT response and location in the  

second 40 mph trial 
 

 
 

Figure 5-21: Location of these section 7 STFT responses in the HTL 

 

In the prior figures, the emphasis was placed on the curve within section 7, as it was the most 

discernible. The remaining curves of note have been made clear in  

Figure 5-22 where the responses in sections 24 and 3 have been labeled along with their 

corresponding locations. 
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Figure 5-22: Locations of the section 3 (lower left) and section 24 (lower right) lateral 

responses 
 

 
 

Figure 5-23: Section 24 left rail lateral response and location in the third 10 mph trial 
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Figure 5-24: Section 3 left rail lateral response and location in the second 20 mph trial  
 

5.1.3 Curved Point-of-Interest Detected by Lateral Rail Inspection 

 

Finally, with regards to the identification of the points of interest, the first result of note is the lack 

of detection for either the control or the emulated loose track in the tangent section 40. There was 

no frequency response change, either in the distribution or on the elevation which was noticeable 

in the STFT mesh. The section 25 response, on the other hand, provided some evidence that the 

use of the Fourier Transform could identify looser sections of rail. While not found in every trial, 

the center of the section 25 curve, which corresponded to the ties with removed vertical spikes, 

was identified in the majority of both the Corsair and Blackbeard data sets. 

 

The form this frequency response took was that of a generally elevated response with a peak 

frequency around 5-8 Hz. This response in the Blackbeard data, however, was most found in the 

Channel 0 response, which corresponded to the lateral movement of the left rail. The Channel 1 

Blackbeard responses did not contain the same Fourier response, which indicates a difference in 

the motion of the rails. If the result was a function of the freight car vibrating or moving, the 

responses should have been reflected in both tracks. 
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Figure 5-25: Third 10 mph section 25 lateral loose rail response in the left rail 

 
 

Figure 5-26: Third 10 mph section 25 lateral loose rail response in the right rail 
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Figure 5-27: GPS location of the section 25 loose rail for the third 10 mph lateral response 

 

One of the challenges of using the Blackbeard frequency response to identify the loose rail was 

that the level to which its location stood out compared to the surrounding effects varied. In some 

cases, such as the fourth 10 mph run on the left rail, the largest response was that of the point of 

interest. In others, such as the fourth 20 mph run, the response of the loose rail did not stand out, 

or was overshadowed by other phenomena. 

 

 
 

Figure 5-28: Fourth 10 mph section 25 loose rail lateral response in  

the left rail (left) and the right rail (right) 
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Figure 5-29: Fourth 20 mph section 25 loose rail lateral response in  

the left rail (left) and the right rail (right) 
 

5.1.4 Curved Point-of-Interest Detected by Vertical Rail Inspection 

 

By comparison, the Corsair data could identify the point of interest with difficulties only at slower 

speeds, while at higher speeds it lost its distinction. This indicated that there was some speed 

dependency on the detection of the points of interest for the Corsair data. In contrast to the 

Blackbeard data, the trend among Corsair results was that the point of interest was identified in 

the Channel 1 data as opposed to Channel 0. The greatest vertical response for this section, then, 

was found in the right rail. Combining this with the previous Blackbeard observations suggests 

that there might be a counteracting vibration with its response dominating the orthogonal vector. 

 

 
 

Figure 5-30: Third 10 mph trial section 25 loose rail vertical response in  

the left and right rails 
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Figure 5-31: Locations of vertical response in the left and right rail for  

the third 10 mph trial 
 

 
 

Figure 5-32: Second 20 mph trial section 25 loose rail vertical response in  

the left and right rails 
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Figure 5-33: Locations of vertical response in the left and right rail for  

the second 20 mph trial 
 

The vertical data was unable to detect the loose track at a speed between 20 to 30 mph. The 30 

mph results did not provide enough distinction to select even a set of larger peaks which contained 

the point of interest. Selection of the loose rail could only occur with prior knowledge of its 

location, and as such has little use for the purpose of using the Doppler Lidars to detect loose track. 

 

  
 

Figure 5-34: second 30 mph vertical rail response in the  

left and right rail 
 

Overall, while not consistent in both channels or at all speeds, there is potential for the 

identification of loose vertical tie connections in curved rail. It did not meet an automated detection 

threshold, and many other locations on the track produced equivalent or larger responses in the 

STFT. Additionally, there appeared to be a connection between the lateral and vertical motions of 

the track for loose vertical tie connections around curves. Many issues still exist with the data 

collection and identification of track conditions to reach the point of unsupervised sorting and 
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detection, but this current test at least proved that curved “loose” track could be distinguished 

through the use of non-contact Doppler Lidar sensors. 

 

The issues presented could be a result of several factors in the data collection process. One of these 

factors could be indicated by the elevated frequency response across the entirety of section 25. 

This section had a greater vibrational response in general, and as such the distinction of the point 

of interest within it could be a result of the variances in that elevated response. The counterpoint 

to this explanation, however, is that the train traveled around several curves on the track, and only 

this section seemed to result in this phenomenon. The other curves are also of a similar degree of 

curvature being 5-degree curves and were traveled on at similar speeds. From the comparison of 

the curved track containing section 25 and the curved section after the tangent track around section 

3, we see that the speed difference was less than half a percent for the second 30 mph trial. 

Therefore, it seems unreasonable that the change in frequency response was due solely to the travel 

around the curve. 

 

 
 

Figure 5-35: Left and right raw lateral velocity from the second 30 mph trial 

 

At higher speeds, however, the clarity of the distinction was reduced. Specifically, the clarity of 

the location of the elevated frequency response was reduced by both a broadening and shifting of 

the overall elevation in the frequency curve as well as by the increased frequency responses of the 

segments surrounding our point of interest. Given the faster speeds, the time which the sensors 

measured the points of interest on the track was reduced. These fewer points served a twofold 

purpose in the difficulty of identifying the sections of loose track. The first of these is that, with 

the same segment size as the slower speeds, a significantly smaller proportion of the segment 

contained the loose track, which would manifest itself by suppressing the harmonic responses. In 

order to counteract this first issue, the segment sizes for the higher speeds were reduced, once 

again returning the proportion of the segments containing loose track to a similar level. The second 
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apparent issue is derived from the solution to this first; which is the reduction in the precision of 

the frequency content. With a smaller data set due to the shorter segment sizes, it became harder 

to identify the frequencies at which the responses were occurring, and at the highest levels, it 

became difficult to differentiate from the low frequency content. 

 

In addition to these data processing difficulties arising from the reduced time of measurement, the 

track conditions themselves might change and produce their own negative impacts of the 

detectability of the loose sections of rail. Depending on the mechanism which excites the loose 

rail, the speed of the train may not play a large factor in the vibration or displacement of the track. 

Especially in the vertical direction, as the Corsair systems measures, the speed of the train around 

the track should mostly impact the speed at which the track is allowed to return to its uncompressed 

form. In comparison, other track motions and responses may present themselves more prominently 

with the greater energy being put into the tracks from the higher speeds. Since the exact method 

by which the rail was excited is unknown, the source of the apparently changing frequency 

response of the track remains inconclusive. 

 

Overall, the Short Time Fourier Transform allowed for the inspection of the track’s condition 

through a manual review of the collected data. At lower speeds, the curved point of interest was 

able to be selected from the resulting frequency mesh, but only so in some of the channels of the 

data. At higher speeds, while possible, detection relies more greatly on the prior knowledge of the 

section of interest and would require some way to remove the responses indicative of other 

conditions. Overall, this method works to identify the section of loose rail in the curve, but also 

produces a large number of false positives. 

 

One limitation of analyzing the Lidar data through the use of an STFT is that it mostly detects 

harmonic motion, and so repeated patterns of motion that do not fall within that shape of motion 

would not be found. As an alternate exploration of the data in the frequency domain, the application 

of the Wavelet transform allows for the inspection of different shapes of motion than from 

sinusoidal motion. 

 

5.2 Implementation of the Discrete Wavelet Transform 
 

5.2.1 Background 
 

Another way unstable track could present itself is as a transition from “soft” to “firm” track or 

vice-versa. Rather than looking at the STFT representation of the data, which involved shifting 

from shorter and longer segments to tradeoff between the spatial and frequency resolutions, a 

wavelet transform was used to approach from a multiresolutional perspective. The wavelet 

transform is bounded by the same uncertainty principle as found in the STFT, however it 

approaches the problem through a different decompositional lens. In the STFT approach, with a 

given segment size, the temporal and frequency resolutions are the same across all time periods 

and frequencies. With the wavelet transform, this tradeoff is manipulated to reflect a greater 

location resolution for high frequency motion and a greater frequency resolution for low frequency 

motion, as illustrated in  Figure 5-36 [29]. 

 



78 
  

 
 

Figure 5-36: Time-frequency decomposition for: (a) standard basis, (b) Fourier basis, (c) 

Short Time Fourier basis, and (d) wavelet basis [30] 
 

Wavelets have been investigated for their use in structural analysis with regards to detecting 

locations of damage as a function of time [31], and can be used to reflect the characteristics of both 

longer lasting low frequency content and shorter lasting high frequency content. This exploration 

into the evaluation of structural damage on the railroad tracks seems appropriate for investigation.  

 

The wavelet transform operates through the filtering of the signal with a convolution of a wavelet. 

This convolution works through the selection of a mother wavelet which acted as the base of the 

transformation. In the case of the MATLAB implementation of the Discrete Wavelet Transform 

(DWT), the chosen mother wavelet must be either orthogonal or biorthogonal. The MATLAB 

database includes several examples which could be used in this process. Once the mother wavelet 

has been selected, the wavelet decompositions use the mother wavelet to determine the coefficients 

used in the filtering of the data. 

 

Each of the Lidar data signals each act as an input data set for this transform in the form of a data 

vector. This data vector was split via a pair of filters based on the wavelet coefficients of the mother 
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wavelet. This pair of filters acts as a quadrature mirror filter, which works to either smooth over 

the data like a low pass filter or to isolate the details of the signal similar to that of a high pass 

filter [29]. The selection of the mother wavelet determines the coefficients of the high pass filter 

component, h, and the low pass filter component, g, which must be spatially localized and 

orthogonal to each other. The coefficients for g are based on those for h and are given by the 

relationship of: 

 

𝑔𝑘 = (−1)𝑘ℎ𝑛−𝑘−1, 𝑘 ∈ {0, … , 𝑛 − 1} (51) 

 

The length of these sets of coefficients is a function of the chosen mother wavelet. In all of the 

mother wavelets capable of performing a discrete wavelet transform, their lengths are a multiple 

of 2, as the discrete wavelet transform iterates across the data vector by incrementing by two points 

at a time. An example of the coefficients present in one of these mother wavelets is that of the 

Daubechies 2 (db2) coefficients. These sets of coefficients are: 

 

ℎ = [
(1 − √3)

4√2
 
−(3 − √3)

4√2
 
(3 + √3)

4√2
 
−(1 + √3)

4√2
] 

𝑔 = [
(1 + √3)

4√2
 
(3 + √3)

4√2
 
(3 − √3)

4√2
 
(1 − √3)

4√2
] 

 

These low pass and high pass filter coefficients are used to transform an equivalent number of 

samples as there are coefficients, and then increment through the raw data set by two. The result 

of the low pass filter component generates the approximate results and subsamples the data vector 

to half of its original length. The high pass filter follows the same process but generates the detailed 

results of the transformation, still subsampled to half its original length. The result of both of these 

filters is that both the low and high-passed results are down-sampled by a factor of two. In  
Figure 5-37, an example data vector, x, has 8 terms, and a wavelet with a length of four is used to 

demonstrate the process of a one level wavelet transform. 
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Figure 5-37: The process of the discrete wavelet transformation on a signal length of 8 with 

a low pass filter (left) and a high pass filter (right) to produce the resulting groups of the 

two 

  

This process can be repeated to further levels by using the results of the low pass filter as the new 

starting data vector. Each time, the results are down sampled by a factor of two, and as such the 

effective frequency of the data analyzed is halved each time. This process can only be repeated up 

to n times if the initial data set has a length of two to the power of n. 

 

Overall, the result of this process is that the low frequency decomposition of the data has a higher 

frequency precision, but is spatially imprecise. In comparison, the high frequency decomposition 

results in a reduced detection of specific high frequency effects, but the spatial resolution is much 

higher. This multiresolution analysis allows for a similar exploration as the STFT, however the 

tradeoff between spatial and frequency resolution is conducted as a function of the frequency rather 

than a set value for the entire operation. This particular multiresolutional analysis tends to reflect 

the real-world vibrational phenomena, as low frequency events persist much longer than high 

frequency events. Due to this tradeoff, it was determined that our implementation was appropriate 

for a number of reasons. The first of these reasons was that the railway vibration phenomena should 

reflect this pattern of both long and persisting low frequency content combined with short high 

frequency content. The second of these reasons was that the particular motions of interest can be 

reflected in these restrictions; namely the “loose” track segments are relatively short and most 

likely dominated by a high frequency response. Difficulties may arise from an insufficient length 

of track to detect low frequency responses, or insufficient sampling rate to distinguish high 

frequency responses. Hence, for the purposes of this analysis, this attempt to use wavelet analysis 

may indicate if the process itself is viable for our current implementation of the sensor system and 

track configuration. 

 

5.2.2 Wavelet Selection 
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The first step in conducting the discrete wavelet transform is to select an appropriate mother 

wavelet. For the ease of application, we selected from the orthogonal wavelets listed in the 

MATLAB documentation database. The ones selected for initial inspection were the Symlets 2 

and 4, the Daubechies 1 (AKA: Haar), 2, and 4, and the Coiflet 1. These wavelets were chosen as 

a way of identifying points in the run which contained movement indicative of loose rail. One of 

the issues with using wavelets for the identification of an unknown movement is that the wavelet 

decomposition is much stronger when the mother wavelet reflects the shape of the motion it is 

being used to identify. As such, we could not be sure that the wavelets chosen represented the best 

option for this type of analysis, and in fact, a further exploration and analysis into optimizing the 

selection of wavelets may be useful if a defined motion of interest is identified. For now, the 

selection of test wavelets, as seen in Figure 5-38 below, are meant to cover a variety of possible 

motions. 

 

 
Figure 5-38: Selected mother wavelets of: (a) 'sym2', (b) 'sym4', (c) 'Haar', (d) 'db2', (e) 

'db4', (f) 'coif1' [32] 

 

While the motion of the loose track in response to the train was unknown, a few estimations were 

made as to what would be the most likely, and therefore what would be best represented in the 

wavelet form. From our understanding of the possible motions which might represent loose track, 

an initial outward or inward motion followed by a roughly equivalent response in the other 

direction was possible and worth an attempt at analysis, hence the selection of the ‘sym2’ and 

‘db2’ mother wavelets. Another motion which could be found within the movement of the track 

as a function of the loose rail is the slight deflection as a lead-in to a much larger opposite direction 

of motion, followed by the recovery back in the first direction. To represent this possibility, the 

‘sym4’, ‘db4’ and ‘coif1’ mother wavelets were selected for initial analysis. The Daubechies 1 

mother wavelet was selected as a comparison, even though it did not present a realistic path of 

motion, it still provided another method of movement analysis. If the movement of the affected 

rail repeated, this would present itself in the data as a series of larger amplitudes of convolution, 

and further analysis through the use of higher order mother wavelets could be viable. If the motion 

is more complex than what is presented in these mother wavelets, the wavelet decompositional 

analysis may not be an effective form of “loose” track identification. 
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Once the wavelets were selected, they were used to filter the data into progressively higher and 

higher levels of decomposition, resulting in the same frequency/spatial tradeoff that was mentioned 

before. An example of one of these decompositions can be seen in  
Figure 5-39 with the use of a db4 mother wavelet for the second 10 mph trial in the Corsair data 

for the left rail.  

 

 
 

Figure 5-39: The first step of the discrete wavelet transform applied to the second 10 mph 

vertical data (top) resulting in the approximate components (bottom left) and the detailed 

components (bottom right) 

 

Again, as a function of not knowing in which particular frequency the effect should appear, the 

decomposition was conducted several times and stopping after the effective wavelength of the 

wavelet was no longer appropriate or useful for analysis. Given that each step in the process 

decomposes the data into the higher and lower halves of frequency content, each progressive level 

in the detailed data would have twice the effective wavelength as the prior level. In this case, given 
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the starting sample rate of 29 Hz, for 10 MPH the 7th level of detail produced an effective 

frequency of 0.23 Hz and wavelength of 30.1 feet. This was larger than the distance of the sections 

of interest by over twice their length and produced a resultant signal which was ineffective at 

distinguishing differences in the track motion or conditions.  
Figure 5-40 presents a decomposition which was filtered nine times. No one particular 

decompositional level could be selected with confidence to be containing the locations of interest 

at this point in the analysis, even if there were elements which stood out from the rest. These 

responses needed to be taken together as a whole with regards to their different levels and used to 

look for any patterns or relations across them that might reliably indicate where the loose rails are.  

 

 
 

Figure 5-40: The ninth level of the discrete wavelet transform with the approximate results 

(left) and the detailed results (right) for the second 10 mph vertical velocity 

 

Much like the STFT, the purpose of the wavelet transform was to identify locations with loose rail 

via their apparent responses. The decomposition of this data into detailed and approximately 

wavelet filtered data, with its variance in wavelengths, allowed for the detection of outstanding 

motions associated with each segment of the track. This direct form, however, did not 

simultaneously allow for this comparison between the different decomposition levels. In the same 

form as the STFT, a 3D mesh representing the decomposition levels is aligned by the time variable. 

Both forms produced a comparison between the time/location, the frequency/wavelet 

decomposition, and the magnitude of the response. In the case of the STFT, each data set was split 

along the time/space variable and so each part displays a full FFT frequency spectrum. By 

comparison, each wavelet was distinct between decomposition levels and therefore each 

component is a vector in the time/space domain. Hence both of these approaches attempt to reach 

a similar goal through different avenues. 
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Figure 5-41: Comparison of the second 10 mph vertical vibrations as presented by the raw 

STFT (top left), the running average STFT (top right), and the wavelet decomposition 

(bottom) 
 

In  

Figure 5-41, the left rail motion captured by the Corsair system for the second 10 mph run is 

represented in both the form of an STFT and its corresponding version of the wavelet 

decomposition. For the wavelet analysis, this process produced a mesh which was inspected 

manually for sections which indicated a notable response. Due to the lack of known rail responses, 

it would be impractical to attempt to design an automated detection method, and as such these 

initial reviews relied on the researcher to make assumptions about which parts of the graphs were 

significant. The main criteria used for the selection of locations of interest through the wavelet 

decomposition was the distinction of the particular location’s response compared to the locations 

around it, along with the magnitude of the response itself. Some sections of the runs include areas 

with several peak amplitudes close together, and within these sections this method of detection 

would most likely present itself as unreliable. With external knowledge from the GPS information, 

however, peaks within these raised sections that correspond to “loose” sections may still be 

indicated for the purposes of further analysis. 

 

With regards to the selection of the optimal mother wavelet, they were evaluated by using them to 

filter the data and generate a graph, followed by a manual inspection of the results. This was used 

to determine the usefulness of the particular wavelet inspected. From an initial inspection of the 



85 
  

second 20 mph run lateral responses, the most promising of the mother wavelets was the 

Daubechies 4, or ‘db4’, wavelet, and as such was the wavelet used for the initial battery of 

examinations on the trial runs. This selection was determined by the use of comparing the 

represented data and the ease of selecting the time(s) in the run which aligned with when the train 

would be passing over a point of interest. As seen in  
Figure 5-42, the results indicated a more favorable illustration of the loose rail in the curve through 

the ‘db4’ on the Corsair data. 

 

 
a. 

b. 
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c. 

 
d. 

 
e. 



87 
  

 
f. 

 

Figure 5-42: Vertical rail wavelet decomposition with the (a.) ’coif1’, (b.) ‘sym2’, (c.) 

‘sym4’, (d.) ‘Haar’, (e.) ‘db2’, and (f.) ‘db4’ mother wavelets 

 

In order to further validate the use of the ‘db4’ wavelet, the GoPro aligned locations of interest 

and their velocities were visually inspected and compared to the wavelet transformed data.  From 

the inspection of the 2nd 20 mph trial’s vertical data, which was selected due to the clarity of the 

response tied directly to the timing for the location of interest found by aligning the GoPro video 

with the velocity data, the results indicated that a Daubechies 4 mother wavelet would be most 

appropriate. The shape appears to reflect the movement identified at that location much better than 

when identified using the Daubechies 2. Both mother wavelets could identify the location of 

interest, however the ‘db2’ wavelet identified the location through effectively overfitting to the 

shape of the signature, while the db4 wavelet aligned strongly without over or underfitting to the 

shape. As seen in  Figure 5-43, in addition to both wavelets identifying the apparent large response at the point of 

interest, they do so at different decomposition levels. The db4 wavelet was most aligned with the 

signal at the detail level of 3, which would produce an effective frequency and wavelength at 20 

MPH of 1.06 Hz and 3.76 feet. The db2 wavelet was able to reflect the data but was conducted at 

a detail level of 2, in which it repeated itself to achieve the effect and therefore had an effective 

frequency and wavelength of 0.53 Hz and 1.88 feet and occurred twice. From this, the db4 

appeared to be a stronger indicator of the motion found in the second 20 MPH run on the Corsair 

data. 
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Figure 5-43: The vertical vibrations of the loose right rail in section 25 represented by the 

second level ‘db2’ wavelet (top) and the third level ‘db4’ wavelet (bottom) 

 

In addition to the comparison between the db2 and db4 mother wavelets, a brief example of the 

differences in effect of the levels of detail could be pertinent to the following explanations. At low 

levels of detail decomposition, i.e., at the first or sometimes second level, the wavelets tend to 
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overfit to the data. In this case, they provide little useful information for identifying large 

movements of the rail, especially at slower speeds where their effective spatial wavelength along 

the track is as low as 5.6 inches. As a result, the outputs of this process would reflect a response 

that would happen over distance shorter than the length of a tie. In  
Figure 5-44, the effects of overfitting on the representation of the data for the vertical right rail 

movement in the second 10 mph run can be seen and compared to that of an underfitted filtered 

data set produced by decomposing the signal past the point of returning useful motion information. 

 

 
a. 

 
b. 

 

Figure 5-44: The vertical vibrations at the loose right rail in section 25 represented by the 

(a) overfitted first level and the (b) underfitted fourth level of wavelet decomposition with 

the ‘db4’ wavelet 
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To continue with the validation of the use of the ‘db4’ wavelet over the ‘db2’, the same process 

was repeated for the 2nd 10 MPH Corsair run, which provided another strong example for the 

preference of the use of the Daubechies 4 over the Daubechies 2 especially when looking at the 

point of interest defined in the curve of the track in section 25. The signature centered around the 

first loose tie of that section is once again better reflected by the shape prescribed by the db4 as 

opposed to the db2 wavelets, as seen in  
Figure 5-45.This identification, however, was more present in the signal for Channel 1 than for 

Channel 0, which did not contain much of a strong signature anywhere, and as such did not assist 

in the selection of the appropriate mother wavelet. 

 
 

Figure 5-45: Vertical vibrations of the loose right rail represented by a  

wavelet transform [32] 
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Figure 5-46: Vertical vibrations of the loose left rail represented by a wavelet transform 

 

For both of these inspections, the vertical data was selected, and this was mostly due to the strength 

with which the signals in the vertical direction indicated our points of interest. Even from the initial 

inspections of the data, the Corsair data was better at identifying the point of simulated loose rail 

than the Blackbeard data, which reflects the removal of the vertical spikes and the still retained 

lateral spikes. The Blackbeard data still could be used for the detection of loose track, but the 

clarity and reliability with which it could be used for was reduced compared to the Corsair data, 

especially for defining the representative type of wavelet for implementation. In this example from 

the 2nd 10 mph run on the Blackbeard system, the peak response happened a short time after the 

first tie loose, but within the loose track since it was positioned four and a half feet after the fish 

scale on tie 552. This peak was not defined clearly by either the Daubechies 2 or the Daubechies 

4, and in fact seemed best represented by the Coiflet, or the ‘coif1’ wavelet. 
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a. 

 
b. 

 
c. 

 

Figure 5-47: Lateral vibrations of the loose rail in section 25 represented by a (a) ‘db2’, (b) 

‘db4’, and (c) ‘coif1’ mother wavelet 
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This result, however, did not seem to be consistent throughout the Blackbeard data, as inspection 

of the 20 MPH and 30 MPH runs did not reveal this same Coiflet motion at the location of the 

point of interest in the curve, nor did they provide a clear enough depiction of any particular 

signature to indicate if another wavelet would be appropriate. In both cases, for both the left and 

right rails, the Blackbeard data did not produce any clear and definable motion which could be 

best represented by wavelets. This is not to indicate that other locations within the Blackbeard data 

were undetectable, but that it was inconsistent for both the curved section 25 and in the tangent 

section 40. As such, the emulated loose rail was not able to be represented as cleanly by a wavelet, 

and therefore not as reliably detectable via manual inspection of the results of the discrete wavelet 

transform. One particular feature of note was found in the 2nd 20 mph Blackbeard results; the 

largest response in the section of interest was in phase for its 3rd level detail response rather than 

the normal out of phase motion seen in the Blackbeard data. The second 30 mph run, however, did 

not have as noticeable of an in-phase response in its most notable response around the point of 

interest. From all of these results, it is clear that the Blackbeard results produce inconsistent 

responses around the section 25 point of interest, and as such might not be as productively analyzed 

through the wavelet transform. 

 

 
 

Figure 5-48: Lateral vibrations of the loose rail in section 25 wavelet decomposition for the 

left and right rails at 20 mph 
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Figure 5-49: Raw data (left) and wavelet representation (right) of the  

section 25 loose rail at 20 mph 

 
 

Figure 5-50: Lateral vibrations of the loose rail in section 25 wavelet  

decomposition for the left and right rails at 30 mph 

 
 

Figure 5-51: Raw data (left) and wavelet representation (right) of the  

section 25 loose rail at 30 mph 
 

5.2.3 Non-Point-of-Interest Locations Detected by Lateral Rail Inspection 

 

Even after determining that the Blackbeard data was unreliable in terms of defining the points of 

interest in sections 25 and 40, it was still worth analyzing if it was able to reliably detect any other 

phenomena within the track. From the visual inspection of the data from the ‘db4’ wavelet, several 

aspects appeared relatively consistently within the data. Through the use of Google Earth images 

and the GPS outputs of our system, the locations determined by this inspection were assigned to 

the different track structures. Given that there was an inconsistent GPS lead/lag time in the data 

and that it was a function of speed, the locations determined via this method were considered to 

indicate the closest object. 

 

The first of the locations indicated by the Blackbeard wavelet analysis was the inside of the curve 

near the end of section 7. This occurrence was apparent in both the left and right channel data sets 
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and across all speeds. In at least two of the three trials for all four speeds, this location was selected 

via manual analysis. This event was characterized by the higher level of detail decomposition 

required for this location to stand out, typically occurring between the 4th to 6th level of 

decomposition, and hence having a spatial wavelength of between 3.8 to 15 feet at 10 mph and 15 

to 60 feet at 40 mph 

 

 
 

Figure 5-52: Section 7 left and right wavelet decomposition at 30 mph 
 

 
 

Figure 5-53: Location of the greatest lateral response in section 7 at 30 mph 
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Figure 5-54: Raw data vs the fourth level wavelet of the lateral response at 30 mph 

 

In the above figure, the Google Earth view depicts the location indicated by the wavelet inspection. 

The wavelet convolution mesh also indicates additional features of this location, namely the level 

to which it is differentiated from the surrounding data along with its broad and high 

decompositional levels. From this, along with a more detailed inspection of the location, we were 

able to identify the signature of the location to have what appears to be a harmonic resonance, 

which corresponds to the STFT analysis which shows a large magnitude response at the same 

location. 

 

Another element which the Blackbeard data wavelet analysis consistently identified was the 

“lubricator”. This element can be identified by a large magnitude response across a short section 

of track. This response occurred around the second decomposition and most prominently in the 

left rail. As the speed of the train increased, the response of the lubricator section, as with most of 

the other responses, became harder to identify. 
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Figure 5-55: The left rail lateral response as depicted by the wavelet decomposition (top 

left), the GPS location (top right), and the raw vs second wavelet (bottom) for 20 mph 

 

At this lubricator, both the left and the rail signals moved in similar ways, which was counter to 

the typical result of the lateral data oscillating 180 degrees out of phase. This could indicate that 

either the rail’s gauge was narrowing/widening or that the train’s speed was rapidly 

increasing/decreasing for a short time. The GPS speed data could not confirm or reject either of 

these possibilities, as the update rate did not appear to be fast enough in this section to have 

captured if the train had a rapid change in speed. This in phase response appeared at the higher 

speeds as well, as found in the second 30 mph data. In both of these, the data indicates that the two 

channels are 180 degrees out of phase in general, most likely due to the rocking or shifting of the 

car, but at the location of the lubricator, they both respond in phase. 
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Figure 5-56: Lateral velocity of the left and right rail at the lubricator 20 mph (top) and for 

30 mph (bottom) 

 

In addition to these locations, another that stood out within the Blackbeard data was the switch 

reconnecting the tangent section containing the control and loose rail with section 35. The motion 

of these sections also seemed defined by the rocking of the freight car back and forth, and at the 

location of the switch, the data indicated a much larger deflection, maintaining the out of phase 

motion. Given that the rate of this deflection was relatively slow, and that the motion stayed out 

of phase, it would appear that this resulted from an increased deflection of the rail from the rocking 

of the train. As such, it seems that the switch was detected via either the rocking of the train or the 

shifting of the bogeys changing the angles of the Lidars to the rails. 
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Figure 5-57: The wavelet decomposition depiction of the left and right rail lateral responses 

at the switch in section 34 
 

 
 

Figure 5-58: The GPS location of the switch indicated by the lateral velocity wavelet 

decomposition 
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Figure 5-59: Left rail lateral raw and 5th level wavelet response of the section 34 switch 
 

 
Figure 5-60: Left and right rail lateral velocity at the section 34 switch  

 

5.2.4 Non-Point-of-Interest Locations Detected by Vertical Rail Inspection 

 

As compared to the Blackbeard data, the Corsair data indicated a much greater potential from our 

testing to find the location of rails which were “loose”. Although similarly to the Blackbeard 

responses, the Corsair data also indicated locations which did not occur concurrently with the 

targeted points of interest. These locations and responses would therefore prove to be an obstacle 

which prevents the implementations of a form of automated or unsupervised detection algorithm, 

as without a way to filter these other signatures out, there would be too many false positives to 

provide any real utility. 
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Of the locations which provided false positives for the identification of the simulated loose rail, 

the lubricator stood out the most. As with the Blackbeard data, it seems that the wavelet analysis 

was most adept at identifying the brief but large effects of the lubricator on the velocity data. In 

Figure 5-64, the motion of the left and right rails is clearly distinct from the Blackbeard movement 

in that they appear to be out of phase, rather than in phase. This effect is even more apparent in the 

3rd level of detail, occurring around an effective wavelength of around 8 feet. 

 

 
Figure 5-61: Left rail vertical wavelet decomposition for the lubricator  

 



102 
  

 
 

Figure 5-62: Lubricator GPS location indicated by the vertical response 
 

 
 

Figure 5-63: Lubricator raw and wavelet transformed data of the vertical response at the 

lubricator 
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Figure 5-64: Left and right rail raw (left) and wavelet transformed (right) vertical 

responses at the lubricator  
 

Additionally, the switch after section 40 was readily apparent in the Corsair data, just as in the 

Blackbeard data. As seen in  

Figure 5-68, the motion still reflects the out of phase movement found in the Blackbeard data, and 

hence provides further justification for the effect to be a result of the rocking train. 

 

 
Figure 5-65: The vertical left rail wavelet decomposition of the switch at 10 mph  
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Figure 5-66: GPS location of the switch as indicated by the wavelet decomposition 

 
 

Figure 5-67: left rail raw and 3rd level wavelet transform vertical velocity for the switch 
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Figure 5-68: raw (left) and 3rd level DWT (right) for the switch at 10 mph 
 

5.2.5 Point-of-Interest as Detected by Vertical Rail Inspection 

 

With regards to the main purpose of the Wavelet analysis, namely the identification of the “loose” 

rail, the Corsair data able to be used to determine the location, but was inconsistent. From the 2nd 

10 and 20 MPH runs, where we can see that there was an elevated wavelet response directly at the 

start of the section 25 point of interest, we compared the corresponding GPS locations found on 

Google Earth. Unfortunately, we can see via direct comparison that the pinned location was not 

the same across both of these runs. These locations occurred at a similar point along the curve, but 

it was clearly imprecise. As a result, even though the use of the GPS positioning was implemented 

to determine if a wavelet response was indicative of the loose rail via comparison to the known 

location, error in the location should be expected. We could also observe that the higher speed 

position appears earlier in the track, which could be explained by the GPS delay in comparison to 

the true location of the train. 

 

 
a. 
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b. 

 
c. 

 

Figure 5-69: Location of the first fish scale in the section 25 loose rail as correlated by 

manual video analysis and GPS dad for the (a.) 2nd 10 mph, (b.) 2nd 20 mph, and (c.) 2nd 30 

mph trials 
 

Through using the range of detected locations as the bounds of identification for the point of 

interest via the GPS, we identified that the Corsair data was capable of identifying the emulated 

loose rail of section 25 while at slower speeds. From the 10 and 20 MPH runs, of the three runs of 

each speed, all three 10 MPH trials were able to select a peak corresponding to the loose rail. Of 

the 20 mph runs, 2 of the locations fell squarely within our defined bounds held by the GPS lag, 

however one of them lied just on the line for the 30 MPH run. Because the GPS lag delay was 

inconsistent across runs, it would be prudent to consider this result a partial success, since we 

cannot be as confident in its location as at or around the “loose” rail.   
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a. 

 
b. 

 
c. 

 

Figure 5-70: Vertical wavelet decompositions and corresponding GPS locations for the 

section 25  loose rail in the (a.) 2nd, (b.) 3rd, (c.) and 4th 10 mph trials 
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a. 

 
b. 

 
c. 

 

Figure 5-71: Vertical wavelet decompositions and corresponding GPS locations for the 

section 25 loose rail in the (a.) 2nd, (b.) 3rd, (c.) and 4th 20 mph trials 

 

Upon further inspection of the data at these locations, it appeared that both channels were in phase, 

however the right channel produced a much stronger response. While the train rounded the curve, 
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the outer rail would serve to push the train around, but due to the superelevation, the weight of the 

train would be most loaded on the inside left rail. This might have prevented the outside rail from 

being as fully damped and therefore generating a stronger signal. 

 

 
 

Figure 5-72: The raw (left) and 3rd level wavelet transform (right) for the left and right rail 

vertical responses for the emulated loose rail in section 25 at 10 mph 

 
 

Figure 5-73: The raw (left) and 3rd level wavelet transform (right) for the left and right rail 

vertical responses for the emulated loose rail in section 25 at 30 mph 

 

As described before, the method of identification of these locations occurred through manual 

inspection of the wavelet detailed decompositional mesh. Of the left and right rails, the channel 1 

signal, which corresponded to the right rail, was more prominent for the purposes of displaying 

the point of interest location. One of the difficulties with this process was the surrounding 

responses of the signal. Compared with the other structures in the trials, such as the lubricator and 

switches, the response of the loose rail was a smaller effect. Surrounding the response of the loose 

rail in section 25 was also a series of other large deflections, which made selecting the 

representative spike a challenge. This particular issue did not express itself in every trial, however 

this example from the second 30 mph run Corsair data depicts how, without prior knowledge of 

the estimated location, the selection of the response of interest would be infeasible. 
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Figure 5-74: Vertical rail wavelet decomposition not clearly indicating the loose left rail 

 

One of the aspects which helped with this low-speed identification was the selection of the level 

of detailed decomposition that best described the motion at the points of interest. In the majority 

of cases, the level of detail in the Corsair channel 1 data which indicated the point of interest most 

accurately compared to the surrounding motion was the 3rd and 4th detail levels. Given the speeds 

of travel and the sampling rate, these correspond with the effective wavelengths of between 1.8 to 

7.6 feet from between 10 to 20 mph, which would span from between one to four railroad ties and 

hence could indicate that the effect occurs as a direct response of the changed condition of those 

ties. 

 

As the speeds increased, however, the distinction of the locations corresponding to the points of 

interest decreased drastically. Both 30 and 40 MPH trials in Corsair and Blackbeard had an 

increased ability to indicate other locations such as the lubricator and switches. This can be seen 

in Figure 5-75, which shows the clarity with which the lubricator is found in the vertical data of 

the left rail from 2nd 30 MPH Corsair trial. Even without the increased false positives at higher 

speeds, the distinguishability of the “loose” rail is still significantly diminished. 
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Figure 5-75: Wavelet decomposition clearly indicating the location of the lubricator at 30 

mph 

 

As with the same issues presented in the STFT, the faster speeds reduced the number of samples 

present over any section of the track, and with short sections of interest around 15 ft long, this 

made the analysis harder. The representation of the results also made the manual inspection of the 

meshes somewhat difficult. The responses changed rapidly enough that it was hard to distinguish 

between events which occurred within a short time from each other. 

 

Overall, the method of wavelet analysis, when successful, could identify the location of interest 

much more precisely that from the STFT analysis. Unfortunately, it was less reliable at 

distinguishing the different locations around the track. Both systems were designed to identify 

different aspects of track movement, with the STFT looking for harmonic movement and 

specifically resonances or changes in resonance, while the wavelet inspection focused on reflecting 

the particular movement as defined by the mother wavelet. With a high enough sampling rate, and 

further inspection of the track movement at the points of loose rail, it could be possible to allow 

for the detection of these different phenomena at the higher speeds and with greater reliability at 

the lower ones. As of now, these processes do, however, show that it is possible to identify sections 

of rail with loose vertical spikes that are located within curves.  

 

Neither the frequency domain nor the sorting algorithm methods of data analysis, however, were 

able to distinguish the loosened rail located in the tangent section of the track. As such, an 

alternative analysis method needed to be implemented to specifically target the detection of the 

loose track in the tangent. To do so, a manual analysis of the data was implemented to specifically 

inspect the data found in that tangent. 
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Chapter 6 Manual Analysis 
 

While the sorting algorithm, STFT, and wavelet decomposition styles of analysis had some success 

with regards to identifying the loose rail in the curved section 25, none of the techniques were 

particularly successful with regards to the detection of the loose track in the tangent section 40. As 

a way to address this issue, manual inspection of the data was implemented in order to identify if 

there was a change in the dynamics of the signal as a result of the looser connection between the 

rails and the ties. 

 

Similar to the analysis conducted using the Gaussian Mixture Model, the manual analysis and 

inspection of the data was also conducted by other members of CVeSS for this study. As before, 

the results of this analysis were presented in a previous report [21]. 

 

While manual analysis of the raw Lidar velocity data does not allow for the inspection of frequency 

content, it may be prudent to review the signal for changes in motion and dynamics. Without 

removing the low-frequency content, the responses of the rail and the train were still coupled in 

the data set. Analysis of this data, which was dominated by the low frequency content, provided a 

method of viewing changes in the track condition due to the response of the train itself. The rocking 

of the train car back and forth provided potential problems when collecting and analyzing the data, 

however, in this case the rocking provided an opportunity to observe any changes in the pattern 

due to changing track conditions. While it is not a direct method of track analysis, it may still 

provide a method of distinguishing which sections of the data indicate loose track.  

 

Through the use of the video aligning techniques as described earlier, the locations of the points 

of interest were identified in the cleaned Lidar data. On the 2nd 10 mph run, the start and the end 

of the tangent loose section were illustrated in the data for  
Figure 6-1. From manual inspection, it is clear that the location containing the loose track has a 

higher apparent velocity variance in the vertical data. This could be explained by the removal of 

the vertical tie spikes, which would reduce the resistance of the track and train system to vertical 

motion. As seen in the vertical data, there seems to be a pair of triple peaks which exist over the 

length of the section of interest, starting from the control section and bridging to the emulated 

loose track. The distance between the tangent control section and emulated loose track was around 

150 feet. Given the length of the train consist being about 159 feet in length, this allowed for the 

front of the train to be starting its contact with the “loose” track while the rear was still in the 

control section. As such, this elevated response could be a result of the reverberations present in 

the “loose” track traveling back through the rail and being picked up before reaching the point 

itself. At the moment, however, we do not have an explanation as to the existence of this double 

set of peaks, but it could be possible that the three train cars each contribute to a specific peak. The 

overall range of these peaks do have the potential to represent the train itself, as they are small 

enough to be fully encapsulated by its length. 
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Figure 6-1: Vertical motion manual inspection of section 40 

 

As for the lateral Blackbeard data, the rocking of the freight car is clearly demonstrated through 

the oscillatory nature of the two signals. As the car leans or drifts towards one direction or the 

other, the two velocity measurements will be moving opposite to each other i.e., they are shifted 

in phase by 180 degrees. During the section leading up to the rear car passing the “loosened” point 

of interest, the oscillations in the rocking seem to shift in phase and increase in amplitude. This 

increase in amplitude could correspond once more to the “loosened” rails. Both the lateral and 

vertical responses are aligned with one another. Since both effects are present, and correspond to 

the distance with which the train would be passing over the emulated loose rail, it could be inferred 

that this is due to the track condition. 

 

 
 

Figure 6-2: Lateral motion manual inspection of section 40 

 

While a change in track-train dynamics is able to be identified via manual analysis, it falls under 

a similar condition as the STFT and wavelet forms of analysis. In all of these cases, the overall 

goal of implementing a data processing method which is able to distinguish between loose and 

non-loose track is not fully met. These methods validate that the prior sensing techniques were 

capable of identifying loose rail, but that there would be a risk of falsely identifying a section of 

track as loose. This prevents automated systems from being viable with these current techniques. 

Even with manual inspection, without prior knowledge of the locations of interest, differentiating 

the effect of track conditions on the consist would not be feasible. Further exploration of the 

interactions between the track structure and the resulting body motion of the train might allow for 

a greater specificity with which the loose rail could be detected. 
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In the case of manual analysis of the tangent section, one of the issues regarding the comparison 

between the control and track with removed ties is that the train consist was large enough to bridge 

the gap between them, and as such effects occurring due to the locomotive approaching the loose 

track could be propagated back to the control section. A larger gap between the two sections might 

have been necessary to prevent this feedback. 

 

Overall, the manual inspection of the data allowed for the identification of different motion around 

the loose rail than that of the stiffer rail sections. This process was not able to automatically detect 

the changes in the rial condition, but these results indicate that the sensor platform is able to capture 

the changes in train and rail dynamics that reflect a change in the track structure. As such, while 

the tangent section proved to be much more difficult to detect vertically loose rail, the non-contact 

Doppler Lidar lasers are able to measure the changes in motion. While more time consuming than 

the other methods of data analysis, and less reliable, the manual inspection of the velocity data 

allowed for the validation of the system capabilities in tangent track. This difficult to acquire and 

unreliable result, however, does not show much future in larger scale rail monitoring systems, and 

so improvements will need to be made in order to detect rail with removed vertical tie spikes. 
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Chapter 7 Conclusion and Future Study 
 

7.1 Summary of the study 
 

Our purpose for this experiment was to validate the capability for our non-contact system to detect 

instability in railroad tracks. In previous experiments, the Doppler Lidar was used to measure the 

lateral dynamics of in-revenue railroad tracks, and as such, we wanted to confirm the effectiveness 

of those analyses. To achieve this, we conducted an experiment to compare the results of our 

analysis with prescribed locations of instability on the track. The first analysis method 

implemented was the same as was used in prior experiments, and was based on an unsupervised 

sorting algorithm to identify sections containing abnormal rail motion. We also incorporated 

several other analysis techniques in this study to compare the effectiveness of the different 

approaches and to expand our understanding of the capabilities of the system. These additional 

methods of analysis were the Short Time Fourier Transform, the Discrete Wavelet Transform, and 

manual forms of analysis. 

 

To achieve this comparison between techniques, we conducted runs around the Transportation 

Technology Center’s High Tonnage Loop at speeds of 10, 20, 30, and 40 miles per hour. These 

speeds allowed us to review the effect of increasing speed on the capabilities of our system to 

detect track abnormalities. At all of these speeds we measured the lateral and vertical track 

translation instantaneous velocities for both of the rails. Using GPS receivers and an accelerometer, 

we were able to calibrate and isolate the motions of interest during our trials. Each trial consisted 

of having the train travel around the full length of the track, and after passing the locations of 

interest, also recording the maximum lateral displacement of the track heads. 

 

Before analyzing the data, it was cleaned through a multi-step process. This cleaning involved 

removing data points which fell outside of the reasonable range of speeds and replacing any 

missing data with data generated through the use of linear regression. The processing also 

decoupled the longitudinal speeds from the lateral and vertical data sets through a high pass filter. 

 

The first technique used to analyze the data was the implementation of a Gaussian Mixture Model 

in order to sort the data into clusters. This process used the vertical and lateral absolute velocities 

as well as the variances in those velocities as inputs. The trials were split into small segments and 

sorted by these inputs to four clusters. Combining the result of this sorting, along with previous 

experience in using this process, the loose rail in section 25 was identified, though spatially 

imprecise due to the 300-foot segment size used in the sorting. This process also sorted the 

surrounding locations of that curve into its own cluster. It did not, however, identify the emulated 

loose rail in the tangent section 40. 

 

The second technique to review the data was the implementation of a set of Short Time Fourier 

Transforms to identify sections containing larger or shifting frequency responses. The frequency 

content of the vibrating rail indicates whether the damping or stiffness components of the rail have 

changed for that segment of the track. This process required a balance between the spatial and 

frequency precisions, as imprecise frequency analysis would not allow for observing the different 

track characteristics, while imprecise spatial analysis would not allow for proper identification of 

the location. From this analysis, like the prior processing technique, the “loose” rail in the curved 
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section 25 was detected with relative reliability at speeds lover than 30 mph, but neither tangent 

track element generated a notable response. This process also reliably indicated the locations of 

the lubricator, starts and ends of curves, and track switches. Unfortunately, none of these responses 

were distinctly different in the data from the loose rail and so could not be filtered through an 

automated process. Therefore, a combination of manual analysis and GPS review was used to 

determine the effectiveness of this technique. One point of favorability for future studies of track 

dynamics through the use of Fourier analysis is that different elements tended to have different 

characteristics regarding dominant frequencies, but these tests did not produce sufficient evidence 

to determine which frequencies were most important or what their causes may have been. 

 

Based on the tradeoff between location and frequency resolution, a multiresolutional analysis was 

then implemented through the application of the Discrete Wavelet Transformation. The data was 

processed through a discrete Daubechies 4 wavelet transform, but there was some evidence that 

further exploration into generating a different wavelet that might produce a more robust response. 

Like the Fourier transform, the dominant wavelet transform responses corresponded to a frequency 

of approximately 5 Hz, with variations across the speed. Overall, the characteristic wavelength 

was between around 1.6 to 3.2 feet in length, which would seem to indicate the results of loose rail 

can be found within the length of track covering one to two railroad ties. In the same fashion, these 

results were able to detect the curved loose rail with relative accuracy but were not able to detect 

the tangent track conditions. For this method and all the prior ones, there is a clear difference in 

the capability to detect loose rail in curved as opposed to tangent track. 

 

To account for the lack of tangent rail detection, the next processing technique implemented was 

a manual review of the Lidar velocity data in the tangent section of the track. From the rocking 

motion generated on the freight car, we were able to identify a correlation between the increased 

variation in the vertical velocity and a phase shift in the lateral rocking. These results persisted 

across speeds, and as such suggest that the track conditions caused this effect. While this method 

did not allow for any form of detection of loose track without prior knowledge of its location, it 

did demonstrate that some elements of the track dynamics measurably change in response to 

emulated “loose” rail, even in tangent sections. Even though this method does not serve the 

purpose of creating an automated detection method, it does validate the capabilities for the system 

to at least detect the changes in rail conditions. 

 

Overall, the results of this experiment and its corresponding data processing techniques show a 

clear preference for the identification of this particular type of loose rail in curved sections. The 

tangent sections, while not discernable without prior knowledge of the track conditions, do at least 

indicate that future analysis may be possible with greater knowledge of the reactions in tangent 

sections of track. If this test were to be expanded upon, the control in the tangent section of track 

should be placed significantly far away from the “loose” track as this experiment allowed for the 

train to bridge the two sections, possibly muddling the results. 

 

7.2 Recommendations 
 

Additionally, for all of these results, this experiment only examined the capabilities for the non-

contact sensors to detect the effect of removed vertical spikes. This should allow for a greater 

motion of the rail, but still retain the lateral motion of the base of the rail. If the lateral retaining 
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spikes were removed instead, or if both sets were removed, the results could have presented 

themselves quite differently. Even with regards to the removal of spikes, several other forms of 

track instability have yet to be inspected and validated for their ability to be detected by this non-

contact system. These could include earlier or more reliable detection of the other major causes of 

derailment, such as cracked track, which would change its vibrational characteristics. 

 

Even within the investigation of loose rail connections and gage widening, further exploration into 

the use of wavelets could provide useful information. Testing different track structures for 

characteristic shapes of motion could, along with an appropriately selected or constructed mother 

wavelet, allow for the automated detection of much more specific motions within the track. 

 

Another consideration which was not explored in these experiments, was the impact of the choice 

of location of the Lidar on the measured response of the track. While we knew positioning the 

target of the Lidar lasers either too close or too far from the point of contact of the wheel would 

produce bad results, we did have a specific offset selected for the pair of lasers behind the wheel. 

A study specifically on the results caused by different offsets from the wheel could improve the 

effectiveness of future Lidar studies. In the same vein, and exploration of the difference between 

placing the sensors in front of or behind the wheel, as well as if the wheel is on the front or the 

rear of the car, could be useful. 
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APPENDIX 
 

MATLAB Implementation of the STFT 

%2nd Run - 10 mph - Corsair_uniform (1) 

clc 

clear all 

close all 

 

%%%Take the basic methods from the single FFT and split the overall data 

%%%into subvectors to look through 

 

%Load in the file as a table 

T=readtable(['2nd Run - 10 mph - Corsair_uniform (1).csv']); 

 

%%% CORSAIR DATA 

 

%2 run 10 Cor Un 44666 

Time_Raw=T(15854:44666,5);       %Time 

Ch0Vel_Raw=T(15854:44666,6);     %Velocity of channel 0 

Ch1Vel_Raw=T(15854:44666,7);     %Velocity of channel 1 

GPSSpeed_Raw=T(15854:44666,8);  %GPS speed 

 

% Convert the data from table to a vector 

Time_Raw=table2array(Time_Raw); 

Ch0Vel_Raw=table2array(Ch0Vel_Raw); 

Ch1Vel_Raw=table2array(Ch1Vel_Raw); 

GPSSpeed_Raw=table2array(GPSSpeed_Raw); 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

                     %Mile marker for specifit run% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

location_1=Time_Raw(1); 

location_2=Time_Raw(end); 

Mile=linspace(Time_Raw(1),Time_Raw(end),length(Time_Raw)); 

 

%Display the velocity data for both channels and the GPS 

f=0; 

f=f+1; 

figure(f) 

plot(Mile,Ch0Vel_Raw,'Color',[0 0.6 0]) 

hold on 

plot(Mile,Ch1Vel_Raw,'Color',[1 0 0]) 

plot(Mile,GPSSpeed_Raw,'b') 

legend('Left Rail','Right Rail','GPS') 
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xlabel('Time (sec)') 

ylabel('Velocity (mph)') 

title('Raw Velocity Data') 

 

%cut length 

cut=length(Mile)-(2^14); 

%%CUt down data 

f=f+1; 

figure(f) 

plot(Mile(1:cut),Ch0Vel_Raw(1:cut),'Color',[0 0.6 0]) 

hold on 

plot(Mile(1:cut),Ch1Vel_Raw(1:cut),'Color',[1 0 0]) 

plot(Mile(1:cut),GPSSpeed_Raw(1:cut),'b') 

legend('Left Rail','Right Rail','GPS') 

xlabel('Time (sec)') 

ylabel('Velocity (mph)') 

title('Cut Velocity Data') 

 

%Graph the instantaneous sampling rate of the data 

for z=1:length(Time_Raw)-1 

    Sample(z)=1/(Time_Raw(z+1)-Time_Raw(z)); 

end 

 

%Plot the sampling rate as a function of time 

f=f+1; 

figure(f) 

plot(Time_Raw(2:end),Sample) 

title('Sampling Rate') 

ylabel('Sample rate (Hz)') 

xlabel('Time (sec)') 

 

%Find the average sampling rate of the data 

AvgSample=mean(Sample); 

disp('The average sampling rate of the data:') 

disp(AvgSample); 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

              %User selected segment size and cutoff frequency% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

segment=256;       %Segment Size 

fc=0.318;           %frequency cutoff at 0.318 Hz 

fs=AvgSample;       %sampling frequency at average sampling rate 

 

%impliment a 3 power high-pass butterworth to clean out velocity as a 
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%function of longitudinal motion 

[Regression_Length,i]=butter(3,fc/(fs/2),'high'); 

 

Ch0Vel_Filtered=filter(Regression_Length,i,Ch0Vel_Raw); 

Ch1Vel_Filtered=filter(Regression_Length,i,Ch1Vel_Raw); 

 

f=f+1; 

figure(f) 

plot(Mile,Ch0Vel_Filtered,'Color',[0 0.6 0]) 

hold on 

plot(Mile,Ch1Vel_Filtered,'Color',[1 0 0]) 

legend('Left Rail','Right Rail') 

title('Filtered Velocity Data') 

xlabel('Time (sec)') 

ylabel('Velocity (mph)') 

 

%Split the full data vectors into segments of equal length that are 

%overlapped with each other by 50% 

y1=buffer(1:numel(Ch0Vel_Filtered),segment,segment/2); 

Ch0Vel_Split=Ch0Vel_Filtered(y1(:,all(y1))); 

 

y2=buffer(1:numel(Ch1Vel_Filtered),segment,segment/2); 

Ch1Vel_Split=Ch1Vel_Filtered(y2(:,all(y2))); 

 

y3=buffer(1:numel(Time_Raw),segment,segment/2); 

Time_Split=Time_Raw(y3(:,all(y3))); 

 

% % %Can Graph the new data as split vectors if needed 

% % f=f+1; 

% % figure(f) 

% % plot(Time_Split,Ch0Vel_Split) 

 

%Implement the FFT transformation of each segment of the data and store in 

%a new matrix 

Ls=segment; %Length of each data segment 

Ts=1/fs; %Time segment 

tv=(0:Ls-1)*Ts; %Time vector 

 

%%Image for the splittign of the data into its component segments 

f=f+1; 

figure(f) 

plot(Time_Split,Ch0Vel_Split) 

xlabel('Time (sec)') 

ylabel('Velocity (mph)') 

hold off 
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                      %%%%----Channel 0----%%%% 

 

for i=1:length(Time_Split(1,:)) 

    %Apply rectangular window when converting to dB 

    Ch0_FFT(:,i)=fft(Ch0Vel_Split(:,i)); 

     

    PS2_0(:,i)=abs(Ch0_FFT(:,i)/Ls); 

    PS1_0(:,i)=PS2_0(1:Ls/2+1,i); 

    PS1_0(2:end-1,i)=2*PS1_0(2:end-1,i); 

    freq_0(:,i)=fs*(0:(Ls/2))/Ls; 

end 

 

%Generate location/Time vector for graph 

segCount=linspace(1,length(Ch0Vel_Split(1,:)),length(Ch0Vel_Split(1,:))); 

 

location_Segment=linspace(location_1,location_2,length(Ch0Vel_Split(1,:))); 

 

%decibel magnitude of PS1_0 

PS1_0_dB=mag2db(PS1_0); 

 

%Graph the 3d plot of the power spectrum for each location down the track 

f=f+1; 

figure(f) 

%Option to switch between decibel and PSD graphs 

% % % mesh(location_Segment,freq_0,PS1_0_dB) 

mesh(location_Segment(:,2:end),freq_0(:,2:end),PS1_0(:,2:end)) 

xlabel('Time (sec)') 

ylabel('Frequency (Hz)') 

zlabel('Magnitude (Mph/sqrt(Hz))') 

title('Left Rail STFT') 

 

                      %%%%----Channel 1----%%%% 

 

for i=1:length(Time_Split(1,:)) 

    Ch1_FFT(:,i)=fft(Ch1Vel_Split(:,i)); 

    PS2_1(:,i)=abs(Ch1_FFT(:,i)/Ls); 

    PS1_1(:,i)=PS2_1(1:Ls/2+1,i); 

    PS1_1(2:end-1,i)=2*PS1_1(2:end-1,i); 

    freq_1(:,i)=fs*(0:(Ls/2))/Ls; 

end 

 

%Generate location/Time vector for graph 

segCount=linspace(1,length(Ch0Vel_Split(1,:)),length(Ch0Vel_Split(1,:))); 

location_Segment=linspace(307.448,310.639,length(Ch0Vel_Split(1,:))); 

location_Segment=linspace(Time_Raw(1),Time_Raw(end),length(Ch0Vel_Split(1,:))); 
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%decibel magnitude of PS1_0 

PS1_1_dB=mag2db(PS1_1);%decibel magnitude of PS1_1 

 

%Graph the 3d plot of the power spectrum for each location down the track 

f=f+1; 

figure(f) 

% % % mesh(location_Segment,freq_1,PS1_1_dB)%%--------------------------7 A 

mesh(location_Segment,freq_1,PS1_1)%%-----------------------------------7 B 

xlabel('Mile Post') 

ylabel('Frequency (Hz)') 

zlabel('Magnitude (Mph/sqrt(Hz))') 

title('Channel 1 Raw FFT') 

 

                 %%%%----Channel 0 Regression----%%%% 

 

%%%For each FFT: 

%%%take the low pass filter for the data, I.e. a running average (1.5 pole 

%%%filter) 

%%%Add a regression line of the filtered data 

%%%Compare each point to the corresponding regression curve to look for 

%%%large enough differences 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

                    %Running Average Filter Settings% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

B=1/30*ones(30,1); 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

                      %Frequency Shoulder Location% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

shoulder_location_0=31; 

 

for i=1:length(PS1_0(1,:)) 

    PS1_0_Temp=PS1_0(:,i); 

    freq_0_Temp=freq_0(:,i); 

    Power_0_Avg(:,i)=filter(B,1,PS1_0_Temp); 

     

    %Determine the linear regression line coefficients for each of the segments 

    regress_line_temp_vectors=[ones(length(freq_0_Temp(shoulder_location_0:end)),1) 

freq_0_Temp(shoulder_location_0:end)]; 

    Regression_Length=regress_line_temp_vectors\Power_0_Avg(shoulder_location_0:end,i); 
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    Channel_0_FFT_Regression(:,i)=regress_line_temp_vectors*Regression_Length; 

    Channel_0_Freq_Regression(:,i)=freq_0_Temp(shoulder_location_0:end); 

end 

 

%Plot the average power of Channel 0 from using the Running Average filter 

f=f+1; 

figure(f) 

mesh(location_Segment(:,2:end),freq_0(:,2:end),Power_0_Avg(:,2:end))  

%removed first segment term since it was too large to see other  

% details in the graph 

xlabel('Time (sec)') 

ylabel('Freq (Hz)') 

zlabel('Magnitude (Mph/sqrt(Hz))') 

title('Left Rail Running Average STFT') 

 

%Plot the averaged FFT along with the regression line to confirm accuracy 

f=f+1; 

figure(f) 

mesh(location_Segment,Channel_0_Freq_Regression,Channel_0_FFT_Regression) 

xlabel('Time (sec)') 

ylabel('Frequency (Hz)') 

zlabel('Magnitude (Mph/sqrt(Hz))') 

title('Left Rail STFT + Linear Regression') 

hold on 

mesh(location_Segment,freq_0,Power_0_Avg) 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

                    %Decibels Over Regression Line% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Decibels_0=6; 

 

%ratio generated by target decibel change 

ratio=10^(Decibels_0/10); 

 

Channel_0_FFT_Regression=Channel_0_FFT_Regression.*ratio; 

 

%Plot the raw data to find any points that pierce the surface generated by 

%the regression line to indicate detectability 

f=f+1; 

figure(f) 

mesh(location_Segment,Channel_0_Freq_Regression,Channel_0_FFT_Regression) 

xlabel('Time (sec)') 

ylabel('Frequency (Hz)') 

zlabel('Magnitude (Mph/sqrt(Hz))') 
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title('Channel 0 Raw Data vs Detectability Threshhold') 

hold on 

mesh(location_Segment,freq_0,PS1_0) 

 

f=f+1; 

figure(f) 

mesh(location_Segment,Channel_0_Freq_Regression,Channel_0_FFT_Regression) 

xlabel('Time (sec)') 

ylabel('Frequency (Hz)') 

zlabel('Magnitude (Mph/sqrt(Hz))') 

title('Channel 0 Running Average vs Detectability Threshhold') 

hold on 

mesh(location_Segment,freq_0,Power_0_Avg) 

 

 

               %%%%----Channel 1 Regression----%%%% 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

                      %Frequency Shoulder Location% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

shoulder_location_1=31; 

 

for i=1:length(PS1_1(1,:)) 

    PS1_1_Temp=PS1_1(:,i); 

    freq_1_Temp=freq_1(:,i); 

    Power_1_Avg(:,i)=filter(B,1,PS1_1_Temp); 

     

    %Determine the linear regression line coefficients for each of the segments 

    regress_line_temp_vectors=[ones(length(freq_1_Temp(shoulder_location_1:end)),1) 

freq_1_Temp(shoulder_location_1:end)]; 

    Regression_Length=regress_line_temp_vectors\Power_1_Avg(shoulder_location_1:end,i); 

 

    Channel_1_FFT_Regression(:,i)=regress_line_temp_vectors*Regression_Length; 

    Channel_1_Freq_Regression(:,i)=freq_1_Temp(shoulder_location_1:end); 

end 

 

%Plot the average power of Channel 0 from using the Running Average filter 

f=f+1; 

figure(f) 

mesh(location_Segment(:,2:end),freq_1(:,2:end),Power_1_Avg(:,2:end)) 

xlabel('Time (sec)') 

ylabel('Freq (Hz)') 

zlabel('Magnitude (Mph/sqrt(Hz))') 
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title('Right Rail Running Average STFT') 

 

%Plot the averaged FFT along with the regression line to confirm accuracy 

f=f+1; 

figure(f) 

mesh(location_Segment,Channel_1_Freq_Regression,Channel_1_FFT_Regression) 

xlabel('Time (sec)') 

ylabel('Frequency (Hz)') 

zlabel('Magnitude (Mph/sqrt(Hz))') 

title('Channel 1 Averaged FFT + Linear Regression') 

hold on 

mesh(location_Segment,freq_1,Power_1_Avg) 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

                    %Decibels Over Regression Line% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Decibels_1=4; 

 

%ratio generated by target decibel change 

ratio_1=10^(Decibels_1/10); 

 

Channel_1_FFT_Regression=Channel_1_FFT_Regression.*ratio_1; 

 

%Plot the raw data to find any points that pierce the surface generated by 

%the regression line to indicate detectability 

f=f+1; 

figure(f) 

mesh(location_Segment,Channel_1_Freq_Regression,Channel_1_FFT_Regression) 

xlabel('Mile Post') 

ylabel('Frequency (Hz)') 

zlabel('Magnitude (Mph/sqrt(Hz))') 

title('Channel 1 Raw Data vs Detectability Threshhold') 

hold on 

mesh(location_Segment,freq_1,PS1_1) 

 

%Demonstration FFT: 

Test_PS1_0=PS1_0(:,12); 

Test_freq_0=freq_0(:,12); 

 

B=1/30*ones(30,1); 

out3=filter(B,1,Test_PS1_0); 

 

X=[ones(length(Test_freq_0(shoulder_location_1:end)),1) 

Test_freq_0(shoulder_location_1:end)]; 
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b=X\out3(shoulder_location_1:end); 

 

yCalc=X*b; 

 

f=f+1; 

figure(f) 

plot(Test_freq_0,out3) 

hold on 

plot(Test_freq_0(shoulder_location_1:end),yCalc) 

xlabel('Frequency (Hz)') 

ylabel('Magnitude (Mph/sqrt(Hz))') 

legend('FFT','Linear Regression') 

  



130 
  

MATLAB Implementation of the DWT 
General DWT code: 

clear all 

close all 

clearvars 

clc 

 

%% Read data 

NAME='2nd Run - 10 mph - Corsair_uniform (1).xls' 

D=xlsread(NAME); 

 

%% 

Ch0_Vel_temp=D(:,6); 

Ch1_Vel_temp=D(:,7); 

time_temp=D(:,5); 

 

Ch0_Vel=Ch0_Vel_temp(15854:44666); 

Ch1_Vel=Ch1_Vel_temp(15854:44666); 

time=time_temp(15854:44666); 

 

f=1; 

figure(f) 

plot(time,Ch0_Vel) 

 

xlabel('Time (sec)') 

ylabel('Velocity (mph)') 

title('Raw Velocity Data') 

 

% Wavelet 

nLevel=6; 

TYPE = ['db4']; 

[Ax, Dx, f_temp] = FilterUsingWavelet(Ch0_Vel,nLevel,TYPE,'Acc_x',f); 

f=f_temp; 

[Ay, Dy, f_temp] = FilterUsingWavelet(Ch1_Vel,nLevel,TYPE,'Acc_y',f); 

 

f=f_temp; 

 

Matrix_A_Ch0=cell2mat(Ax); 

Matrix_D_Ch0=cell2mat(Dx); 

 

Matrix_A_Ch1=cell2mat(Ay); 

Matrix_D_Ch1=cell2mat(Dy); 

 

k=1; 

for i=1:nLevel 

    for j=1:length(Ch0_Vel) 
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        finalMat_A_Ch0(i,j)=Matrix_A_Ch0(k); 

        finalMat_D_Ch0(i,j)=Matrix_D_Ch0(k); 

        finalMat_A_Ch1(i,j)=Matrix_A_Ch1(k); 

        finalMat_D_Ch1(i,j)=Matrix_D_Ch1(k); 

        k=k+1; 

    end 

end 

 

y=linspace(1,nLevel,nLevel); 

 

f=f+1; 

figure(f) 

plot(time.',finalMat_D_Ch0(1,:)) 

title('First Detailed Decomposition') 

xlabel('Time (sec)') 

ylabel('Filtered Velocity (mph)') 

 

f=f+1; 

figure(f) 

plot(time.',finalMat_A_Ch0(1,:)) 

title('First Approximate Decomposition') 

xlabel('Time (sec)') 

ylabel('Filtered Velocity (mph)') 

 

f=f+1; 

figure(f) 

mesh(time.',y,abs(finalMat_A_Ch0)) 

title('Left Rail Approximate Vertical Response 2run10') 

xlabel('Time (s)') 

ylabel('Decomposition Level') 

zlabel('Filtered Velocity (mph)') 

 

f=f+1; 

figure(f) 

mesh(time.',y,abs(finalMat_D_Ch0)) 

title('Left Rail Vertical Response 2run10') 

xlabel('Time (sec)') 

ylabel('Decomposition Level') 

zlabel('Filtered Velocity (mph)') 

 

f=f+1; 

figure(f) 

mesh(time.',y,abs(finalMat_A_Ch1)) 

title('Right Rail Approximate Vertical Response 2run10') 

xlabel('Time (s)') 

ylabel('Decomposition') 
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zlabel('Filtered Velocity (mph)') 

 

f=f+1; 

figure(f) 

mesh(time.',y,abs(finalMat_D_Ch1)) 

title('Right Rail Vertical Response 2run10') 

xlabel('Time (s)') 

ylabel('Deomposition Level') 

zlabel('Filtered Velocity (mph)') 
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FilterUsingWavelet – function 

function [A, D, f] = FilterUsingWavelet(x,nLevel,TYPE,Title,f) 

 

[A, D]=GetDWT(x,nLevel,TYPE); 

 

f=f+1; 

figure(f); 

subplot(nLevel+1,2,[1 2]); 

plot(x,'r'); 

ylabel('x'); 

title(Title) 

 

c=2; 

for i=nLevel:-1:1 

    c=c+1; 

    subplot(nLevel+1,2,c); 

    plot(A{i},'b'); 

    ylabel(['a_{' num2str(i) '}']); 

     

    c=c+1; 

    subplot(nLevel+1,2,c); 

    plot(D{i},'g'); 

    ylabel(['d_{' num2str(i) '}']); 

end 

end 
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GetDWT – function 

function [A, D]=GetDWT(x,N,wname) 

 

    [C, L]=wavedec(x,N,wname); 

 

    A=cell(N,1); 

    D=cell(N,1); 

    for i=1:N 

        A{i}=wrcoef('a',C,L,wname,i); 

        D{i}=wrcoef('d',C,L,wname,i); 

    end 

 

end 
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