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ABSTRACT 
 
In the past few years, computer vision has made huge jumps due to deep learning which leverages 
increased computational power and access to data. The computer vision community has also 
embraced transparency to accelerate research progress by sharing open datasets and open source code. 
Access to large scale datasets and bench- mark challenges propelled and opened the field. The 
autonomous vehicle community is a prime example. 
 
While there has been significant growth in the automotive vision community, not much has been done 
in the rail domain. Traditional rail inspection methods require special trains that are run during down 
time, have sensitive sensing/imaging analysis equipment with high costs, or may require low speeds for 
analysis. In addition, the lack of available labeled datasets for the rail domain has limited progress in 
the field. In this study, we explored and evaluated machine learning algorithms for real- time 
railroad inspection systems from the ego-perspective of the locomotive. This was accomplished 
through a study on state-of-the-art semantic segmentation models on popular automotive datasets with 
semantic segmentation annotations. Second, transfer learning was performed on the models with 
a public rail dataset. Third, benchmarking was done on the newly trained rail models on an 
embedded system and PC. Finally, a custom dataset was created to highlight anomalies on rails 
(e.g., mud pumping and vegetation). 
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CHAPTER 1. INTRODUCTION 
 
1.1 Motivation 
 
While there has been an increase of deep learning techniques for computer vision tasks in the 
automotive domain, there is a lack of research in the rail domain despite the long history of camera-
based systems for maintenance (Nakhaee et al, 2019). This lack of research affects the safety of 
autonomous cars since autonomous cars share the same environment with rail intersections and trams. 
Traditional rail inspection methods require specialized locomotives that are run during downtime which 
are either equipped with expensive sensor equipment, run at low speeds for analysis, or use high 
resolution cameras. While the rail community has started to embrace deep learning for rail inspections 
in the past few years, there is still a lack of available labeled datasets and public benchmarks since 
most data is small or proprietary [Nakhaee et al, 2019]. 
 
1.2 Overall Objective 

 
The objective of this project is to contribute on the implementation of identifying and localizing 
anomalies on railroad tracks that affect the tracks’ health and condition using a low-cost camera-based 
railway anomalies analysis system using a single RGB, forward facing camera on a locomotive using 
real-time semantic segmentation. The proposed system differs from rail inspection and previous works: 
(1) anomalies differ from defects as anomalies can lead to rail defects while defects can lead to accidents 
on the rails; (2) we want a system that flags anomalies at their location, where multiple flags from 
multiple locomotives indicates that the area should be checked out; (3) instead of using a high 
resolution view, we want to use a more low resolution view available on standard RGB cameras; 
and (4) we want the process to be faster than rail inspection methods 
 
 
1.3 Outline 
 
Chapter 2 will focus on past research regarding rail systems inspections and back- ground in a selected 
GAN model and semantic segmentation. Chapter 3 will focus on the selected semantic segmentation 
algorithms. Chapter 4 focuses on our experiments and results using a public rail dataset and our custom 
dataset. Chapter 7 concludes the study, highlighting the advantages and shortcomings of our 
approach and the future work. 
 
 
CHAPTER 2. BACKGROUND 
 
2.1 Previous and Related Works 
 
In the past few years, the rail community has started to embrace deep learning to detect both the 
support system of railways and irregularities in geometric measurements (i.e., rail defects) (Nakhaee 
et al, 2019). There have been specialized sensing setups that are designed for high-resolution view 
of rail elements. To improve the visual based track inspection (VTIS) for rail surface detection, 
Tracknet (James et al. 2018), a neural network architecture, was designed around using a high speed 
camera on the underside of a test train. They reduced false alarms by using a multiphase approach 
based on segmentation and cropped classification. A multi-task learning approach (Gibert et al 
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2017) was used to inspect cross ties and rail fasteners using single-view line-scan cameras on a 
commercial VITAS. The weights were shared between a material classifier and multi-class fastener 
defect classifier. A line-scan camera was used for wide field of view and high resolution for overhead rigid 
lines in subway tunnels (Jiang et al. 2019). Outside of the previous specialized, high-performance 
sensing systems, other works have looked into leveraging more standard RGB cameras and the work 
from the automotive field. For example, transfer learning to the target rail task was used to track 
defects like sun kinks (buckle on the railroad due to extreme hot weather) and loose ballast, and 
railways assets of switches and signals were monitored (Mittal and Rao2017). Further examples can be 
found in the 2019 survey (Nakhaee et al. 2019). 
 
As noted in the 2019 survey (Nakhaee et al. 2019), the lack of available datasets and public 
benchmarks has limited advances in the field since most data is small and proprietary. This 
shortcoming was addressed through simulation of training images for sun kinks and vegetation 
overgrowth (Ritika and Rao 2018). Simulation was required since railway track anomalies are rare, 
making it difficult to train a generalized detector with only real images. 
 
In 2019, the RailSem19 (Zendel et al. 2019) dataset was made publicly available for semantic scene 
understanding for trains and trams. This new dataset provides sufficient public data for more 
widespread development of deep learning models and advancements in the field. The dataset is made 
up of 8,500 annotated images from the ego-perspective of locomotives, including over 1,000 examples 
with railway crossings and 1,200 tram scenes with rail-specific labels. 
 
2.1.2 Parts of Railroads 
 
For our approach in analyzing railroads, there are four main components of railroads that will be 
discussed. Figure 2.1 will be used as an illustration for the different parts. (a) The rail is typically 
made of steel and is the main part of the track. They are made to withstand the forces of the 
locomotive and disperse the forces to the ties and ballast. (b) The ties support the railway tracks 
and maintains the position of the rail. It transmits the pressure the rail experiences from 
locomotives to the track bed. Railroad ties are typically made of wood or prestressed concrete in 
order to have some flexibility and elasticity. (c) The ballast is the typical track bed used under most 
railroad tracks. It is made of crushed stones that transfer the pressure of the ties to the subgrade 
beneath, fixes the position of the ties to maintain the correct position of the track, promotes water 
drainage, and increases the elasticity of the track to allow the rail to return to its original position after 
a locomotive passes. (d) The subgrade is the composed of native materials (e.g., soil) that is beneath 
the ballast (Agico Group 2020). 
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Figure 2.1: Parts of Rail Track (Agico Group 2020). a = rail, b = tie, c = ballast, and d = subgrade. 
 
2.1.3 Railroad Anomalies 
 
There are anomalies that affects the condition and health of railroad tracks which require 
maintenance to find and make repairs. These include tie wear, surface ballast fouling, vegetation growth, 
poor drainage, and mud pumping. In our work, we mainly focused on three anomalies as illustrated in 
Figure 2.2: (a) vegetation growth, (b) poor drainage, and (c) mud pumping. 
 
Poor drainage can cause standing water in the rail tracks, which can cause wooden ties to degrade through 
rot. Vegetation growth is indicative of weed killer not working properly and a possible sign of poor 
drainage. Mud pumping is a type of surface ballast fouling that occurs when wet beds appear in 
clay-like subgrade, causing a clay slurry to push out when locomotives are passing through by pushing 
the ballast down. This surface fouling inhibits drainage and prevents the ballast to correctly absorb 
the pressure from the ties due to the space created (Hudson et al. 2016) Maintenance measurements 
to fix poor drainage and mud pumping can be costly as the ballast and ties need to be repaired or 
replaced. 
 

           
(a) Vegetation growth (b) Standing water                               (c) Mud pumping 

 
Figure 2.2: Rail Track Anomalies 

 
2.2 Data Augmentation 
 
Deep learning models, like deep convolution neural networks (CNNs) have been successful for 
computer vision tasks. One of the biggest weakness in using deep CNNs is the reliance on large sources 
of data for training to avoid overfitting -- which is when the deep CNN learns a function with high 
variance, causing it to perfectly model the training data. This causes the network to not reliably predict 
data outside of the training data. To overcome this problem in deep learning, the standard solution is 
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to use data augmentation. Data augmentation provides several ways to increase the size and quality of 
the training datasets by making copies and slightly modifying those copies (e.g., flipping images on 
the x-axis, using kernel filters, rotating the image) (Shorten and Khoshgoftaar 2019). See Figure 
2.3 for examples of data augmentation. 
 

 
 

Figure 2.3: Examples of Data Augmentation for Images (Agico Group Gond20) 
 

2.3 Semantic Segmentation 
 
Semantic segmentation, or image segmentation, is a difficult computer vision task that creates regions 
of labels in an image depending on the different pixel proper- ties. In the past few years, the use of 
deep learning approaches has been effective in this task by taking advantage of deep CNNs (Lateef 
and Ruichek 2019). Although similar to object detection, segmentation is important in understanding 
and analyzing images for specific tasks (e.g., autonomous driving and medical image analysis) (Lateef 
and Ruichek 2019). There are three different types of segmentation techniques: semantic 
segmentation, instance segmentation, and panoptic segmentation. Semantic segmentation labels every 
pixel with an associated class label. Instance segmentation creates segmentation masks of each 
instance of an object independently like object detection. Panoptic segmentation combines semantic 
segmentation and instance segmentation by labeling both the classes and instances of each class 
(Kirillov et al. 2018). The work in this study focuses on semantic segmentation. See Figure 2.4 for an 
example of each. 
 
2.4 Real-Time Semantic Segmentation 
 
Real-time semantic segmentation is the same task as semantic segmentation, but approached 
differently by making semantic segmentation more computationally efficient. Current approaches in 
semantic segmentation are focused more on accuracy rather than time efficiency. Typically, 
semantic segmentation performs well but not fast enough for time sensitive tasks (e.g., autonomous 
driving). Some solutions to make semantic segmentation models be more real-time are to either 
perform convolution computations more efficiently or to apply network compression to reduce the size 
of the network. Despite real-time semantic segmentation models performing faster than semantic 
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segmentation, they still lack the higher accuracy needed for their tasks (Lateef and Ruichek 2019). 
 

 
 

Figure 2.4: Different Types of Segmentation Tasks (Kirillov et al. 2018) 
 
2.5 Generative Adversarial Networks 

 
Machine learning algorithms can be split into two groups: supervised learning and unsupervised 
learning. Supervised learning is more popular and uses labeled data compared to unsupervised 
learning using unlabelled data. Supervised learning algorithms learn to map their inputs to their 
respected outputs, and unsupervised learning algorithms try to learn something meaningful by 
examining the labeled data (e.g., clustering and dimension reduction). Generative modeling is one 
unsupervised learning approach. Generative modeling tries to learn a model pmodel(x) that closely 
approximates pdata(x) while using examples x drawn from the unknown distribution source of data 
pdata(x). Generative adversarial networks (GANs) are a type of generative modeling that are based on 
game-theory between two machine learning model that try to mimic real data distribution. 
 
The first player of the game is the generator which is defined by a prior distribution p(z) over a vector z, 
where z is a parameter for the generator function G(z; θ(G)) and θ(G) serves as the parameters that 
defines the strategy in the game. p(z) is typically an unstructured distribution (e.g., Gaussian), and 
samples z can be viewed as a source of unstructured noise. The goal of the generator is to learn the 
function G(z) that converts z to simulate samples from the training data (i.e., create realistic data based 
on the training data) (Goodfellow et al. 2020). 
 
The second player is the discriminator which examines samples x and creates an estimate D(x; θ(D)) 
if x was sourced from the training data or created by the generator. Like a classifier, the discriminator 
determines the probability that x is real or fake. Basically the goal for the discriminator is to 
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distinguish real data from the training dataset and fake data from the generator (Goodfellow et al. 
2020). Figure 2.5 represents the process. 
 
Application-oriented research on GANs found that they are good in data generation (e.g., 
images) (Cai et al. 2021). In our case with the limited amount of available data on rail 
systems with anomalies, we conducted some experiments to generate meaningful data to label 
and train with for semantic segmentation. Since we used StyleGAN2-ADA, explanations of 
StyleGAN and StyleGAN2 will be discussed below. 
 

 
 

Figure 2.5: Depiction of the Process in GANs (Goodfellow et al. 2020) 
 
2.6 Selected GAN Model 
 
We selected StyleGAN2-ADA for the GAN model to synthetically create a rail anomalies dataset. 
We selected StyleGAN2-ADA because it provides two functions to aid in generating images: style 
mixing and image projection. The following subsections will cover what these functions are in the 
previous variants of the StyleGAN2- ADA model. 
 
2.6.1 StyleGAN 
 
Before StyleGAN, the generators in GANs operated like black boxes with little under- standing how the 
image synthesis process worked. While these models can generate realistic, large-resolution images, 
they leave out the ability to regulate their output (e.g., pose, hairstyles). StyleGAN is a GAN 
architecture that had the generator redesigned so that the image synthesis processes can be 



13  

controlled (Karras et al. 2021). 
 
While the input for the generators in traditional GANs is a point from latent space, StyleGAN instead 
employs a nonlinear mapping network to map the latent code in the latent space to produce style vectors. 
The style vectors are used in additional layers in the network called adaptive instance normalization 
(AdaIN) operations which standardizes the output of each convolutional layer in the synthesis network. 
In addition, StyleGAN also provides the generator the ability to create stochastic details with the 
introduction of noise inputs. The noise inputs are fed into the network and added to the output of 
their corresponding convolutional layer. The style vectors provide control over the style of the 
output in the generator (Karras et al. 2021). See Figure 2.6 for an illustration of the architectural 
difference of the generators between traditional GANs and StyleGAN. Figure 2.7 shows some images 
of people who do not exist generated by StyleGAN trained on the Flickr-Faces-HQ dataset. 
 
 

 
 
Figure 2.6: Architectural Differences of Generators Between Traditional GANs and Style- GAN (Karras 

et al. 2021) 
 
StyleGAN introduced a method to encourage localization of styles in the generated images. This is done 
by mixing regularization, which is when the generator uses two random latent codes to generate 
images during training instead of one latent code. Style mixing is done in the generation of an image 
by switching from two latent codes at a random point in the synthesis network (Karras et al. 2021). 
Figure 2.8 shows some examples of style mixing. Note that the source images in the top row and left 
column are generated by StyleGAN. 
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Figure 2.7: Generated images from StyleGAN. These people do not exist (Karras el al. 2021). 
 
2.6.2 StyleGAN2 
 
StyleGAN was redesigned as StyleGAN2 to fix the design flaws that caused artifacts to be present in 
every generated image. StyleGAN2 also provides functionality to project images to latent space, 
which is a method that embeds an image into the GAN’s latent space. This is useful for applications 
like image morphing and style transferring (Abdal et al. 2019). See Figure 2.9 for examples of 
transferring the content of given images (first row) to the images’ styles in the first column. 
 
2.6.3 StyleGAN2-ADA 
 
Training GANs with a small dataset usually causes the discriminator to overfit. To overcome this, 
StyleGAN2-ADA introduces adaptive discriminator augmentation (ADA) to stabilize training with a 
small dataset. With a given probability, both fake and real images can be augmented before they 
go into the discriminator net- work, causing the discriminator to not only be exposed to clean 
images from both the generator and training dataset (Karras et al. 2020). 
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Figure 2.8: Example of Style Mixing in StyleGAN (Karras et al. 2021) 
 
2.7 Evaluation Metrics 
 
The main methods in evaluating the semantic segmentation models will be the intersection over 
union (IoU) and mean intersection over union (mIoU). These evaluation methods were selected as 
they are the standard in public benchmarks (Benchmark Suite, 2022, Papers with Code 2022a). The IoU 
is calculated by the area of the intersection between the ground truth and prediction and dividing it 
by the union of the ground truth and prediction, as illustrated in Figure 2.10. When there are two or 
more classes in a semantic segmentation model, the IoU for each class is taken into account by 
finding the mean intersection over union (mIoU). In measuring the speed of semantic segmentation 
models on different hardware configurations, only the speed of the forward pass during inferencing will 
be taken into account. We will measure it as the frames per second (FPS). 
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Figure 2.9: Examples of Style Transferring Through Image Projection to GAN Latent Space. 
The first row of images transfer their content to the style of images in the first column (Abdal 
et al. 2019). 

 
For evaluating GANs, the main method for evaluation will be the Fréchet Inception Distance (FID) 
( Heusel et al. 2017).  FID compares the distance of the calculated feature vectors between the 
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Figure 2.10: Illustration of the Intersection Over Union Equation (Rosebrock 2022) 
 
vectors between the real and fake images of a GAN model. A lower FID score indicates the images from 
the real set and generated set are more similar than compared to a higher FID score. For GANs, 
there has been a correlation between higher quality images generated by the model and a lower FID 
score (Brownlee 2019). The FID can be calculated with the following equation: 

 

FID(r, f ) = ||µr − µf ||2 + Tr(Cr + Cf − 2 ∗ 
√

Cr ∗ Cf ) 
 
In the equation above, r represents the real images and f represent the fake (i.e., gen- erated) images. 
µr and µf represents the feature-wise mean of the real and generated images. Cr and Cf are the 
covariance matrices for feature vectors of the real and fake images. Tr is the trace of the matrix 
(Brown 2019). 
 
CHAPTER 3 SEMANTIC SEGMENTATION ALGORITHMS 
 
In this chapter two different semantic segmentation models will be discussed. The state-of-the-art 
models were chosen based off of their rankings in the tasks of Semantic Segmentation on Cityscapes test and 
Real-Time Semantic Segmentation on Cityscapes test on Papers with Code (2022a] and Cityscapes’ 
Benchmark Suite (2022] for the test set. We also took into account the difficulty in trying to train a 
custom dataset on the selected models (i.e., if they were open source), and if the accessible machines 
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had the available drivers to use the same software. The AI Server at the ECE Department at UNLV 
was used extensively for training and inferencing models, but it currently only supports up to CUDA 
11.0 for the GPUs. This leaves out the possibility of using higher-performing models due to their 
required software versions. 
 
We looked for models that performed well on the Cityscapes dataset since it was the dataset used 
in the RailSem19’s experiment to see if their dataset is feasible [ZMM+19], and that it is large 
and provides a wide range of potential algorithms. The selected models were HRNet + OCR + 
Multi-Scale Attention (ranked 11th on Cityscapes’ Benchmark Suite) and SFNet(ResNet-18) 
(ranked 2nd on Real- Time Semantic-Segmentation on Cityscapes on Papers with Code). Even though 
HR- Net + OCR + Multi-Scale Attention ranked 11th, it was the highest ranked model with 
available, compatible code at the time. The sections below will explain how they work. 
 
3.1 HRNet + OCR + Multi-Scale Attention 
 
The HRNet + OCR + Multi-Scale Attention model is a semantic segmentation algorithm that 
created state-of-the-art results in Cityscapes test (85.1 mIoU) at the time of their publication. The 
model’s overview, architecture, and steps to repeat their state-of-the-art results will be discussed 
below. 
 
3.1.1 Overview 
 
The model uses multi-scale inference to address the issue that certain types of pre- dictions are better 
in higher or lower resolutions (e.g., predictions of fine details are better when an image is scaled up 
and predictions of large structures are better when the image is scaled down to make use of the global 
context). Figure 3.1 demonstrates examples for both cases. For input image (a), the thin posts are 
inconsistently segmented in prediction (b) in a scaled down image, but the predictions are better when 
the image is scaled up in prediction (c). For input image (d), the road is segmented more consistently 
when the image is scaled down (Tao et al. 2020a). 
 

   
                  (a) Input Image                         (b) Prediction at 0.5x Scale              (c) Prediction at 2.0x Scale 

 
(d) Input Image                        (e) Prediction at 0.5x Scale             (f) Prediction at 2.0x Scale 
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Figure 3.1: Examples of Inconsistencies in Semantic Segmentation with Different Inference Scales (Tao et 
al. 2020a) 
 
Multi-scale inference is done by making multiple predictions with different scales, and then the resulting 
predictions are combined using averaging or max-pooling. However there are caveats in using these 
two methods. Averaging the different scaled results combines both the best and poor conditions together. 
Max-pooling only selects one of the scales for a given pixel, ignoring optimal predictions using a 
weighted combination across all the scales (Tao et al. 2020a) 
 
A solution that the model provides is using a hierarchical attention mechanism to combine the multi-
scale predictions (Tao et al. 2020a). Attention approaches in CNNs allow models to focus on the more 
important information of the given data. For computer vision, attention allows the model to “pay 
attention” to certain details in images that need to be localized and classified. 
 
The hierarchical attention mechanism causes the model to learn an attention mask based off of the pair 
of scales during training. This causes the model to predict the relative attention with a set of scales. 
As seen in Figure 3.2, the model hierarchically applies the learned attention to combine the set of 
prediction scales during inferencing. Precedence is given to the lower scales and it works its way up 
with higher scales, causing lower scale predictions to have more global context from the higher 
scale predictions. Regarding the hierarchical attention mechanism, the network is able to be flexible 
with their scales during inference (e.g., inferencing with scales 0.5x or 1.5x with a model trained with 
1.0x and 2.0x). This is an improvement over previously proposed methods as they are limited to 
only use the same scales the model was trained on (Tao et al. 2020a). 
 
3.1.2 Architecture 
 
The model’s architecture is broken down into the following parts: backbone, semantic head, attention 
head, and auxiliary semantic head. The backbone used for their best results was HRNet-OCR 
[YCC+19]. The semantic head performs the semantic predictions and is a dedicated fully 
convolutional head. The attention head is separate and performs the attention predictions and is 
structurally identical to the semantic head. The outputs of the OCR [TSC20a] block are fed into 
the semantic head and attention head, and the HRNet trunk’s output is fed into the auxiliary semantic 
head before the OCR block (Yuan et al. 2019). 
 
 
3.1.3 Experimental Results 
 
To achieve the 85.1 mIoU on Cityscapes test, the HRNet part of the model was initialized with 
weights trained on ImageNet (Russakovsky et al. 2015) classification. The entire model is then 
trained on the Mapillary dataset and then fine-tuned on the Cityscapes dataset. 
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Figure 3.2: Architecture of HRNet + OCR + Multi-Scale Attention (Tao et al. 2020a) 
 

3.2 SFNet(ResNet-18) 
 
The SFNet(ResNet-18) model is a real-time semantic segmentation algorithm that achieved state-of-
the-art results on Cityscapes test (80.4 mIoU) with 18 FPS. The model’s overview, architecture, 
and steps to repeat their state-of-the-art results will be discussed below. 
 
3.2.1 Overview 
 
Semantic segmentation performance is heavily influenced by detailed information and strong semantic 
representation. The use of fully CNNs can build strong semantic representation. However, the down-
sampling layers can cause the loss of detailed object boundary information (Li et al. 2020a). Some 
popular solutions are the use of dilated convolutions (Yu and Koltun 2016) in the last stages in the 
networks or to build models that are like a feature pyramid network (FPN). While dilated 
convolutions generate feature maps with strong semantic representation and maintaining high 
resolution, they are computationally more expensive than the last stages of fully convolution 
networks. FPN-like models are able to extract features with strong semantic representation and 
maintain detailed resolution information by fusing feature maps from top to down by using the 
lateral path. This causes the strong features in the last layers to strengthen the weaker features with 
high resolution. However, FPN-like models still pale in comparison to models that have large feature 
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maps in the last stages of the network. Also, FPNs rely on upsampling the smaller feature maps, but 
the bilinear upsampling method only works on one type of fixed, predefined misalignment and the 
repeated downsampling and upsampling operations in the residual connections cause misalignment in 
the feature maps (Li et al. 2020a). 
 
SFNet (Li et al. 2020a) proposed the idea for the model to learn the semantic flow be- tween the layers 
of the network with different resolutions to solve the misalignment issue. This idea was inspired from 
optical flow in computer vision, which represents the motion of objects between frames caused by the 
movement of the camera or objects, in order to make the model be more flexible and dynamic in 
the alignments between the feature maps. Here optical flow can be represented as the motion of the 
pixels from consecutive feature maps. The flow alignment module (FAM) is designed around semantic 
flow, causing the feature maps following FAM to be enriched with information that improves the 
accuracy and keeps the efficiency since the transmission of this information from distant layers are 
done with simple operation. Since FAM is end-to-end trainable, it can use any backbone network 
with minor computational overhead. Networks that use FAM with a specific backbone are denoted 
as SFNet(backbone) [LYZ+20a]. 
 
3.2.2 Architecture 
 
The architecture of SFNet is illustrated in Figure 3.3. The pyramid pooling module (PPM) (Zhao et 
al. 2017) is used to capture contextual information. The PPM and last residual module share the 
same resolution and both are treated as the last stage for input for the FPN decoder. The FPN 
decoder parses the final scene by using the feature maps from the encoder and aligned feature 
pyramid. The upsampling operations are replaced with FAM due to misalignments during the previous 
step. 
 
 

 
 

Figure 3.3: Architecture of SFNet (Li et al. 2020a) 
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3.2.3 Experimental Results 
 
The SFNet(ResNet-18) model was able to achieve 80.4 mIoU on Cityscapes test with a higher FPS 
compared to state-of-the-art models of the time of their publication. This was done by using the 
backbone ResNet-18, pretrained on ImageNet classification. Next, the model was pretrained on 
Mapillary and then fine-tuned on Cityscapes. The 18 FPS was achieved with input size 1024 x 2048 by 
only measuring the forward pass using a single GTX 1080 Ti GPU. 

 
CHAPTER 4 EXPERIMENTS AND RESULTS 
 
4.1 Single-Board Implementation 
 
Traditional rail inspection methods use specialized locomotives that run during down time, use 
specialized expensive equipment, or require low speed for analysis. These or other inspection methods 
can use high resolution views with specialized cam- eras and can be time consuming. An approach for 
detecting and localizing anomalies can be done by using a single-board implementation using a trained 
real-time semantic segmentation model using a more standard RGB camera with a lower resolution. 
This approach has an advantage of taking little space on a locomotive and that the anomaly 
detection can be done real-time while the train is running at its standard speed. With the amount of 
available real estate that locomotives have compared to automobiles, it is also possible to use a PC 
with a power GPU. 
 
For our approach we decided to use a single-board system for semantic segmentation. We chose 
NVIDIA’s Jetson AGX Xavier which has enough resources to run the selected models. 
 
4.2 Datasets 
 
This section will go over the different datasets that were used for the semantic segmentation models. 
The datasets are split between automotive and railway specific. The automotive datasets were selected 
due to their use in public benchmarks and in the available railway specific dataset’s paper 
[ZMM+19]. 
 
4.2.1 Automotive Datasets 
 
The publicly available automotive datasets for semantic segmentation were primarily used to pretrain 
models before training on railway specific datasets. While automotive vehicles share the same 
environment as locomotives (e.g., rail intersections and trams using the same roads as cars), 
locomotives are underrepresented in existing automotive datasets (Zendel et al. 2019). The 
automotive datasets are used to pretrain the models because they share the similar environments, 
have similar classes, are large, and provide a wide range of potential algorithms. 
 
Cityscapes 
 
Cityscapes in Benchmark Suite (2022) contains 5,000 annotated images and 20,000 coarsely 
annotated images from the ego-perspective of an automobile. The dataset contains 35 class labels, 
but only two of them are specific to the rail domain: rail track and train. The dataset is provided 
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in three splits: training (2,974), validation (500), and test (1,525). The ground truth annotations for 
the test set are withheld for benchmarking purposes. Cityscapes also provides a benchmark suite where 
anyone can upload their inference results from the provided test set to see how well their models 
performed in Benchmark Suite (2022). 
 
Mapillary Vistas 
 
Mapillary Vistas [NOBK17] is a street-level image dataset containing 25,000 images and 66 classes. 
In regards to the rail domain, it only contains two classes that are also found in Cityscapes: 
construction-flat-rail-track and object-vehicle-on-rails. Not all the images are from the ego-perspective 
of automobiles. Mapillary Vistas was primarily used for pretraining the state-of-the-art semantic 
segmentation models before training on Cityscapes. 
 
4.2.2 Railway Specific Datasets 
 
With the lack of available public datasets in the rail domain there is only one known available, 
RailSem19 (Neuhold et al. 2019). However, the dataset does not focus on the anomalies that we are 
looking for. So we created our own dataset to highlight the rail anomalies. We used two approaches 
in creating our own dataset: synthetically generate it with GANs and scraping scenes from online 
sources. 
 
RailSem19 
 
RailSem19 is the first public semantic segmentation dataset in the rail domain. The annotations are a 
mix of manual annotations and dense labeling done using geometric shapes and weakly supervised 
annotations created by existing semantic segmentation networks from the road domain. There are 8,500 
images from 38 countries in all four seasons and in different weather conditions (Zendel et al. 2019). 
RailSem19 used a lot of the same labels or combination of Cityscapes, and it ended up with the 19 
classes. 
 
In annotating the images the ties were not considered. Instead almost everything between the raised 
rails were labeled as rail-track. In addition, the anomalies we are interested in were not labeled (e.g., 
vegetation found in rail tracks were ignored). To test the feasibility of their model, the authors 
pretrained a FRRNB (Pohlen et al. 2017) model on Cityscapes and then fine-tuned it on RailSem19 
using only 4,000 randomly selected images split into subsets 3,000 (training), 500 (validation, and 
500 (test). They decided to use this partition of their dataset to replicate the size and split of the 
Cityscapes dataset. They ended up getting a mIoU of 62.7 on Cityscapes test and then mIoU of 
57.6 on their RailSem19 test split (Zendel et al. 2019). 
 
GAN Based 
 
While searching for scenes of rails from the ego-perspective to create a custom dataset can be time 
consuming, we attempted to synthetically generate our own using a GAN based system. In particular, we 
decided to use StyleGAN2-ADA (Karras et al. 2020) due to the limited data we have (i.e., only 
RailSem19), the ability to generate high-quality large-resolution images, the ability to style mix the 
generated images (e.g., place anomalies on the rail track), and the ability to project a target image 
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to the latent space of a model. In particular, we used a PyTorch implementation of the StyleGAN2-
ADA (Karras et al. 2020). 
 
The StyleGAN2-ADA model was trained from scratch using the entire RailSem19 dataset on four 
Quadro RTX 6000 GPUs until the FID score flattened to 5.67. While the trained model does generate 
images similar to those found in RailSem19, the model only generates some images with vegetative 
growth and not the other anomalies that we wanted as the dataset was not focused around rail anomalies. 
While trying to style mix the vegetative growth style to other styles with no vegetative growth, the 
resulting images were not satisfactory for us. In Figure 4.1, the generated images make up the top row 
and left column. The images in the left column, Source A, contain vegetation in the rails. The 
style of the vegetation in the rails does not transfer over while performing style mixing. We also 
tried to use the projection function to project images to the latent space. As seen in Figure 4.2, the 
target images are projected into the latent space of the StyleGan2-ADA model. We tried to simulate 
vegetative growth and standing water using stand-alone target images and images of railroad tracks 
being affected by both. We hoped to generate images with rail anomalies, but resulting projection 
images were not realistic enough, so we didn’t want to do annotations on these images. So we used a 
more labors approach that will be discussed in the next section. 
 
 

 
 

Figure 4.1: Style Mixing with StyleGan2-ADA Trained on RailSem19 
 
 
Scraped Images 
 
After trying to generate synthetic images with a GAN based approach didn’t work as well as we 
wanted, we ended up doing the laborious task of scraping scenes from online images and videos. It was 
difficult to find high-quality large-resolution images of rail anomalies from the ego-perspective of 
locomotives. While there are many public videos available on the internet with an ego-perspective 
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of a locomotive, the locomotives generally were going too fast to capture the anomalies clearly or if 
there were any anomalies to begin with. So we had to find videos with locomotives going the right 
speed for us to capture each frame manually as we watch the videos. The videos that we did find 
were available on online, and they tend to be a few hours in length each. 
 

  
(a) Vegetation Projection                                                  b) Vegetation Projection 

      
(c) Water Projection (d) Water Projection 

 
Figure 4.2: Resulting Image Projections. The target images (left) are the input images that are projected 
into the latent space of the trained StyleGan2-ADA model on RailSem19 where the projection images (right) 
are the resulting projections. 
 
The images we were looking for were any high-quality image from the ego-perspective of the locomotive 
that contains the rail anomalies we were interested in (e.g., surface ballast fouling, vegetation, 
standing water). While we did find images for both surface ballast fouling and vegetation, we were 
only able to find a handful of images that contained standing water on the rail tracks. Also, we were 
only able to find a few videos containing mud-pumping. Because of the sparse available data of the 
anomalies from the ego-perspective, we ended up using videos and images from different points of 
view. 
 
4.2.3 Dataset Labeling 
 
Annotations were done using Supervisely (2022) using the labels in Table 4.1. The labels are similar 
to RailSem19, but we did modify the labels by combining truck and car as automotive due to the 
number of frames containing the truck class. We also replaced rail-track with tie, and added mud-
pumping. A total of 152 images were given manual annotations. Depending on the point of view 
and how busy the image is, an image typically took thirty minutes to a four hours to fully annotate. 
See the Appendix for some examples of the annotated images. Like how RailSem19 (Karras et al. 
2019) has 19 classes, we also wanted to keep the same number of classes. This custom dataset will 
be called the Rail Anomalies Dataset. 
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4.3 Experimental Setup 
 
Before using our selected models, we wanted to first recreate RailSem19’s results to get a baseline of 
RailSem19. In their paper [COR+16] they selected the FRRNB (Pohlen et al. 2017) from the same 
GitHub repository they used (Shah 2017). We will follow their approach in creating a baseline for 
RailSem19 by first training on Cityscapes until the validation loss flattens. Then, we will do two fine-
tuning experiments on RailSem19:  (1) using their partition of 4,000 images that they provided and 
(2) using the entire dataset. Both experiments were done without freezing any layers and were trained 
until the validation loss flattened. With the entire dataset, we created our own split of images for 
training (6,800), validation (850), and testing (850). 
 
Table 4.1: Table of our Rail Anomalies Dataset Annotation Labels with the Color Legend. Pixel-wise 
statistics: Objects Area - percentage of pixels each label takes up in the entire dataset; In Frames - percentage of 
the frames containing the respected label; IoU HRNet - IoU results of the test set from the custom dataset using 
the HRNet + OCR + Multi- Scale Attention; IoU SFNet - IoU results of the test set of the custom dataset 
using SFNet(ResNet-18). 
 

Color        

Label tie rail- 
raised 

trackbed vegetation terrain sky mud- 
pumping 

Objects Area 2.76% 6.84% 16.14% 27.55% 2.63% 11.06% 26.68% 
In Frames 50.55% 100.00% 94.74% 78.29% 36.84% 34.21% 74.34% 
IoU HRNet 52.58 96.65 79.06 91.73 38.41 99.42 87.49 
IoU SFNet 60.00 95.25 78.83 91.99 38.81 99.12 88.78 

Color        

Label automotive pole person on- 
rails 

fence traffic- 
sign 

traffic- 
light 

Objects Area 0.07% 0.75% 0.07% 0.45% 0.49% 0.03% 0.03% 
In Frames 7.23% 30.26% 3.29% 5.92% 14.47% 10.53% 5.26% 
IoU HRNet 50.78 83.32 97.76 86.95 69.57 90.19 79.51 
IoU SFNet 47.61 79.26 92.24 86.01 18.27 45.74 65.20 

Color        
Label rail- 

embedded 
road sidewalk construction tram- 

track 
void 

Objects Area 0.01% 0.52% 0.59% 2.29% 0.13% 0.26% 
In Frames 2.63% 13.16% 13.82% 31.58% 2.63% 11.18% 
IoU HRNet 0.00 57.69 34.64 79.53 0.00 - 
IoU SFNet 0.00 53.99 45.28 73.52 1.26 - 

 
Next, we wanted to see how well some state-of-the-art PyTorch based models per- form on RailSem19. 
As discussed in Chapter 3, we chose the semantic segmentation model HRNet + OCR + Multi-Scale 
Attention (Tao et al. 2020a) and real-time semantic seg- mentation model SFNet(ResNet-18) (Li et al. 
2020a). We used the provided pretrained checkpoints of each model trained on Mapillary Vistas and 
fine-tuned on Cityscapes from their respected public repositories (Tao et al. 2020b, Li et al. 2020b). 
Transfer learning was done on the models with our Rail Anomalies Dataset using four Quadro RTX 
6000 GPUs, and training was stopped when the validation loss flattened. 
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Since we are interested in running a model on a locomotive in real-time, we wanted to test the speed of 
the models on different hardware setups. The different hardware setups we used were a single Quadro 
RTX 6000 GPU, single Titan X GPU, and a Jetson Xavier. The speed for each model will be 
measured by measuring the FPS for only the forward pass, which is similar to what was done for 
the speed tests on SFNet(ResNet-18) (Li et al. 2020a,b). 
 
4.4 Experimental Results 

 
After following RailSem19’s approach, we ended up with a mIoU 61.7 on Cityscapes test compared to their 
mIoU 62.7. After transfer learning on RailSem19’s 4,000 image partition and the entire dataset, we 
ended up with mIoU 59.5 and 61.7, respectively, compared to RailSem19’s mIoU 57.6 on their 
partition. 

 
After fine-tuning the models on our Rail Anomalies Dataset (which were pre- trained on Mapillary 
Vistas, trained on Cityscapes, and transfer learned to RailSem19), HRNet + OCR + Multi-Scale 
performed best in terms of predictions (mIoU 67.1) but was much slower than SFNet(ResNet-18) 
(mIoU 61.0) on RailSem19. Looking at the individual IoU of each class in Table 4.1, the classes rail-
embedded and tram-track performed very poorly in the test set. We expect this to be the case since 
the entire dataset didn’t contain enough examples of those classes (i.e., only a few images had these 
classes in it) and those classes covered a small area of the dataset. See Fig- ures for some 
examples of the output on the test set 4.3 and 4.4. In terms of speed, the Jetson Xavier was 
particularly slow with only 1.14 FPS with SFNet(ResNet-18) and 0.08 FPS with HRNet + OCR + 
Multi-Scale Attention. On the GPUs, the SFNet(ResNet-18) had a speed of 20.83 FPS on the 
Quadro RTX 6000 and 10.75 FPS on the Titan X, and the HRNet + OCR + Multi-Scale Attention 
had a speed of 0.86 FPS on the Quadro RTX 6000 and 0.33 FPS on the Titan X. The performance 
of the models used for the experiments can be seen in Tables 4.1, 4.3, and 4.2. 

 
In regards of the other rail specific classes, both models performed similarly in detecting the 
anomalies vegetation and mud-pumping as seen in Table 4.1. Surprisingly, SFNet(ResNet-18) 
performed better in detecting the tie class. However, since the Rail Anomalies Dataset was not as big 
as we would want it to be, it needs more images to be more robust in detecting rail anomalies. The 
majority of the frames containing mud-pumping were sourced from a single video from the point-of-
view of a person repairing the rail track damaged by mud-pumping. So there are only a few images 
containing mud-pumping from the ego-perspective of the locomotives. Because of this, there were a 
lot of false positives of mud-pumping when we ran inference on the RailSem19 test set on our 
trained models, as seen in Figures 4.5 and 4.6. A lot of the false positives occurred when inferencing 
was done on street scenes since the model misinterpreted the road and tram-track classes as mud-pumping. 
This was probably the case since our dataset didn’t contain any street scenes containing road and 
tram-track. The second row fourth column of Figure 4.6 shows a mislabeled ground truth from 
RailSem19 most likely due to the weakly supervised labeling. The ground truth indicates that there 
is sky in the middle of the mountain in the background, but that entire mountain should have been 
labeled as terrain or vegetation. The predictions made by my models were able to predict the mountain 
and sky correctly. 
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Table 4.2: Inference time on selected models on RailSem19 in FPS. The speed only takes into account the 
forward pass of each model. 
 

Model Jetson Xavier Quadro RTX 6000 Titan X 
HRNet+OCR+Multi-Scale Attn 0.08 0.86 0.33 

SFNet(ResNet-18) 1.14 20.83 10.75 
 
Table 4.3: Semantic Segmentation Results. The top section represents the benchmarks provided for the 
selected models and the corresponding datasets. The bottom section represents our results. HRNet = 
HRNet + OCR + Multi-Scale Attention, SFNet = SFNet(ResNet-18) RS19 = RailSem19, City = 
Cityscapes, Map = Mapillary Vistas, Anomalies = Rail Anomalies 
 

Model Dataset Pretrained Training Test mIoU 
FRRNB City - Scratch 62.7 
FRRNB RS19 4k Split City Fine-Tune 57.6 
HRNet City Map Fine-Tune 85.4 
SFNet City Map Fine-Tune 80.4 

FRRNB City - Scratch 61.7 
FRRNB RS19 4k Split City Fine-Tune 59.5 
FRRNB RS19 City Fine-Tune 61.7 
HRNet RS19 City + Map Fine-Tune 73.2 
SFNet RS19 City + Map Fine-Tune 69.4 
HRNet Anomalies RS19 + City + Map Fine-Tune 67.1 
SFNet Anomalies RS19 + City + Map Fine-Tune 61.0 
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Figure 4.3: Examples of our experiment on the test set of the custom dataset on the selected models. First 
row = input images; second row = ground truth; third row = output from HRNet + OCR + Multi-
Scale Attention; fourth row = output from SFNet(ResNet-18). For the color legend, see Table 4.1. 
 

 
 

Figure 4.4: Examples of our experiment on the test set of the custom dataset on the selected models. First 
row = input images; second row = ground truth; third row = output from HRNet + OCR + Multi-
Scale Attention; fourth row = output from SFNet(ResNet-18). For the color legend, see Table 4.1. 
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Figure 4.5: Examples of our experiment on the test set of RailSem19 on the selected models. First row = 
input images; second row = ground truth; third row = output from HRNet + OCR + Multi-Scale 
Attention; fourth row = output from SFNet(ResNet-18). For the color legend, see Table 4.1. 
 

 
 

Figure 4.6: Examples of our experiment on the test set of RailSem19 on the selected models. First row = 
input images; second row = ground truth; third row = output from HRNet + OCR + Multi-Scale 
Attention; fourth row = output from SFNet(ResNet-18). For the color legend, see Table 4.1. 
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CHAPTER 5. CONCLUSION AND FUTURE WORKS 
 
In this study, we demonstrated a proof-of-concept of analyzing rail tracks with a low- cost option using 
semantic segmentation. We looked into semantic segmentation and real-time semantic segmentation 
Pytorch based models based on how they performed on the Cityscapes dataset, and we chose one for 
each category which were HRNet + OCR + Multi-Scale Attention and SFNet(ResNet-18), 
respectively. We then used the provided checkpoints for the selected models to fine-tune on the 
RailSem19 dataset. HRNet + OCR + Multi-Scale attention ended up with mIoU 73.2 on the test 
set, outperforming SFNet(ResNet-18) with mIoU 69.4. However, SFNet(ResNet-18) has much 
higher FPS than the other model, which is imperative for real-time performance on a locomotive. 
 
After seeing how well the RailSem19 dataset performed on the selected models, we needed to create our 
own dataset of rail anomalies. We first tried to generate synthetic images using StyleGan2-ADA, a 
GAN model, by training it on RailSem19 until the FID score flattened to 5.67. However, the 
StyleGAN2-ADA model wasn’t able to create usable images containing anomalies when we tried to 
perform style-mixing and projection. 
 
We used a different, more laboriously approach in created our own dataset. Without access to 
proprietary data, we had to scrape frames sourced from images and videos online that contain a clear 
view of the rail anomalies. Since the rail anomalies are rare, it was difficult finding good quality 
frames. With only 152 frames collected and annotated manually, we fine-tuned our models trained 
on RailSem19. HRNet + OCR + Multi-Scale attention ended up with a mIoU 73.2 on the test set, 
and SFNet(ResNet-18) ended up with mIoU 69.4. However, SFNet(ResNet-18) has much higher FPS 
than the other model. While the models are able to identify the anomalies, there were a lot of false 
positives when we ran the test set of RailSem19. With our results, we recommend using a PC setup 
using a powerful GPU instead of a single- board computer system due to the better computation 
power over the Jetson Xavier. With the lack of available data containing rail anomalies, we were not 
able to train a robust semantic segmentation model. We would like to have a sizeable dataset, but 
there wasn’t much available. 
 
Fore future work, it would be best if we are able to gain access to proprietary data to train a more 
robust model. As our proposed system uses a standard RGB camera, depending on the camera, the 
speed of the locomotive can be an issue. If the locomotive is going too fast for the camera, then the 
images will be too blurry for the rail anomalies detection model. Another issue with using an RGB 
camera is lighting can cause issues in anomaly detection. If the lighting is poor, like at night, it will 
be difficult to detect the anomalies. Also, as locomotives pass through dark tunnels, the operator 
might not turn on the lights on the locomotive. So anomalies won’t be detected correctly or at all in 
tunnels. Finally, having access to a locomotive to run the proposed system was difficult for us to 
find. 
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APPENDIX A: ANNOTATED IMAGES IN OUR DATASET 
 
Below are some of the annotated images in the custom dataset. For the color legend, see Table 4.1. 
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