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ABSTRACT 

 

The US rail network consists of more than 232,000 miles of track (as of 2016). More than 160,000 

miles are classified as Class I railway (belonging to a railway with operating revenue greater than 

$458M). (Association of American Railroads, 2017). In 2016, Class I railroads replaced or 

installed nearly 7,000 miles of rail.  (Association of American Railroads, 2016), which represents 

1.5% of the total amount of rail in the US. This corresponds to an average (steady state) rail life of 

approximately 33 years. 

 

Rail wear research has been conducted since the 1860’s. Much research has been performed in the 

area of mechanics of rail wear and the parameters that most contribute to the rate of wear. Early 

research by Archard (Archard, 1953) focused on applied load and material properties (rail 

metallurgy/hardness) and developed wear coefficients for understanding the relative wear 

performance of various materials under different loading conditions.  

 

With the advent of automated inspection cars, railways had a method to measure and monitor rail 

wear over time (and accumulated traffic) more accurately and efficiently then measuring by hand. 

This however resulted in large amounts of data that were only used for go/no-go (threshold) 

analyses. Some work was performed to automate the process and determine wear rates from the 

measured wear data, but was limited in scope. 

 

This report formulates, solves and implements a stochastic rail wear forecasting model using 

mixture density networks (MDNs). MDNs take advantage of artificial intelligence, using a neural 

network, to define a median and shape parameter as output for a defined distribution, given causal 

factors (independent variables). In the case of rail wear rates, it was shown in a previous report 

that the rail wear rates follow a two side exponential distribution (Laplace distribution).   

 

Specifically, a stochastic modeling approach is presented and applied to more than 270 miles of 

railway track to develop a stochastic forecast of future rail requirements based on rail wear. 
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EXECUTIVE SUMMARY 

 

The US rail network consists of more than 232,000 miles of track (as of 2016). More than 160,000 

miles are classified as Class I railway (belonging to a railway with operating revenue greater than 

$458M). (Association of American Railroads, 2017). In 2016, Class I railroads replaced or 

installed nearly 7,000 miles of rail.  (Association of American Railroads, 2016), which represents 

1.5% of the total amount of rail in the US. This corresponds to an average (steady state) rail life of 

approximately 33 years. 

 

It was recognized early on that enhancements in the steel making process and reduction in forces 

on the rail allowed for prolonged life of the rail, due to a reduction in the rate of wear. (Adams, 

1865)  Since rail is one of the railways most valuable assets, the study of its life cycle costs has 

been deemed important since the introduction of conventional tee-rail.  (Sandberg, 1869)  

 

It is extremely important to understand how rail degrades, when it fails, and what maintenance 

interventions can be deployed to improve the life of the asset. Rail typically fails due to internal 

fatigue, surface fatigue, and wear. (Hay, 1982)  Maintenance activities that can be utilized to 

extend the life of the rail include lubrication in curves, top of rail friction modification, and profile 

grinding. (Zarembski, 2005)  

 

Rail wear research has been conducted since the 1860’s. Much research has been performed in the 

area of mechanics of rail wear and the parameters that most contribute to the rate of wear. Early 

research by Archard (Archard, 1953) focused on applied load and material properties (rail 

metallurgy/hardness) and developed wear coefficients for understanding the relative wear 

performance of various materials under different loading conditions. This research concentrated 

on laboratory testing with special test rigs to control various parameters and measure the rate of 

wear.  

 

As a consequence of increased axle loads and resulting severe wear rates, railways used laboratory 

testing to evaluate enhanced rail steels and lubricants to study potential extensions in rail life in 

track.  

 

With this basic understanding, railway researchers developed empirical and statistical rail wear 

rate prediction models to be used to define appropriate track components and maintenance 

practices that maximize rail life as well as understand future rail requirements for planning 

purposes. 

 

With the advent of automated inspection cars, railways had a method to measure and monitor rail 

wear over time (and accumulated traffic) more accurately and efficiently then measuring by hand. 

This however resulted in large amounts of data that were only used for go/no-go (threshold) 

analyses. Some work was performed to automate the process and determine wear rates from the 

measured wear data, but was limited in scope. 

 

Additional increases in computing power and emerging advanced data science techniques allow 

for the implementation of higher order stochastic processes to be developed and applied to the 
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large amounts of rail wear data. This allows for a better understanding of the rate of wear in-situ 

and prediction of failure or maintenance interventions, which prolong the life of the rail. 

 

This report formulates, solves and implements a stochastic rail wear forecasting model using 

mixture density networks (MDNs). MDNs take advantage of artificial intelligence, using a neural 

network, to define a median and shape parameter as output for a defined distribution, given causal 

factors (independent variables). In the case of rail wear rates, it was shown in a previous report 

that the rail wear rates follow a two side exponential distribution (Laplace distribution).  (Joseph 

W Palese, Zarembski, & Attoh-Okine, 2019) 

 

Rail wear, and associated inspection points can be depicted according to the figure below. This 

figure shows that for a segment of rail the wear will accumulate linearly, but will have a 

distribution about the mean (or median in the case of a Laplace distribution). 

 

 
  

When considering rail wear data streams as a time series, Auto Regressive Integrated Moving 

Average (ARIMA) time series techniques can be utilized to forecast the next wear point. This 

accounts for distribution in the data measurement points, and handles errors in the inspection data. 

An example of ARIMA forecasting for a segment is show in in the figure below. This figure shows 

that wear can be non-uniform throughout a given rail segment with homogeneous characteristics 

(known causal factors). Thus, unknown, or latent characteristics, influence the forces and resulting 

wear on the rail. 



x 

 

 
 

Mixture density networks leverage a neural network, and expected outcome and distribution, to 

determine rail wear rates. An example of this is approach is shown in the table below. 

 

 
 

Combining these techniques and applying them to a route (270+ miles) of railway track results in 

a future forecast of rail wear requirements. Taking advantage of the stochastic output from the 

MDN (associated with a Laplace distribution) and considering a middle 50% probability band on 

the wear rates results in a stochastic forecast as shown in the figure below. 

 



xi 

 

 
 

The figure above shows that the forecast has a median probability of annual rail requirements by 

year as well as a range associated with a +/- 25% probability departure from the median. 
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INTRODUCTION 

 

The US rail network consists of more than 232,000 miles of track (as of 2016). More than 160,000 

miles are classified as Class I railway (belonging to a railway with operating revenue greater than 

$458M). (Association of American Railroads, 2017). In 2016, Class I railroads replaced or 

installed nearly 7,000 miles of rail.  (Association of American Railroads, 2016), which represents 

1.5% of the total amount of rail in the US. This corresponds to an average (steady state) rail life of 

approximately 33 years. 

 

It was recognized early on that enhancements in the steel making process and reduction in forces 

on the rail allowed for prolonged life of the rail, due to a reduction in the rate of wear. (Adams, 

1865)  Since rail is one of the railways most valuable assets, the study of its life cycle costs has 

been deemed important since the introduction of conventional tee-rail.  (Sandberg, 1869)  

 

It is extremely important to understand how rail degrades, when it fails, and what maintenance 

interventions can be deployed to improve the life of the asset. Rail typically fails due to internal 

fatigue, surface fatigue, and wear. (Hay, 1982)  Maintenance activities that can be utilized to 

extend the life of the rail include lubrication in curves, top of rail friction modification, and profile 

grinding. (Zarembski, 2005)  

 

Rail wear research has been conducted since the 1860’s. Much research has been performed in the 

area of mechanics of rail wear and the parameters that most contribute to the rate of wear. Early 

research by Archard (Archard, 1953) focused on applied load and material properties (rail 

metallurgy/hardness) and developed wear coefficients for understanding the relative wear 

performance of various materials under different loading conditions. This research concentrated 

on laboratory testing with special test rigs to control various parameters and measure the rate of 

wear.  

 

Research quickly moved into tribology and the effects of lubrication on the rate of wear. As 

researchers began to understand the modes of wear, additional laboratory research was conducted 

to identify rail wear regimes and to “map” wear in order to identify conditions under which rail 

wear would transition from adhesive, to plastic flow and fatigue, to abrasive wear.  

 

Research subsequently transitioned to contact mechanics and the effects of the wheel/rail interface 

on rail wear, which included contact area as well as slip/sliding and associated creep forces. An 

entire symposium dedicated to contact mechanics was initiated in the 1980’s, and is still held to 

this day1.  

 

As a consequence of increased axle loads and resulting severe wear rates, railways used laboratory 

testing to evaluate enhanced rail steels and lubricants to study potential extensions in rail life in 

track.  

 

                                                
1 Most recently, 11th International Conference on Contact Mechanics and Wear of Rail/Wheel 

Systems, Delft technical University, the Netherlands, 2018. 
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With this basic understanding, railway researchers developed empirical and statistical rail wear 

rate prediction models to be used to define appropriate track components and maintenance 

practices that maximize rail life as well as understand future rail requirements for planning 

purposes. 

 

With the advent of automated inspection cars, railways had a method to measure and monitor rail 

wear over time (and accumulated traffic) more accurately and efficiently then measuring by hand. 

This however resulted in large amounts of data that were only used for go/no-go (threshold) 

analyses. Some work was performed to automate the process and determine wear rates from the 

measured wear data, but was limited in scope. 

 

Additional increases in computing power and emerging advanced data science techniques allow 

for the implementation of higher order stochastic processes to be developed and applied to the 

large amounts of rail wear data. This allows for a better understanding of the rate of wear in-situ 

and prediction of failure or maintenance interventions, which prolong the life of the rail.  

 

This report formulates, solves and implements a stochastic rail wear forecasting model using 

mixture density networks (MDNs). MDNs take advantage of artificial intelligence, using a neural 

network, to define a median and shape parameter as output for a defined distribution, given causal 

factors (independent variables). In the case of rail wear rates, it was shown in a previous report 

that the rail wear rates follow a two side exponential distribution (Laplace distribution).  (Joseph 

W Palese et al., 2019) 

 

Specifically, a stochastic modeling approach is presented and applied to more than 270 miles of 

railway track to develop a stochastic forecast of future rail requirements based on rail wear. 

 

Description of Rail Wear Parameters 

 

Rail wear is the cross sectional loss of material from the new or as-rolled section, as shown 

in  

Figure 1, where the dashed line is the original cross section, and the solid line is the worn or as 

measured cross section. 

 

.   
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Figure 1 Rail wear defined  (Zarembski, 1992). 

 

Typical rail wear measurement parameters are as follows: 

 

A: Area of rail head remaining 

A*: Area of rail head lost 

h: Vertical wear (sometimes called head or top) taken at the center of the rail 

g: Lateral wear (sometimes called gage or side), normally 5/8”2 below current top of rail 

l: Lip from plastic flow 

Φ: Gage face angle: the angle at which the worn plane of the gage face of the rail makes with the 

horizontal, and at which the wheel flange makes contact. 

 

Railroads in the US traditionally measure the rail wear (at defined locations transversely across 

the rail head) and compare against defined standards for safety and maintenance. An example of 

typical rail wear standards is shown below in Table 1. 

  

                                                
2 Note that English units are used throughout this dissertation, as this is the standard for US 

railways. 
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Table 1 Typical Rail Wear Standards (Zarembski & Bohara, 1993) 

 

 
 

Note that the standards are a function of the rail size, usually referred to as the rail section (defined 

in lbs/yard). Many rail sections exist in the US and have different cross sectional parameters, 

including the overall rail height, head height and head width.  As rail wears, the reduction of these 

parameters effect the ability of the rail to withstand induced stresses, and as such, the allowable 

section loss varies as a function of the size of the original section.  (Zarembski & Bohara, 1993) 

 

When defining the life of the rail as it relates to rail wear, the rate of wear, along with allowable 

limits, and current state of wear are used to define the overall life and life left on the rail. This is 

achieved by determining when the allowable limit is exceeded. 

 

Measuring Rail Wear  

 

Railways measure the wear on the rail in track through two primary methods, manual and 

automated.  The measurement of rail wear has been cited back to the late 19th century.  (Coxe, 

1879)  The manual method makes uses of hand held gauges that conform to the web and base of 

the rail and provide a reference point for measuring the top wear and side wear independently.  

 

Note that since there are many different rail sections available to railways, these gauges are 

developed individually for each rail section, or a configurable gauge is used (See Figure 2). The 

wear measurements are read from the gauge and recorded manually.  Measurements are made at 

the discretion of the inspector, typically several locations in a curve or tangent stretch of track, 

multiple times per year. 

 

Many railways utilize automated inspection systems that use laser-camera machine vision to 

measure the profile of the rail.  These images are converted to Cartesian coordinates that are then 

compared to the original section and the rail wear parameters are computed automatically (See  
Figure 3). 

 

 

Rail Section   Max Head Wear  Max Gage Face Wear  

(inches)    (inches) 

 

100 ARA-B   3/8 - 7/16    3/8 - 7/16 

 

115 RE  5/8     1/2 - 5/8 

 

132 RE  3/4     5/8 - 3/4  

 

* Replace if wheel flanges strike top of joint bars 

 

* Maximum allowable angle of side wear 32 degrees from the vertical  
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Figure 2 Rail wear gauge (Western Safety Products, 2018) 

 

 
 

Figure 3 Automated rail profile measurement system, KLD Orian (Magnus, 2014). 

 

These automated systems can capture in-situ rail profiles at a defined distance interval, typically 

every 10-15 feet, with some systems capturing rail profile every inch.  (J.W. Palese, Zarembski, 

Hartsough, & Ozturk, 2015) The data is then post processed to; determine the original rail section, 

align the measured rail section to the original rail section (usually utilizing the base fillet radii), 

and calculate the wear parameters. The output of this system is semi continuous wear 
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measurements (based on the measurement interval) and results in typical output for the track 

shown in  Figure 4. 

 

 
 

Figure 4 Typical semi continuous rail wear output  (Zarembski, Thornton, Palese, & Forte, 

1998). 
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REVIEW OF RAIL WEAR MODELING AND PROBLEM FORMULATION 

 

Much research has been conducted to understand the rail wear phenomenon and those parameters 

that predominantly effect the rate of rail wear. This research has been performed to date in the 

laboratory and in the field, and has focused on understanding the effects of  axle load, wheel/rail 

contact (rolling-sliding) and the stress at the wheel/rail interface, metallurgy (chemical 

composition and hardness) of the rail and wheel, lubrication, and track/operating parameters that 

effect the force at the wheel/rail interface. Typical rail wear regimes that have been modelled are 

shown in Figure 5. 

 

 

 
Figure 5 Typical curve rail wear on high and low rails (Ghonem, Kalousek, Stone, & 

Dibble, 1982). 

 

It is understood that many modeling approaches have been developed to predict wear relationships 

for two bodies in rolling-sliding contact under different loading conditions. The simplest form of 

the model is Archard’s wear equation, with the wear coefficient encompassing all influencing 

parameters. 

 

This chapter reviews traditional rail wear modeling approaches (both mechanistic and statistical) 

utilized to date that have the goal of evaluating the life of the rail. Thus, little will be offered on 

the mechanistic and empirical approaches of modeling wear in the laboratory, unless it relates 

directly to modeling the life of the rail. In addition, the formulation of a systems approach to rail 

wear modeling using readily available inspection data is presented. 

 

Traditional Rail Wear Modeling 

 

Traditional rail wear modeling can be broken down into two primary areas, mechanistic 

(deterministic) and statistical. The mechanistic approaches have been primarily empirical based, 

while the statistical processes have evolved from general statistical approaches (linear regression 

of wear to determine average wear rates) to recent advances in modeling using stochastic 

processes.  
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Mechanistic Wear Modeling 

 

Mechanistic wear modeling has focused on rail wear rate and rail life as a function of applied load, 

with additional focus on the sub elements effecting wear that include, wheel/rail contact, creep 

forces, effects of lubrication, effect of metallurgy, and operational parameters.  

 

Considering the work of Archard, and that wear can be defined as an energy dissipation process, 

whereby the volume of wear is related to frictional energy by some wear constant, the following 

general wear equation results (Magel & Kalousek, 2002): 

 

𝑉 = 𝐾𝑠,𝑝 ∬ 𝑠(𝑥, 𝑦)𝑄(𝑥, 𝑦)𝑑𝑥𝑑𝑦

𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑎𝑟𝑒𝑎

(1) 

Where 

V = volume of wear 

Ks,p = wear coefficient as a function of slip and pressure3 

s(x,y) = creepage at any point in the contact zone 

Q(x,y) = surface traction at any point in the contact zone 

 

Recognizing early on that predicting actual rail wear rates in track due to the complexity, and 

interaction, of wear processes, the following equation was presented that included effect of 

lubrication and rail hardness (Kalousek & Bethune, 1978): 

 

𝑉 =
𝐶𝜂𝐿

sin (𝛾)𝐻𝑎
(2) 

Where 

V = volume of wear 

L/sin(γ) = flange force (perpendicular to wheel flange/rail interface) 

η = mean value of lateral and vertical creep (increasing with angle of attack) 

H = metal hardness 

a = exponent defining nonlinear effect of rail hardness on wear rate 

C = coefficient dependent on type and amount of lubrication at the wheel/rail interface 

 

The above equation still requires empirical calibration through testing. 

 

An equation for modeling rail wear as a fatigue process (combined with adhesion) was proposed, 

in its simplest form, as follows (Steele & Devine, 1982; Stone & Steele, 1978): 

 

𝑅 =
𝑊ℎ

𝑃
𝑓 [

𝜏𝑎

𝜏𝑓
′ ]

−1/𝑏

(3) 

Where 

                                                
3 Note that the Ks,p wear coefficients are determined empirically and have been the focus of 

much research, as described previously. 
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R = rate of wear (volume per cycle of loading) 
𝑊ℎ

𝑃
 = volume in which fatigue damage accumulates 

 h = depth at which fatigue damage occurs 

 W = function of load 

 P = proportionality constant related to hardness 

f [
𝜏𝑎

𝜏𝑓
′ ]

−1/𝑏

= inversely proportional to number of fatigue cycles to produce failure 

 
𝜏𝑎

𝜏𝑓
′  = applied stress/monotonic fracture strength 

b = steel material property (usually -0.1) 

 

Considering angle of attack as a key driver in the rate of wear, one early mechanistic approach 

utilized Archard’s fundamental relationship and expanded it to allow for shifting of wear regime 

with increases in angle of attack. This mechanistic approach was calibrated with field data. The 

fundamental resulting relationship for rail life (γ) as a function of angle of attack (ψ) is as follows 

(Ghonem & Kalousek, 1984): 

 

𝛾(𝜓) = 𝑙(𝜓 − 𝑚)2 + 𝑛          𝜑 ≤ 0.0058 𝑟𝑎𝑑

𝛾(𝜓) = 𝑝𝜓 + 𝑞                         𝜑 ≥ 0.0058 𝑟𝑎𝑑 (4)
 

  

Where l, m, n, p and q are constants which can be defined for a specific set of boundary conditions. 

These constants are determined through testing and practically implementing the approach is 

limited. 

 

Early Empirical Models 

 

Early empirical models relied on ease of calculation, as available computing resources were 

limited and calculations intensive. This class of models utilized straight forward empirical 

relationships to calculate the predicted rail wear rate or rail life using a calculator. These models 

were based on mechanistic relationships developed in the laboratory and field environment, and 

normally calibrated with limited field data. 

 

One study at FAST resulted in an empirical equation for wear rate (inches of wear per million 

gross tons of traffic, MGT) as a function of rail hardness, applied stress (for a 19 kip wheel load), 

and lubrication based on observations of wear data in the field for variations of these parameters 

as follows (Steele & Reiff, 1982): 

 

log(𝑅) = −3.4437 + 27.41 [
𝜏𝑜𝑐𝑡

𝐻𝜇
] (5) 

Where 

R = rate of wear (in/MGT) 

𝜏𝑜𝑐𝑡 = surface octahedral shear stress 

H = rail hardness (BHN) 

µ = coefficient of friction 
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This equation showed very good agreement to the specific conditions for which the data was 

obtained. 

 

Another study that built on early work in Europe and North America was sponsored by the 

Association of American Railroads. (Reiner & Staplin, 1984) The study presented the Couard-

Gant model developed in Europe in the 1930’s and calibrated with 50,000 field measurements as 

follows: 

 

𝐿𝑦 =
𝑊

𝑇(𝑎 + 𝑏𝐷𝑥)(1 + 𝑑𝑔2) + 𝑐
(6) 

Where 

𝐿𝑦 = rail life in years 

W = allowable wear area (in2) 

T = annual traffic density (MGT/year) 

D = curvature (degrees) 

g = gradient (percent) 

a = nominal wear rate of rail in tangent track (in2/MGT)  

= 0.0007 

b = nominal wear rate of the high rail in curved track (in2/MGT/(degreex))  

= 0.000173 

c = annual rate of corrosion (in2/year) 

 = 0.0045 for tangent track 

 = 0.0052 for curved track 

d = constant relating wear to grades 

 = 0.023 

x = 2.0 

 

This equation did not conform to North American conditions where the rail was considerably 

harder, the car type differed (Europe had many two axles cars), and geometry for curves 

(particularly elevation in curves) was substantially different. As a result, the Chessie System 

gathered 1,500 rail wear measurements and recalibrated the equation in the 1970’s with the 

following changes: 

 

a = 0.00056 

b = 0.000715 

x = 1.2 

 

As this equation did not take several critical parameters into account, such as, wheel load, rail 

hardness and lubrication, the study resulted in a revised rail life equation as follows: 

 

𝐿𝑐 =
𝑇𝑊𝑐

𝐾𝑐 [𝑇𝑎 (
𝑃
23)

2

+ 𝑇𝑏𝐷𝑥 (
𝑃

23)
𝑦

] [1 + 𝑑𝐺2] + 𝑐𝑐

(7)
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𝐿𝑡 =
𝑇𝑊𝑡

𝐾𝑡 [𝑇𝑎 (
𝑃

23)
2

] [1 + 𝑑𝐺2] + 𝑐𝑡

(8)
 

Where 

𝐿𝑡 = tangent rail life in MGT 

𝐿𝑐 = curved rail life in MGT 

𝐾𝑡 = 1.0 for standard carbon rail and no lubrication 

𝐾𝑐 = 1.0 for standard carbon rail and no lubrication 

𝑊𝑡 = allowable cross sectional area loss in tangent rail (in2) 

𝑊𝑐  = allowable cross sectional area loss in curved rail (in2) 

T = annual traffic density (MGT/year) 

D = curvature (degrees) 

G = gradient (percent) 

P = static wheel load (kips) 

a = nominal wear rate of rail in tangent track (in2/MGT)  

= 0.00056 

b = incremental wear rate of the high rail in curved track (in2/MGT/(degreex))  

= 0.000715 

ct = annual rate of corrosion for tangent track (in2/year) 

 = 0.0045  

Cc = annual rate of corrosion for curved track (in2/year) 

 = 0.0052  

y = modified Barwell exponent 

 = (3.70-0.40D), D≥2₀ 

 = (2.14-0.14D), D≥5₀ 

d = constant relating wear to grades 

 = 0.023 

x = 1.3 

 

For the rail at the time, this equation provided predicted results within 15% of the actual values for 

the test data. 

 

Wheel/Rail Contact Models 

 

Various wheel/rail contact equations were presented previously. This section covers the 

application of these equations, as well as revised equations, to the simulation of wear. Several 

specific wheel/rail contact models have been developed that have been used as well, to include 

CONTACT™ and FASTSIM™ developed by Kalker. (Kalker, 1990) 

 

In order to investigate the combination of wear and plastic deformation, an enhanced contact 

simulation model was developed using a modified Winkler method, and verified using finite 

element modeling. The results were used to simulate wear, showing the variation in wear with 

various contact locations and contact stresses. (Telliskivi & Olofsson, 2004) This research was 

extended to a non-Hertzian contact shape and allowing for variable creep along the contact patch. 

A simulation model was developed and calibrated with disc-on-disc laboratory results. Good 



12 

 

quantitative agreement was found between the experimental and simulation results for wear, along 

with good qualitative agreement of the resulting surface conditions. (Telliskivi, 2004) 

 

As indicated previously, wheel/rail wear and contact position change as a function of current wear 

(shape) on the wheels and rails, resulting in various applied stress levels. (Tournay & Mulder, 

1996) In order to simulate wear, the stochastic nature of wheel/rail contact can be considered. This 

was the subject of one study on Amtrak which developed the model PUMMEL™ and a quasi-

static curving model (using NUCARS™) to distribute wheel rail contact of wheels in the various 

stages of wear (varying profiles) on the rail (along a route profile) to predict wheel profile wear. 

The variation in contact is shown in Figure 6. This approach was used to design wheel profiles that 

would have a decreased wear rate in normal operations. The study points out that the actual friction 

conditions were unknown and could dramatically affect the results. (Magel, Kalousek, & Caldwell, 

2005) 

 

Considering plastic flow in the near surface layer, one study utilized a three dimensional elasto-

plastic finite element model to simulate accumulated plastic strain in the rail head. The resulting 

simulated plastic flow was compared to observed flow in real rail head conditions of tangent track 

with simulated results larger than actual. (Busquet, Baillet, Bordreuil, & Berthier, 2005) 

 

When simulating friction in the contact zone, it is important to understand the effects of the 

roughness associated with each surface (wheel and rail), as well as the material properties in 

contact. This was the subject of a study whereby simulation of various contact was formulated and 

solved with physical models. The result was the development of an algorithm for modeling the 

friction coefficient at the submicron level. It follows that a probabilistic value of roughness (and 

resulting friction coefficient) results in a probabilistic wear rate. (Bucher et al., 2006)   
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Figure 6 Variation in location and amplitude of contact using PUMMEL™ (Magel et al., 

2005). 

 

A disc-on-disc test, where specimens were selected from in-service rails and wheels, developed 

contact model relationships for sliding velocity, contact pressure, and creep ratio to develop 

specific wear rates for input to Archard’s wear model. The resulting contact relationships resulted 

in predictions of wear within 8% of actual. However, the author’s note that these results are only 

valid for interpolation, and that extrapolation to field results may not be valid. (Ramalho, 2015)   

 

Another study evaluated various contact models to evaluate the effect of wheel/rail contact 

simulation on wheel wear. This study did not consider the plastic flow regime. The study showed 
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that a significant tradeoff between accuracy of the wheel/rail contact and computation time, thus 

choosing the right contact model for simulation requires careful consideration. (Tao, Wen, Zhao, 

& Jin, 2016) 

 

Simulation Models 

 

The core of many simulation modeling approaches is dynamic simulation of train/track interaction 

to define the dynamic forces as well as contact location. There are commercially available multi-

body dynamic simulation models that have been utilized (GENSYS™), as well as specific rail 

vehicle dynamic simulation models (MEDYNA™, NUCARS™, VAMPIRE™, etc.) that are cited 

in the references (Olofsson & Telliskivi, 2003).  As the wheel and rail wear together, attention has 

been focused on the wear of the rail, the wear of the wheel, and mutual rail/wheel wear. As such, 

various approaches are presented for all three. 

 

An extension of this analytic approach evaluated wheel profile wear on tangent rail using a 

combined model approach, specifically, a vehicle dynamic simulation model and several wear 

models with assumed contact. (Fries & Dávila, 1987) The simulation provided reasonable resulting 

wear profile shape, however, an important finding was the actual magnitude of wear was dependent 

on the wear model applied (subject to laboratory test data). The authors noted that the shortcomings 

of the approach were no vehicle curving in the simulation and proper wear model selection. The 

authors also noted that the same approach could be applied to rail wear. 

 

This approach was extended to include a more robust dynamic simulation, along with simulated 

wheel/rail contact, curving, and an energy dissipation wear model. (Pearce & Sherratt, 1991) The 

authors noted that each cycle of a train over a route was modelled and consumed large amounts of 

computation time, 29.5 hours to model a wheel through its 125,000 mile life.  

 

One wheel wear prediction tool took advantage of a full vehicle multi-body simulation model, 

along with measured rail profiles to model a metro vehicle through a line with varying curvature. 

The model included track irregularities and coefficient of friction, along with material properties 

as input to the simulation model to calculate the tracking position and forces. These in turn were 

used with CONTACT™ and FASTSIM™ to determine contact stresses and predict wheel wear 

using an energy/work based model. The results showed very good agreement between a measured 

wheel and a simulated wheel after 125,000 miles of wheel travel. (Jendel, 2002) 

 

The wheel wear simulation was extended to include braking and additional change in wheel/rail 

contact utilizing Archard’s wear model with associated wear maps. Modeling braking through 

applied torque and changes in coefficient of friction provided expected and reasonable results, 

though no field validation was performed. (Enblom & Berg, 2005) This same approach was 

extended to rail wear, showing expected behavior, however, the magnitudes for changes in 

lubrication were not as expected. (Enblom & Berg, 2008) 

 

A study for predicting wheel wear comparing various wear models in a combined simulation 

approach was performed showing similar profile shapes, with variations in magnitude of wear. An 

incremental approach was utilized whereby each resulting profile from a wear cycle was used as 
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input to the next wear cycle simulation. Selection of the appropriate contact model had significant 

influence on the results. (Pombo et al., 2011) 

 

Most mathematical (deterministic) simulation models utilize a combination of vehicle dynamic 

simulation models to determine forces as a function of vehicle and track conditions, a wheel/rail 

contact model to determine applied stresses, and a local wear model (empirical based on laboratory 

test data). It is reasonable to expect a compounding of errors and an extensive amount of 

computational requirements using this approach. One study evaluated wheel wear with a 

combination of models, and validated the results against controlled condition in a full-scale 

laboratory environment. The simulated results were overstated and further testing was 

recommended. (Braghin, Lewis, Dwyer-Joyce, & Bruni, 2006) 

 

Finite element modeling for the wheel/rail contact to understand contact fatigue and contact 

stresses, particularly how it relates to head wear, was performed in a study for the French railways. 

The study provided illustrative examples with the intent of extending the research to further 

applications. (Van & Maitournam, 2002) 

 

A similar approach (combination of models) that evaluates wear on curves only was performed for 

China Railways, and evaluated the incremental wear associated with each wheel of a passing truck. 

Since the lead wheel on the outside rail has a larger creep associated with increased stick/slip, the 

incremental wear caused by the lead wheel on the outside rail is the largest contributor. The model 

was able to determine wear contribution for each wheel in the truck. (X. Jin, Wen, Xiao, & Zhou, 

2007) Another method developed for the China Railways utilized a three-dimensional nonlinear 

dynamic finite element method, along with the FASTSIM™ contact model, calibrated to disc-on-

disc test data. This simulation method resulted in profiles that showed reasonably good agreement 

between the test data and simulation results at the gage corner where large lateral creepage occurs. 

(Chongyi, Chengguo, & Ying, 2010) 

 

Combining wear and plastic flow was the subject of one study that used a combined simulation 

approach using GENSYS™ as the dynamic simulation model, FASTSIM™ as the contact model 

and Archard’s wear model. Plastic strain was modelled using a 2D finite element model with a 

plane strain assumption (idealized). The wear coefficients were calibrated using a full-scale 

laboratory fixture. The authors noted weakness in the contact model with respect to wear 

sensitivity. In addition, the model is only valid for a limited set of conditions. (Brouzoulis, 

Torstensson, Stock, & Ekh, 2011)  

 

Another study for Japanese Railways used a combined simulation approach and accounted for 

additional variables such as angle of attack, lateral force, hardness, and lubrication. The wear 

model used was Archard’s wear coefficient model, and wear coefficients were calculated using 

laboratory data. The predicted results from the model had reasonable agreement with the real-life 

in-track data. The author’s noted the weakness of the model to account for slip. (Y. Jin, Ishida, & 

Namura, 2011) 

 

A model developed and validated on the Italian railways utilized the dynamic simulation model 

SimpackRail and a global wheel/rail contact model (developed by the authors) to analyze the 
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wheel/rail system, for a particular vehicle and route. The calibrated model showed very good 

agreement to actual measured in-track profile data.  

Figure 7 shows the evolution of the rail head profile through 200 MGT. (Ignesti, Malvezzi, Marini, 

Meli, & Rindi, 2012)  This approach was expanded to include a matrix of track conditions 

(curvature) as input as opposed to a single line. (Innocenti, Marini, Meli, Pallini, & Rindi, 2014) 

 

 
 

Figure 7 Rail head profile evolution through simulation (Ignesti et al., 2012). 

 

A similar approach was utilized by China Railways to simulate rail profile evolution using a 

complex dynamic simulation model that models the track and the vehicle (a matrix of vehicles in 

this case), a contact model and Archard’s wear model. Extensive field tests were used to calibrate 

the model for the line being analyzed. The simulated results showed good agreement in shape, but 

significant differences in magnitude of wear (See Figure 8), indicating a missed modeling 

component or calibration issue. (Li et al., 2016) This approach was extended to turnouts as well. 

(P. Wang, Xu, Xie, & Chen, 2016) 

 

Considering that a ductile material subject to repeated rolling contact, very high levels of shear 

strain can be accumulated near the surface. When the strain levels exceed the life of the material, 

particles flake off in the form of wear. One simulation approach divided the rail into layers and 

elements and used simulation of contact to accumulate strain. When an element failed, adjacent 

elements would accumulate strain at a higher rate and eventually fail. The study showed wear rates 

comparable with other laboratory testing. (Franklin, Widiyarta, & Kapoor, 2001) 

 

As with the genesis of a number of simulation models, the combined approach has been built upon 

to add in other causal factors. The effect of the roughness of the rail and wheel surfaces was 

investigated using two-dimensional finite element modeling and showed that asperities of a certain 

height and shape would plastically deform under just a few loading cycles, and rapidly approached 

a steady state. (Daves & Fischer, 2002) 
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Figure 8 Simulated wear compared to actual wear, (a) low rail, (b) high rail (Li et al., 

2016). 

 

One study introduced a surface roughness algorithm (for both the wheel and the rail) into the 

contact model to identify high asperity contact stress location, which shifts to the plastic regime, 

greatly effecting the rate of wear. (Bǎrbînţǎ & Creţu, 2018) This was also the subject of an in-

depth study by the Spanish railways utilizing a combined modeling approach. The major result 

was based on high precision measurement of the pressure at the contact surfaces (using 

ultrasonics), which showed a high variation to that of Hertzian theory (most widely used). This 

was the effect of asperities carrying the load due to the roughness of the surface. Thus, peaks in 

wear, normally found in experimental observations, can be attributed to the roughness and 

resulting high contact pressures (Rovira, Roda, Marshall, Brunskill, & Lewis, 2011). 
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Another study accounted for vertical stiffness of the track (combined rail and support stiffness) by 

introducing a nonlinear multibody system dynamic analysis model, along with a contact model 

and energy dissipation wear model. The study concluded that track stiffness had little effect on 

wear in tangent track. However, when irregularities were introduced into the track, and resulting 

dynamic forces were accounted for, wear was affected as expected. (Aceituno, Wang, Wang, & 

Shabana, 2017) 

 

To this end, while the simulation models may not provide exact replication of field conditions, 

such models are very useful for understanding relative changes in operations and maintenance. 

One Brazilian study used the combined simulation model approach to understand the effects of a 

new heavy axle load car design on rail wear (specifically rail life). The approach allowed for 

modeling the increased vehicle weight, along with the increased dynamic forces as a function of 

the new car characteristics, and their effect on rail wear. This allowed for understanding the 

economic benefits of higher performing operations, along with their cost impact. (Urban, Barbosa, 

Santos, Joy, & Shu, 2015) A similar approach was used on a study performed for China Railways, 

focusing on curve wear. (J. Wang, Chen, Li, & Wu, 2015) 

 

Statistical/Stochastic Wear Modeling  

 

While mechanistic modeling approaches are deterministic in nature (using empirical data), a 

stochastic process allows for uncertainty of the input and output variables to provide a prediction 

that may not be precise, rather it is probabilistic. When considering rail wear modeling, there is a 

probabilistic distribution of many of the input variables, including, but not limited to (Costello & 

Premathilaka, 2011): 

 

• Wheel/rail contact due to variations in the wheel and rail shape 

• Coefficient of friction due to lubrication application and tracking effectiveness 

• Rail hardness due to work hardening and limited information on installed rail 

metallurgy 

• Actual applied forces on any given rail due to track geometry variations and vehicle 

conditions 

• Variations in support condition 

 

Thus, deterministic modeling will not readily result in a proper prediction of rail wear. Stochastic 

modeling allows for the uncertainty of the inputs to provide a probabilistic output for rail wear. 

 

An early study utilized a stochastic process that evaluated a population of wheel and rail profile 

shapes, combined with a dynamic simulation model (MEDYNA™) and an elliptical contact model 

(FASTSIM™) to determine incremental wear on both the rail and wheel. Accumulated wear on 

the rail and wheels was modelled based on dissipated energy. This study showed the power of 

simulation modeling under semi-ideal conditions. (Zobory, 1997)  

 

This study was extended to classes of wheels and rails for simulation, as well as a probability of 

lateral track irregularities, to develop predicted profiles for a railway line with a distribution of 

curves. The presented results were not validated, and a full spectrum of vehicle types was not 
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considered.  (Szabo & Zobory, 1998) This approach was further explored utilizing updated contact 

models to predict wheel and rail profiles for use as input to a dynamic simulation model (Enblom 

& Berg, 2005) 

 

When performing stochastic processes for rail wear, it is important to understand the compounded 

error that can be introduced in the measurements, including direct measurement error, as well as 

longitudinal positioning error. This is particularly important when performing second level 

analyses, whereby measured data (with inherent measurement error) is transformed into rate date 

(error compounds). A reliability model was proposed for use with laboratory test data to 

characterize the results. (Ramalho, 2010) 

 

Recently, researchers have started to apply stochastic processes to rail wear modeling to gain a 

better understanding of the wear mechanisms and overall asset needs of the railway on a 

probabilistic basis. In essence, rail wear modeling is a continuous deterioration model with time 

or accumulated traffic, and can be considered at the rail profile level, a rail segment level (curve), 

or a system level (entire railroad or subset). 

 

Early deterioration models evaluated average wear on a track segment (curve or tangent) for each 

rail (high or low) for each primary measurement (head wear or side wear) through linear regression 

techniques. The resulting wear rates were then used with replacement thresholds to determine the 

wear rate that controls replacement (head or gage). (Zarembski, 2010) This technique has been 

used in practice for many decades, and is in fact a large component of the empirical aspects of the 

mechanistic modeling approach.  

 

Another cited study on metro track performed multivariate regression analyses on head and gage 

wear as a function of accumulated tonnage and curvature to show relationships specific to the 

traffic and rail section associated with that track with consistent results in rail wear rate 

relationships. (M.C. Jeong, Kim, Lee, Kang, & Kong, 2010) 

 

The linear regression method can be used on a profile level or rail segment level and repeated as 

necessary. Note that this approach is considered an absolute approach as all of the historic data is 

used to develop a linear wear rate (sometimes non-linear if the data suggests nonlinearity) that can 

be used to project wear forward. An incremental model would allow for the most recent data to 

predict the next state, however, the data available is generally not accurate enough for this 

approach. 

 

This approach can be extended to look at a group of rail segments and perform multivariate 

regression analysis to develop a wear equation that considers available independent variables (their 

correlation) and influence on wear rate.  

 

One study utilized available data (for a defined rail section) to develop a model for determining 

wear. (Premathilaka & Costello, 2010) While several independent variables were known, two 

models for high rail gage wear (HS in inches) and low rail head wear (LT in inches) were 

developed based on rail age (t in years), annual tonnage (T in MGT), and angle of attack (ψ in 

degrees) as follows: 
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HS = 0.4783𝑡𝑇𝜓 (9) 

LT = 0.1936𝑡𝑇𝜓 (10) 

 

Where, angle of attack defined herein is, 𝜓 = I/2, and I is the angle of deflection of the curve. 

 

This approach would require multiple models for independent variables not in the equation such 

as, rail section, traffic type, rail metallurgy, etc. 

 

One recent study evaluated the rail requirements due to wear deterioration using a Markov process 

using Markov chains. Since rail wear is discrete in time with a finite state space and satisfies the 

Markov property (the future state depends on the present state), this approach is relevant to 

stochastic modeling. This study determined the next state, i.e. what percentage of rail will move 

from one state to the next (up to and including failure) for several rail sections for a defined sub-

network. The two primary component of the Markov chain, Initial Condition Vector (ICV) and 

Transition Probability Matrix (TPM) were determined using the actual historic wear data 

(measured with handheld gauges) and modified using engineering expertise when data was not 

available. This study, however, did not offer a validation by segmenting the data, but stated it was 

in process. (Costello & Premathilaka, 2011) 

 

An additional study that utilized Markov theory for predicting the deterioration of rail wear studied 

one curve with limited (6 months) data to develop the ICV and TPM. The measured data was 

converted into wear condition indices (integer defining rail quality as a level of wear, based on 

percentage of threshold) and utilized in the Markov process. The results showed that the test case 

was already condemned. (Zakeri & Shahriari, 2012)  

 

The University of Huddlefield employed artificial neural networks to predict wheel and rail 

specimen wear based on laboratory data. In this study, controlled tests were performed on 

specimens under dry, wet and lubricated conditions over many cycles. A nonlinear autoregressive 

model with exogenous input neural network (NARXNN) was trained using supervised training 

methods under different contact conditions. The test data was used to train, validate and test the 

model. Predictions using the NARXNN showed good agreement with a mean absolute percentage 

area (MAPE) of less than 8%. This approach proved valid for laboratory test data, but has yet to 

be employed with field data, which will have larger variation in the inputs (and effected by other 

parameters) that must be considered. (Shebani & Iwnicki, 2018) 

 

A particle filter method based on Bayesian theory was utilized on a stretch of metro track for data 

obtained from six quarterly inspections, focusing only on curves. This method allowed for 

uncertainty in the measurement data, as is typically found in automated measurement systems. The 

first three measurement points were run through the particle filter model for 1000 particles, and 

predicted out to the fourth measurement. While 87% of the actual fourth inspection measurements 

fell within the 95% confidence interval of the predicted measurements, it was seen that the 95% 

confidence interval was larger than practical, +/- 0.2”. No validation with respect to predicted 

value was provided. (Min Chul Jeong, Lee, Cha, Zi, & Kong, 2019) 
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Discussion 

 

Early research focused on laboratory testing in a controlled environment to evaluate the wear 

performance of various materials. It is recognized that it is extremely difficult, if not impossible, 

to develop appropriate wear relationships of rail in the field based on first principles. Due to the 

difficult nature of evaluating rail steels in track subjected to many variations in causal parameters 

that effect the rate of wear, laboratory testing to develop wear relationships as a function of primary 

metallurgical parameters and mechanical variables, not just ultimate tensile strength of the 

material, were initially deemed the most effective method. (Morton, Cannon, Clayton, & Jones, 

1978) 

 

Initial understanding of the rail-wheel tribosystem, and its various causal factors (inputs), 

functional relationships (tribosystem envelope) and failure mechanisms (outputs) is depicted in the 

diagram of Figure 9. The interrelationship and subcategorization of the input variables is complex. 

 

 
Figure 9 Rail-wheel tribosystem (Ghonem et al., 1982). 

 

The importance of understanding the relationship between individual wear mechanisms and 

service environment can assist railways in understanding effective maintenance mechanisms to 

improve the incremental return on investment, particularly in response to shifts in traffic (and 

corresponding axle load). (Roney, 1982) It is also important to recognize that as wear accumulates, 

the shape of the rail (and wheel) will change, and impacts the overall instantaneous rate of wear. 

(Zakharov & Zharov, 2002) 

 

In addition, it was noted in several studies that the contact and stress regimes change based on 

wheel and rail shape, particularly as these components go through wear progression, and in fact, 

the failure mode can shift through the wear modes as well as shift to a fatigue dominated mode. 

(Tournay, 2008) The development of wear and fatigue and relationship between modes was 

addressed with the addition of shakedown and truck stiffness (Dirks & Enblom, 2011) and was 

recently extended to additional data and verified. (Dirks, Enblom, & Berg, 2016) In addition, the 

relationship to the development of rolling contact fatigue and rail wear (both rate and shape) was 

evaluated with respect to increase in derailment risk. (Magel, Mutton, Ekberg, & Kapoor, 2016) 

Using an energy dissipation wear model in a combined simulation approach, it was shown that 

optimal rail profiles could reduce the energy dissipation and corresponding wear rate by a factor 

of five. (Alarcon, Burgelman, Meza, Toro, & Li, 2016) 
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Many of the simulation models assume a wear model based on Archard or energy dissipation 

through a frictional work-wear model. The models that rely on wear coefficients do not effectively 

handle transitions from one mode of wear to another. Some limited work for determining 

transitions of wear coefficients to be used in a wear coefficient model (Archard’s model) has been 

performed. (Vuong & Meehan, 2009) 

 

The results of this research have culminated in a number of computer models that utilize empirical 

equations to predict rail life, predominantly as a function of wear, in addition to the models 

previously presented. (Innotrack, 2008) 

 

Table 2 Empirical Rail Life Models 

 

Organization Model 

Queensland University of Technology, 

Australia 

Integrated Track Degradation Model 

(ITDM) 

Association of American Railroads 

(USA) 

Railway Track Life-Cycle Model 

(RTLMTM) 

British Railway Rail Safety and 

Standards Board 

Whole Life Rail Model (WLRM) 

 

A relatively recent literature review of the rail wear prediction and simulation approaches to date 

concluded that there are opportunities for integrated research in a cross functional modeling 

approach to account for the interactions between adhesive wear, plastic flow, rail surface damage 

and development of cracks. (Enblom, 2009) 

 

In light of the previous study, it is recognized that the wear and instantaneous wear rate at 

contiguous locations along the track will vary. This is due to any number of factors described 

previously. One study evaluated the effect of track geometry anomalies on non-uniform wear 

through a segment of rail utilizing a dynamic simulation model, contact model and material wear 

model. The simulations showed increased wear as a result of increased forces due to track 

geometry variation. As with other models, agreement with real field conditions varied, as not all 

causality is captured in the simulation approach, but provides a mechanism to understand relative 

effects. (Sun, Guo, & Zhai, 2019)  

 

Finally, it was recognized early on that wear mechanism transitions prohibit an effective general 

model of wear behavior from being developed. To date, the research supports this claim, however, 

as research continues, the limitations in these approaches may be overcome, particularly in light 

of the tremendous amounts of data being captured. As evidenced in the above studies, particular 

phenomena can be easily modelled and tested in the laboratory, and can result in useful simulation 

models to provide relative wear relationships. This class of models is effective for understanding 

the wear relationships between load, metallurgy, and other external factors. (Clayton, 1995). 

 

A summary of relevant models and the factors considered in these models is presented in Table 3. 
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Table 3 Summary of Relevant Models and Variables Considered 
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Magel, 2002 ✓ ✓ ✓ ✓               

Kalousek, 1978 ✓ ✓ ✓    ✓ ✓  ✓         

Steele, 1982  ✓      ✓           

Ghonem, 1984 ✓         ✓         

Steele, 1982        ✓ ✓   ✓       

Reiner, 1984 ✓ ✓           ✓ ✓ ✓    

Magel, 2005  ✓ ✓ ✓ ✓ ✓  ✓     ✓ ✓  ✓   

Ramalho, 2015 ✓ ✓                 

Ignesti, 2012 ✓ ✓    ✓  ✓ ✓ ✓   ✓  ✓ ✓   

Zobory, 1997  ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓   ✓ ✓  ✓ ✓  

Premathilaka, 2010 ✓         ✓     ✓   ✓ 

• =  Handled through Wear Coefficient 
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Problem Formulation 

 

The past research discussed above has shown that relationships for wear can be developed in the 

laboratory as relates to independent drivers, such as applied force/stress, metallurgy, lubrication 

and several other factors. When considering rail in track, these factors interact, are unknown, or 

vary substantially. This section discusses a generalized formulation for understanding the rail wear 

problem for rail in track. 

 

Wear Model Attributes 

 

A common conclusion of past research showed that modeling rail wear under variant field 

conditions is difficult, if not impossible, since many of the driving factors are unknown, cannot be 

measured, or vary for each wheel cycle. The research presented thus far has shown that much 

attention has been given to the effects of the individual elements associated with the wear process; 

applied load and resulting contact stress based on wheel/rail geometry, rail metallurgy, lubrication, 

and operational components. While this research has provided insights to the individual component 

effects, little success has been achieved in the area of a systems approach, and all the variability 

that enters through real life conditions.  

 

 

Figure 10 shows a schematic of the rail wear process and its major contributing factors. Thus, in 

the simplest sense, and consistent with the research presented, rail wear is accumulated by each 

passing wheel. Each passing wheel (from a distribution of wheels) may have a different 

contribution, and is a function of the load and resulting stresses applied for that wheel, in the 

confines of the tribosystem and environment for which it is applied. In addition, artificial wear due 

to rail maintenance (rail grinding) can occur. 

 

The tribosystem in which the wheel operates is defined by the material properties in contact, and 

level of lubrication. The applied stresses associated with each passing wheel are a function of the 

contact geometry and the applied forces, which are in turn determined by the track design and 

condition, vehicle design and condition, and kinematics of the operation. 

 

 

Figure 10 shows the interconnected nodes, which drive rail wear (circles), along with the 

contributing factors (ellipses). The contributing factors are data elements that change over time 

and are often measured by the railway, with availability of data color coded as follows: 

 

Green = Known and measured frequently 

Yellow = Sometimes known but not measured frequently 

Red = Unknown or not measured 
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Figure 10 Rail wear flow diagram. 

 

The system defined above contributes to the overall wear of the rail (and wheel) with each passing 

wheel making an independent contribution. 
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General Formulation 

 

Wear can be defined as the volumetric loss of material due to applied slip and pressure as a function 

of a wear coefficient, which is in turn, a function of the material, geometric, and tribological 

properties of the system. As shown in the research, the wear coefficient is linear for an applied 

load cycle. This can be written generally for any applied load cycle as the following equation: 

 

𝛥𝑤𝑖 = 𝑘𝑖𝛥𝑛 (11) 

Where 

 Δwi = incremental wear due to load cycle 

 ki = wear coefficient 

 Δn = load cycle = 1 

 

Considering multiple load cycles, whereby the wear coefficient is specific to each load cycle, the 

accumulated wear for total cycles, N, can be written as follows: 

 

𝑊 = ∑ 𝛥𝑤𝑖

𝑁

𝑖=1

= ∑ 𝑘𝑖𝛥𝑛

𝑁

𝑖=1

(12) 

  

This is shown schematically in Figure 11. Thus, each applied load cycle may have a different rate. 

While certain aspects of the wear associated with each load cycle may remain constant (rail 

profile/hardness, curvature, grade, etc.), others may vary (wheel profile/hardness, lubrication, 

force, etc.). 

 

 
 

Figure 11 Schematic representation of accumulated wear of each load cycle. 
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For millions of cycles, with intermittently known points, the average rate of wear of all applied 

cycles between known points must be considered, with the average rate having some unknown 

distribution. This is shown schematically in Figure 12. Thus, the total wear can be written in the 

same form as Equation 3.12 for known data points as follows: 

 

𝑊𝑇 = ∑ 𝛥𝑊𝑖

𝑁

𝑖=1

= ∑ 𝐾𝑖𝛥𝑀𝐺𝑇𝑖

𝑁

𝑖=1

 (13) 

Where 

 WT = Total wear 

 Ki = Average wear coefficient (rate) between inspections 

 ΔMGTi = MGT between inspections 

 N = number of inspection 

 

 

 
 

Figure 12 Schematic representation of accumulated wear per known point (inspection). 

 

For multiple inspections over the life of the rail (or partial life), the average rate of wear for the 

rail can be represented as shown in Figure 13. This figure shows variation for three segments. 

Thus, the wear for a particular segment (i) can be defined as follows: 

 

𝑊𝑇 = (𝜆𝑖 ± 𝜀𝑖) 𝑀𝐺𝑇 (14) 
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λi = the average rate for known parameters 

εi = some contribution associated with unknown measurable parameters 

 

 

 
 

Figure 13 Schematic representation of accumulated wear for multiple segments. 

 

For multiple segments with identical known parameters, the wear for multiple segments can be 

combined to provide an estimate of total wear as follows: 

 

𝑊𝑇 = (𝛬 ± ℇ) 𝑀𝐺𝑇 (15) 

Where 

Λ = the average rate for known parameters 

Ԑ = some accumulated contribution associated with unknown measurable parameters 

 

It is often more appropriate to consider the rate of wear as the predominant result of any rail wear 

equation. Thus, Equation 3.15 can be rewritten as follows: 

 

𝑊′
𝑇(Θ, Ψ) = 𝛬(Θ) ± ℇ(Ψ) (16) 

Where 

𝑊′
𝑇(𝜃, 𝜑) = Wear rate, as a function of input parameters 

Θ  = 𝜃1, 𝜃2, … , 𝜃𝑛 = vector of known parameters 

Ψ = 𝜓1, 𝜓2, … , 𝜓𝑛 = vector of unknown parameters 
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Equation 3.16 provides a stochastic approach to determining the wear rate, whereby, the major 

contribution {𝛬(Θ)} from known and measured parameters can be determined, and a contribution 

{ℇ(Ψ)} from unknown/unmeasured parameters has a probability of occurring. 

 

Determining and understanding Λ and Ԑ from a population of available and measured data is 

paramount to understanding how rail wears in real life conditions.  
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RAIL WEAR FORECASTING MODEL DEVELOPMENT 

 

The research to date that has been presented thus far has shown that much attention has been given 

to the effects of the individual elements associated with the wear process; applied load and 

resulting contact stress based on wheel/rail geometry, rail metallurgy, lubrication, and operational 

components. While this research has provided insights to the individual component effects, limited 

success has been achieved in the area of a systems approach, and all the variability that enters 

through real life conditions. 

 

Considering the generalized wear equations presented previously, a system wear approach can be 

developed for use in evaluating the wear of the rail based on readily available measurements taken 

during routine inspections. This must be coupled with the unknown (or latent) variables and factors 

that enter the wear process. 

 

Given that the research and data has shown a large amount of uncertainty in the causal factors for 

wear, several stochastic processes are used to develop the proposed rail wear life model. Given its 

nature, the new model is termed RAIL Wear Analysis using Stochastic Processes (RAIL-WASP).  

 

A flowchart of the RAIL-WASP model framework is shown in Figure 14, and encompasses the 

deterministic research to date, along with the observations made from the exploratory data 

analysis. This flowchart shows the conceptual framework for development of multi-stepped 

approach to determining the life of the rail due to wear and its performance with respect to wear. 
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Figure 14 Flowchart of the RAIL-WASP model. 

 

 

The next sections introduce the encompassing stochastic processes. 

 

Stochastic Processes used in RAIL-WASP 

 

Several stochastic processes used to develop RAIL-WASP were identified and/or modified, and 

are as follows: 

 

• Auto Regressive Integrated Moving Average (ARIMA) 

• Mixture Density Networks (MDNs) 
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ARIMA  

 

Auto Regressive Integrated Moving Average (ARIMA) is a method for understanding and 

forecasting time series data, utilizing the patterns within the past data to predict future values. The 

method was first introduced in 1970 (Box & Jenkins, 1970) and can be broken down into three 

primary components, as follows (Brownlee, 2017): 

 

• AR, Auto Regression: Utilize dependent relationship between an observation and some 

number of past observations with defined lag, i.e., an observation is a function of the lagged 

observations. 

• I, Integrated: Use an order of differencing, subtracting consecutive observations, to make 

a series stationary. 

• MA, Moving Average: Utilize dependency between an observation and the residual errors 

from a moving average of past (lagged) observations.  

 

Addressing the difference component first, the I corresponds to an order of differencing, first, 

second, etc. to make the series stationary. Differencing is defined by the following equation: 

 

𝑌′𝑖 = 𝑌𝑖 − 𝑌𝑖−1 (17) 

Where 

𝑌′𝑖 = the differenced result for the ith observation 

𝑌𝑖 = the ith observation 

𝑌𝑖−1 = the preceding observation 

  

Second order differencing would be to repeat the process, and so on. 

 

The AR component is defined by the following equation: 

 

𝑌𝑖 = 𝛼 + 𝜙1𝑌𝑖−1 + 𝜙2𝑌𝑖−2 + ⋯ + 𝜙𝑝𝑌𝑖−𝑝 + 𝜖1 (18) 

Where 

𝑌𝑖 = the ith observation 

𝑌𝑖−𝑝 = pth lagged observation 

𝛼 = model intercept 

𝜙𝑝 = model coefficients 

𝜖1 = error component 

 

Likewise, the MA component is defined as follows: 

 

𝑌𝑖 = 𝛼 + 𝜖𝑖 + 𝜃1𝜖𝑖−1 + 𝜃2𝜖𝑖−2 + ⋯ + 𝜃𝑞𝜖𝑖−𝑞 (19) 

Where 

𝑌𝑖 = the ith observation 

𝛼 = model intercept 

𝜃𝑞 = model coefficients 

𝜖𝑖−𝑞 = error component 
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Combining the AR and MA components, implementing an order of differencing using I, and 

introducing a lag operator (L), the equation for ARIMA(p,d,q) can be represented as follows 

(Kongcharoen & Kruangpradit, 2013): 

 

(1 − ∑ 𝜙𝑗𝐿
𝑗

𝑝

𝑗=1

) (1 − 𝐿)
𝑑

𝑌𝑖 = (1 + ∑ 𝜃𝑗𝐿
𝑗

𝑞

𝑗=1

) 𝜖𝑖 (20) 

 

Where 

p = lag order  

d = order of differencing 

p = order of moving average 

 

When implementing an ARIMA model for forecasting time series, the data must be made at least 

weakly stationary by finding the order of differencing, d, that achieves this. Note that if d = 0 then 

the data is already stationary, and if d = 1, the data trends linearly, d = 2, the data trends to the 

squared power. Then the lag order, p and order of moving average, q must be determined. 

 

The Box-Jenkins approach for determining the optimal values for the ARIMA parameters is an 

iterative three-step approach as follows (Brownlee, 2017; Croarkin & Tobias, 2013): 

 

• Identification: Use data to identify appropriate model and corresponding parameters 

that best describe the data. 

o Evaluate stationarity and seasonality checking that mean and variance do not 

change significantly over time. Make stationary by: 

▪ Order of differencing, d (avoid over differencing) 

▪ Transformation 

▪ De-Trending 

o Identify ARIMA parameters (p, q) 

▪ Auto Correlation Function (ACF): Evaluates correlation for various lag 

values. Lag values with the largest ACF that fall outside the 95% 

confidence limit are candidate lags. The lag at which the ACF trails off 

is the order of MA, q. 

▪ Partial Auto Correlation Function (PACF): Evaluates correlation for 

various lag values, not accounting for prior lagged observations. Lag 

values with the largest PACF that fall outside the 95% confidence limit 

are candidate lags. The number of lags which cross the PACF 

confidence interval before it trails off is the order of AR, p. 

• Estimation: Estimating the coefficients of the model is done through maximum 

likelihood estimation and is handled in many commercially available statistical 

software packages.  

• Diagnostics/Validation: Validate the model by insuring: 

o Residuals are random, mean of zero and symmetric variance, i.e., white noise. 
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o No overfitting such that noise is not captured in the forecast and is no more 

complex than required to achieve similar results, i.e., minimum p, q.  

 

The above approach may suggest multiple configurations of model coefficients. In this case the 

Akaike Information Criterion (AIC) or Bayesian Information Criterion (BIC) can be calculated, 

according to the following: 

 

𝐴𝐼𝐶 = −2𝑙𝑜𝑔(𝐿) + 2(𝑝 + 𝑞 + 𝑘)

𝐵𝐼𝐶 = 𝐴𝐼𝐶 + (𝑙𝑜𝑔(𝑇) − 2)(𝑝 + 𝑞 + 𝑘) (21)
 

 

Where 

L = likelihood of the data 

k = 0 if intercept of model α = 0 

k = 1 if intercept of model α ≠ 0 

 

The lower the AIC and/or BIC the better relative fit of the model. Note, the AIC and BIC do not 

provide a measure of the goodness of fit (accuracy) of the model overall, and are only utilized to 

choose the best model from a number of candidate models.  

 

In addition, the Ljung-Box test (Ljung & Box, 1978) can be performed to insure that there is an 

overall randomness of the residuals of the resulting model, by testing for autocorrelation on the 

residuals for all lags in a range. Since this test is performed for a number of lags (not just at a 

particular lag) it tests the entire model and is defined as a portmanteau test (evaluating multiple 

autocorrelations). 

 

Finally, the developed model can be used to forecast future events/values, as well as confidence 

intervals, based on the developed model. Given the structure of the model, this is done for a defined 

number of future time (or MGT) steps. As with any forecast, the further out the forecast, the less 

confident it is. The forecast can be determined using the data, the determined model coefficients 

and Equation 5.3. 

 

In order to evaluate the effectiveness of the model, as with any statistical model, a training data set 

can be used to build a model. The model can then be used to forecast to known future data and 

compared using mean square error, or some other commonly used accuracy metric. 

 

Use of ARIMA in Railroads 

 

ARIMA time series forecasting has been used extensively in statistics and econometrics to 

understand past relationships and forecasting future events. It has also been used for spatial data 

relating ground penetrating radar data to highway thickness prediction (Attoh-Okine, 1994). 

 

Limited ARIMA applications in the railroad industry have focused around operations and goods 

demand, along with other machine learning techniques. 
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In particular, passenger demand for railways and metros was modelled and forecast using ARIMA 

(Milenkovic, Svadlenka, Melichar, & Bojovic, 2016) and forecast demand of grain car loadings 

(Babcock, Lu, & Norton, 1999). These studies note the challenges of missing information 

regarding explanatory variables, and the ability of ARIMA to utilize historic data to make 

reasonable forecasts. However, certain volatility cannot enter the forecasts. 

 

Several researchers have evaluated railway component degradation and forecast time to failure. 

These includes a real time ARIMA model for identifying railway car brake failures (Pacella & 

Anglani, 2008), and predicting the failure of switch machines using ARIMA analysis of the current 

draw of the switch-point machine (Abbasnejad & Mirabadi, 2017). 

 

Relative to the rail wear research, one study evaluated wheel flange wear and wheel diameter and 

forecast replacement dates using an ARIMA model with very accurate results for short term 

forecasts (L. Wang, Zhao, Xu, & Na, 2015).  

 

Sample Application of ARIMA for Rail Wear 

 

Before implementing an ARIMA process on the rail wear data used in this research, it is important 

to understand that rail wear measurements are captured at varying intervals in time. In addition, 

the amount of traffic fluctuates over time, thus, it is more appropriate to correlate rail wear 

measurements with traffic density (MGT). Most inspection intervals result in up to 30 

measurements over the lifetime of the rail. ARIMA processes requires constant intervals and work 

best with at least 50 measurements. Finally, rail wear is expected to increase linearly with 

accumulated tonnage. Thus, the series will be non-stationary by definition. 

 

In order to satisfy the above requirements, the series is made stationary by removing the linear 

trend. This can be achieved using ordinary least squares regression techniques. This also allows 

for capturing the dominant wear rate for use later. Also, in order to achieve constant interval and 

have enough points to apply ARIMA, up sampling through piecewise linear interpolation (USPLI) 

can be employed. It is important to choose an interpolation interval that satisfies the requirements 

for employing the ARIMA process (at least 50 samples). 

 

The above steps were implemented using R open source statistical software (R Core Team, 2019). 

Considering up-sampled and aligned wear data, and choosing one sequence at a milepost as an 

example (226.8842), the best-fit ARIMA model can be determined.  

 

The measurement data by accumulated MGT4 on the rail is shown in Figure 15. This data 

encompasses 11 measurements from 575 to 911 accumulated MGT.  

 

                                                
4 Accumulated MGT was determined based on the installation date of the rail (1997) and the 

MGT accumulated each year (obtained from annual MGT data) to the date of inspection. 
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Figure 15 Wear measurement data for MP 226.8842. 

 

The first step in developing the ARIMA model for this milepost is to make the series stationary by 

removing the linear trend of the series. Note that this is accomplished by subtracting out the least 

squares fit. The resulting stationary data is then up-sampled to provide a uniform interval between 

samples as well as provide a sufficient number of samples for effective ARIMA modeling. In this 

case a delta MGT of 5 was chosen to insure at least one interpolated point between successive 

inspections. 

 

In order to determine the AR and MA components, the ACF and PACF plots are evaluated 

(See  

Figure 16). The PACF plot shows spikes outside the 95% confidence band of the correlation 

coefficient at lags 1 and 2, with further lags being insignificant. Therefore, the order of the AR(p) 

component is AR(2).  
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Figure 16 PACF and ACF plots for MP 226.8842. 

 

Considering the ACF, the data appears to trend increasingly downward after lag 0, and 

significantly after lag 1. Possible lags for the order of MA are 0 through 3, as these lags have values 

outside the 95% confidence band before trailing off. Thus, following the Box-Jenkins approach, 

ARIMA5 models of p = 2 and q = 0 to 3, can be considered. The most relevant model can be 

determined by checking the Akaike Information Criterion (AIC) and/or Bayesian Information 

Criterion (BIC). Using the R function Arima(series, order = c(p, d, q)) to determine the parameters 

and AIC, BIC of a prescribed model. Table 4 shows the AIC, BIC for candidate models using R. 

This table suggests a model of ARIMA(2,0,2) based on AIC and ARIMA(2,0,0) based on BIC, 

recognizing that the smallest values correspond to the best fit. 

 

Table 4 ARIMA Model Results for MP 226.8842 

 

 
 

                                                
5 Note that the I in ARIMA is left in intentionally for discussion later. Since the trend was removed 

and the data is stationary, it is expected that the order of I will be zero, I(d) = I(0). 
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However, R also has a function auto.arima which iterates through candidate models (by 

evaluating ACF and PACF) and returns the best fit model. This function specified ARIMA(2,0,2) 

for this example based on AIC. The value of this approach is that it allows for checking many 

segments rapidly as opposed to evaluating ACF and PACF and iteratively determining AIC, BIC 

for each model.  

 

Evaluating the Ljung-Box test (using the LjungBoxTest function available in R) at various lag 

values results in Figure 17. 

 

 
Figure 17 Ljung-Box test of ARIMA model. 

 

Since the p-values are all well above 0.05, the model shows randomness for lag values up to 30. 

 

The final check is that the residuals are normally distributed, that is they appear as “white noise”. 

Figure 18 shows a plot of the residuals, as well as the ACF and distribution of residuals. This figure 

shows that the residual fall within the 95% confidence band and are insignificant. The distribution 

is skewed normal and has a zero mean.  
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Figure 18 ARIMA(2,0,2) residual analysis for MP 226.8842. 

 

Now that the model is established, the accuracy can be determined for its fit against the historic 

data. The resulting ARIMA(2,0,2) model has two coefficients each for the AR and MA 

components, and an intercept of zero, as follows: 

 

• AR 

o 𝜙1  = 1.4133 

o 𝜙2 = -0.5905 

• MA 

o 𝜃1 = 0.3414 

o 𝜃2 = 0.3301 

 

These coefficients can be used along with equation 5.4 to model the original series. This is shown 

in Figure 19, along with the original measurements, as well as the up-sampled data in between 

measurements6. The resulting accuracy of the fit can be defined by a number of metrics. The metric 

chosen here is root mean square error (RMSE), as this provides the same units as the measurements 

themselves. The equation for RMSE is as follows: 

 

                                                
6 Note that this is for the data with linear trend removed which must be added back in when 

defining the model for forecasting. 
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𝑅𝑀𝑆𝐸 = √
∑ (�̂�𝑖 − 𝑌𝑖)

2𝑁
𝑗=1

𝑁
(22) 

 

The RMSE for the ARIMA(2,0,2) model for this data is 0.00305 inches. 

 
Figure 19 ARIMA(2,0,2) model with original and up-sampled data for MP 226.8842. 

 

Equation 5.4 and the corresponding coefficients for the ARIMA(2,0,2) model can be used to 

forecast forward a number of defined steps. Each step corresponding to 5 MGT, as this is the 

interval defined in the model. This can be done simply using the predict function in R.  Figure 

20 shows the measurement data along with its linear trend and ARIMA fit (with linear trend added 

back in). In addition, the forecast is shown out to 1,100 MGT (along with the 95% confidence 

interval). It can be seen that the forecast from ARIMA converges to the linear least squares fit 

rapidly (50-75 MGT). This indicates a value in using ARIMA for short term forecasts, and least 

squares fit for longer term forecasts.  
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Figure 20 ARIMA Forecast for MP 226.8842. 

MDNs 

 

Traditionally, neural networks have been used in regression analyses to utilize input variables to 

predict target variables; that is provide a likely output given a series of inputs. This approach does 

not take into account the variability of the target for a particular set of inputs. In fact, the target 

variability is not constant and can be a function of the inputs as well. 

 

Mixture Density Networks (MDNs), introduced in 1994, allow for the determination of conditional 

probability distributions associated with supervised learning of multiple target values as a function 

of input variables to account for the variability of the target value (Bishop, 1994). Simply put, an 

MDN is a combination of a feed-forward artificial neural network and a mixture of probability 

distributions, such that the conditional probability is output, for a vector of given inputs. This is 

quite important when predicting just the mean is insufficient. Many real world problems require 

more knowledge than just the mean to make proper decisions. Thus, determining the conditional 

probability distribution allows for understanding a range of answers and their associated 

probabilities.  

 

The derivation of the MDN equations and approach follows (Bishop, 2006). Starting with the 

output, a mixture of conditional probability density would take the form: 

 

𝑝(𝑌 = 𝑦|𝑋 = 𝑥) = ∑ 𝛼𝑖(𝑥)𝐷𝑖(𝑦|𝜇𝑖(𝑥), 𝜎𝑖
2(𝑥))

𝑚

𝑖=1

(23) 
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Where, 

 X = a vector of inputs x 

 Y = some output vector of observations y conditioned on x 

 𝛼𝑖(𝑥) = ith of m mixing coefficients as a function of X 

 𝐷𝑖(𝑦|𝜇𝑖(𝑥), 𝜎𝑖
2(𝑥)) = ith of m conditional density kernel functions 

  𝜇𝑖(𝑥) = conditional mean for a Gaussian distribution 

  𝜎𝑖
2(𝑥) = conditional variance for a Gaussian distribution 

 

The mixing coefficients must satisfy the following constraints to ensure that the resulting 

conditional probability density function integrates to 1, and the variance for a Gaussian distribution 

must be greater than or equal to zero: 

 

∑ 𝛼𝑖(𝑥) = 1

𝑚

𝑖=1

0 ≤  𝛼𝑖(𝑥)  ≤ 1

𝜎𝑖
2(𝑥)  ≥ 0 (24)

 

 

It should be noted that the conditional density kernel function can be any probability density 

function depending on the problem being solved. If the distribution has one, two, three or even 

four parameters, then the conditional density kernel function will be derived appropriately. 

However, successfully parametrizing the model with the proper number of Gaussian components 

(and associated mixture coefficients) will provide a good estimation for most probability density 

functions. 

 

Also, note that the conditional variance is a function of the input vector X, indicating a 

heteroscedastic7 model, unlike the least squares method where the variance would be constant for 

all X.  

 

Considering a conditional density kernel function of Gaussian form results in the following: 

 

𝐷𝑖(𝑦|𝜇𝑖(𝑥), 𝜎𝑖
2(𝑥)) =

1

√2𝜋𝜎𝑖
2(𝑥)

𝑒𝑥𝑝 (−
(𝑦 − 𝜇𝑖(𝑥))2

2𝜎𝑖
2(𝑥)

) (25)
 

 

The use of a feed forward artificial neural network lends itself extremely well for determining the 

components of the conditional probability distribution, namely, the mixing coefficients (𝛼𝑖(𝑥)) 

and the probability density function parameters (𝜇𝑖(𝑥), 𝜎𝑖
2(𝑥)).  

 

A generalized representation of a mixture density network (MDN) is shown in Figure 21. This 

network contains the following: 

 

                                                
7 Heteroscedasticity is defined as sub-populations of a larger data set having differing variances. 
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• n inputs, X = (x1, x2, … xn-1, xn) 

• i x j hidden layers/nodes, 𝐻 =  (

ℎ11 ⋯ ℎ𝑖1

⋮ ⋱ ⋮
ℎ1𝑗 ⋯ ℎ𝑖𝑗

) 

• m x 3 outputs, 𝛼1…𝑚(𝑥), 𝜇1…𝑚(𝑥), 𝜎1…𝑚
2 (𝑥) 

 

 

 
Figure 21 Generalized mixture density network (MDN). 

 

The goal is to maximize the likelihood (ℒ) given the input data set, (with c observations) such that: 

 

ℒ = ∏ 𝑝(

𝑐

𝑞=1

𝑦𝑞, 𝑥𝑞) (26) 

A more convenient and stable mathematical (and programmatic) approach is to minimize the error, 

defined by taking the negative log of the likelihood as follows: 

 

𝐸 =  −ln (ℒ) (27) 

 

For typical ANN implementation an error function (sometimes termed loss or cost function) is 

typically defined by sum of squares. A least squares approach is employed in the ANN to minimize 

the error using a standard optimization procedure (often gradient descent is employed). However, 

for the MDN approach, an error function equivalent to the conditional probability mixture density 

function is employed as follows: 

 

𝐸(𝑤) = ∑ −𝑙𝑛 [∑ 𝛼𝑖(𝑥𝑞 , 𝑤)𝐷𝑖(𝑦𝑞|𝜇𝑖(𝑥𝑞, 𝑤), 𝜎𝑖
2(𝑥𝑞 , 𝑤))

𝑚

𝑖

]

𝑐

𝑞=1

(28) 
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Where, w are the weights of the neural network and introduced here, and D is the Gaussian or 

some other distribution with associated parameters. 

 

Minimization of the error function can be achieved by taking the partial derivatives of the error 

function with respect to the weights (w) in the neural network. As this is handled in most open 

source software packages for implementation, the derivation is not included here. 

 

The MDN can be implemented by employing the following steps: 

 

• Choose the input variables, X 

• Choose the number of layers (i) and nodes (j) 

• Specify an activation function for the nodes (that function which processes inputs to 

outputs at each node). The constraints showed that non-negative values are required, 

thus, the activation function is typically: 

o tanh 

o Exponential Linear Unit, 𝐸𝐿𝑈(𝑥) =  {
𝑥                  𝑥 ≥ 0
exp(𝑥) − 1 𝑥 < 0

 

• Select a number of mixture components (m) 

• Select an appropriate error function (Gaussian or some other distribution) 

• Define the number of outputs 

• Impose constraints on mixing coefficients 

o Use softmax function which is a normalized exponential function to force values 

to be between zero and 1 and sum to 1: 

∝𝑖=
exp (𝑧𝑖

∝)

∑ 𝑧𝑗
∝

𝑗

 

• Select an optimization routine 

o Gradient descent; iterative process to determine parameters that minimize error 

(or cost, loss) function 

• Train the MDN to determine the outputs , 𝛼1…𝑚(𝑥), 𝜇1…𝑚(𝑥), 𝜎1…𝑚
2 (𝑥) 

 

Once the network is trained predictions for the expected target values (𝔼, VAR) can be determined 

from the following: 

 

𝔼(𝑌|𝑋) = ∫ 𝑌𝑝(𝑌|𝑋)𝑑𝑦 = ∑ 𝛼𝑖(𝑋)𝜇𝑖(𝑋)

𝑚

𝑖

𝑉𝐴𝑅(𝑋) =  ∑ 𝛼𝑗(𝑋)

𝑚

𝑗=1

[𝜎𝑗
2(𝑋) + ‖𝜇𝑗(𝑋) − ∑ 𝛼𝑖(𝑋)𝜇𝑖(𝑋)

𝑚

𝑖=1

‖

2

] (29)

 

 

MDN Research and Applications 

 

While mixture density networks have been around since the 1990’s, they have only recently come 

to pass as a viable stochastic tool for practical implementation. Artificial neural networks have 
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been increasingly utilized, to include use in the railway industry. However, since the focus in this 

section is MDNs, the use of ANNs in railways is not included herein. To date, no utilization or 

application of MDNs in railways has been documented. Therefore, this section introduces a select 

few non-railroad applications that correlate to railway degradation analysis, and the research 

conducted herein. 

 

Upon introduction in 1994, MDNs gained popularity in time series analysis, whereby it was noted 

that predicting only the conditional mean can result in poor, if not false, predictions, and that 

knowing the conditional distribution as a function of time is extremely valuable (Husmeier & 

Taylor, 1997). Initial focus was on improving the computational efficiencies if MDNs due to the 

lack of available computing power, readily available today (Husmeier & Taylor, 1998; Nikolaev, 

Tino, & Smirnov, 2013). 

 

MDNs subsequently gained popularity in econometrics and financial forecasting to utilize the 

prediction of variance, along with the mean, to measure volatility (Schittenkopf, Dorffner, & 

Dockner, 1999). This is analogous to risk management in financial time series forecasting 

(Miazhynskaia, Dorffner, & Dockner, 2003). The ability to model uncertainty allows for more 

informed decision making and control of assets (Herzallah & Lowe, 2004). Taking advantage of 

the ability to inherently model non-linearity in inflation with additional smoothing has led to 

improved prediction for highly heteroscedastic data (Villani, Kohn, & Giordani, 2009). 

 

Much attention has been paid to using MDNs for speech synthesis to account for subtle changes 

in inputs (Siri-Team, 2017; Zen & Senior, 2015), as well as for meteorological predictions 

(Cannon, 2012; Carney, Dowling, & Lee, 2005; Men, Yee, Lien, Wen, & Chen, 2016). 

 

Finally, one research effort focused on using MDNs for developing conditional distributions when 

observations are missing or even entire independent variables are unknown (Brouwer & Pedrycz, 

2003).  

 

In particular, the parallel research associated with asset management, degradation forecasting and 

unknown independent variables is of particular import to this research effort. 

 

Sample Application of MDNs for Head Wear Rates 

 

Implementing an MDN can be achieved through open source software. For this sample application, 

Google’s machine learning library, Tensorflow8 (Martin et al., 2015) was utilized as an application 

programming interface along with the Python programming language, compiled as a Jupyter 

Notebook. The head wear rate data for tangent rail was utilized to allow for comparison. As noted, 

the head wear rate data shows a distinct distribution around a mean for common independent 

variables. This is due to the nonlinear relationship and interaction between the independent 

variables, as well as the presence of several unknown or unidentified independent variables. Thus, 

as pointed out previously, just predicting the average in such a situation leads to poor forecasting, 

and ultimately improperly supported decisions.  

                                                
8 TensorFlow, the TensorFlow logo and any related marks are trademarks of Google Inc. 
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In order to evaluate this process, three mixture density network models were developed to predict 

a conditional density distribution for the known independent variables. Specifically, the MDNs 

were trained with the tangent head rail wear rate data to produce a conditional mean and variance 

as outputs, using the six known independent variable as inputs (year installed, grade, rail weight, 

distance to lubricator, last annual MGT, and speed). The following were specified for the MDNs 

(See  

Table 5): 

 

Table 5 MDN Specifics 

 

 MDN – 1 MDN - 2 MDN - 3 

Inputs 6 6 6 

Learning Iterations 7500 7500 10000 

Batch Size 50 50 50 

Learning Rate 0.0001 0.0001 0.0001 

Layers 15 15 15 

Neurons 120 120 120 

Mixture Components 1 1 3 

Outputs 2 2 9 

Neuron Activation Function tanh tanh tanh 

Standard Deviation Constraint ELU ELU ELU 

Distribution/Error Function Gaussian Laplace Gaussian 

Mixing Coefficient 

Normalization * 

N/A N/A softmax 

Optimization ** Adam Adam Adam 

 

* A softmax function for normalizing mixing coefficients is utilized for MDNs with more than one 

distribution in the mixture model. This as a normalized exponential function that allows for 

meeting the constraint that the mixing coefficients sum to 1. However, since there is only 1 mixing 

coefficient for MDN -1 and MDN - 2, the scale factor is 1, and softmax is not required. 

** Classical stochastic gradient descent optimization is sometimes computationally inefficient. 

AdamOptmizer (Kingma & Ba, 2015) was utilized for the determination of the network rates, with 

the learning rate (step size for which weights are updated during training) and error function as 

primary inputs. This optimization technique is efficient and robust, and takes advantage of training 

data entering the equations in batches (as opposed to one large matrix) for each iteration. In 

addition, the Laplace distribution has a differential discontinuity at the median, and thus classical 

gradient descent would fail. AdamOptimizer handles this discontinuity effectively. 

 

Code was written to implement the three MDNs, each of which are discussed next. 

 

MDN – 1: One Gaussian Distribution 
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A mixture density network with only one conditional density distribution, while not truly a mixture 

model, offers the ability to provide the conditional mean and variance, unlike artificial neural 

networks that give only the mean, thus resulting in important additional information regarding the 

data. The head wear rate data for tangent rail was used to train the network and result in a 

conditional mean and variance for a range of the six independent variables. 

Training the model and observing the cumulative loss (error function) results in Figure 22. This 

figure shows the model starting to converge after 5,000 iterations. Note the spikes in the loss 

function which are a manifestation of the AdamOtimizer utilizing batch processing. Larger batches 

would result in less spikes, however more iterations would be required, and thus, more 

computational time. 

 

 
Figure 22 Error/Loss by iteration for single Gaussian MDN. 

 

The resulting conditional mean head wear rates as compared to the actual head wear rates of the 

model are shown in  Figure 23.  
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Figure 23 Predicted versus actual head wear rate for one Gaussian distribution. 

 

The power of the MDN is providing the conditional variance. Figure 24 shows the predicted versus 

actual head wear rates, along with the boundaries imposed by +/- one conditional standard 

deviation. Note that the standard deviation is not a constant (as would be with a typical regression 

model), rather it is determined for each instance. This figure shows the expected variation around 

the expected mean. Thus, a straight line could result at “perfect” correlation of prediction/actuals, 

however the probability along that line would not be 50%, it would vary.  
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Figure 24 Predicted versus actual head wear rate for one Gaussian distribution, with one 

standard deviation. 

 

MDN – 2: One Laplace Distribution 
 

A second mixture density network was created using a Laplace distribution for the error/loss 

function. Thus, the outputs of the model are the location and shape parameter of the Laplace 

distribution, as opposed to the mean and standard deviation of the Gaussian distribution 

 

Figure 25 shows the error by iteration. Note that the model is just starting to converge at 7,500 and 

shows the variation associated with the batch processing methodology, however does not result in 

very large divergence at any given iteration. 
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Figure 25 Error/Loss by iteration for single Laplace MDN. 

 

The resulting comparison of predicted head wear rates to actual head wear rates, along with the 

extent of the conditional distribution (shown as +/- one shape factor for convenience) is provided 

in Figure 26. 

 

While similar to the single Gaussian MDN, there are some significant differences. Mainly, the 

extreme locations (very small and very large wear rates) show larger variation (larger shape 

factors), indicating a wide distribution, which would result in a large range of predicted 

probabilities. The distributions near the median wear rate are very similar. 
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Figure 26 Predicted versus actual head wear rate for one Laplace distribution, with one 

shape factor. 

 

MDN – 3: Three Gaussian Distributions 
 

The final sample MDN takes advantage of the mixture model and is a three Gaussian distribution 

MDN. This results in a weighting factor, mean, and standard deviation output for each of the three 

mixture components, thus the MDN has nine outputs as opposed to two. 

 

The error/loss during model training is shown in Figure 27. This figure shows convergence at 

around 7,500 iterations. However, there is a discontinuity at 8500 iterations, which quickly return 

to convergence. 
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Figure 27 Error/Loss by iteration for three Gaussian MDN. 

 

The predicted versus actual head wear rates, along with +/- one standard deviation for the three 

Gaussian mixture model is shown in Figure 28. This model appears to capture the salient features 

of the previous two models, larger distributions at extreme locations and significant variability 

around the mean. Note that this plot was developed using the mixture distribution as defined in 

Equation 5.14, which develops a weighted mean and standard deviation based on likelihood. 
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Figure 28 Predicted versus actual head wear rate for three Gaussian distributions, with one 

standard deviation. 

Discussion 
 

The three sample MDNs showed some overall consistent features as well as the ability to show 

variation in the datasets. Comparing the three MDNs, the sum square of errors (SSE) and negative 

log likelihood (NLL) were calculated for the predictions of each model, and are shown in Table 6. 

This table shows that the single Gaussian MDN provides the lowest SSE, and the three Gaussian 

MDN results in the lowest NLL. 

 

Table 6 Comparison of MDNs 

 

 SSE NLL 

MDN – 1: 1 Gaussian 2.66 x 10-7 22.22 

MDN – 2: 1 Laplace 1.12 x 10-6 -4.76 

MDN – 3: 3 Gaussians 7.15 x 10-7 -9.47 
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To gain a further understanding,  

Figure 29 shows the resulting conditional distributions, and their variation, for three results of 

input head wear rates (for varying independent variable inputs). Each plot shows the MDN single 

Gaussian distribution, MDN single Laplace distribution, 3 MDN Gaussian distribution 

components and the consolidated Gaussian distribution. 

The first plot shows the single Gaussian and Laplace results are nearly identical and that the three 

components of the Gaussian mixture are nearly identical and equally weighted. However, the 3 

Gaussian mixture model results in a broader and more varied result. 

 

The second plot shows that the single Gaussian, Laplace and Gaussian mixture composite are very 

similar, and the three components of the Gaussian mixture are similar to one another. 

 

The third plot shows that there can be distinct variation between the three MDNs. The Laplace is 

predicting a significantly varied distribution pushed to the right, while the single Gaussian is more 

narrow and centered, and the mixture Gaussian is very broad and to the left. Thus, in this instance, 

three distinct distributions are predicted. 
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Figure 29 MDN conditional distribution comparison at three different data inputs. 

 

For the third plot in  
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Figure 29, the distribution parameters for each model are shown in Table 7, along with the actual 

head wear rate. This table shows that the single Gaussian mean is nearest the actual value. 

 

Table 7 Distribution Parameters for Three Models at Disparate Location 

 

 
 

Mixture density networks are very powerful for this type of analysis, as they allow for 

determining a likely range of wear rate predictions, based on any number of independent input 

variables. 

 

RAIL-WASP Model 

 

The goal of forecasting models is to develop a relationship between input variables and a target 

variable such that the model can evaluate changes to the input variables and determine the effect 

on the target output variable. Linear regression and other machine learning techniques have 

historically been used to develop simple and complex models, whereby, the most likely target is 

predicted. As has been shown, this can lead to poor decisions if the variance within the prediction 

is not evaluated. The model developed herein utilizes the stochastic processes presented in the 

previous section in a hierarchical stochastic fashion to provide detailed information regarding rail 

wear based on historical data. 

 

The ARIMA process is modified and employed on an individual segment with an evaluation as to 

its effectiveness (validation), along with an example forecast. This is followed by a more general 

understanding of the rail wear rates and their variance (particularly attributed to unknown 

independent variables) utilizing mixture density networks (MDNs), which can be utilized to 

evaluate the instantaneous state of the rail and it wear rate. Finally, a classification mechanism is 

presented for evaluating the current condition of the rail with respect to wear.  

 

The stochastic processes are bundled into a hierarchical model to develop rail wear forecasts, as 

well as classify the condition of the rail for every rail segment. 

 

Rail Wear Determination for a Rail Segment 

 

The concept of utilizing ARIMA modeling for forecasting rail wear was introduced in 0, along 

with an example result at one milepost location. As the EDA showed, the wear (and wear rate) will 

change longitudinally along the track based on many factors. This section presents the analysis of 

consecutive locations (a rail segment) to further evaluate and validate the ARIMA processing 

methodology for rail wear, and incorporation into a next generation rail wear model. 

Consecutive rail wear measurements (in time, MGT) are aligned and up-sampled to provide 

contiguous, multiple measurements every 5.28 feet for 1,600 feet (306 locations). Eleven 

1 Gaussian 1 LaPlace 3 Gaussian - a 3 Gaussian - b 3 Gaussian - c 3 Gaussian

Actual 0.000273 0.000273 0.000273 0.000273 0.000273 0.000273

Mu 0.000267 0.000336 0.000184 0.000146 0.000190 0.000173

Sigma 1.5E-05 6.3E-05 6.8E-05 6.6E-05 7.0E-05 7.1E-05

Alpha 0.333 0.331 0.336 1
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inspections were performed over a span of six years (from 2007 to 2013). This results in eleven 

data points for 306 locations that can be treated as a time series and processed using ARIMA 

methods. Note that this rail segment is for head wear (136RE rail installed in 1997) in a low rail 

from the leading tangent, through an entry spiral to the full body of a 2 degree curve, and through 

the exit spiral.  

 

The ARIMA modeling approach is summarized in the flowchart presented in Figure 30. 

 

 
Figure 30 Flowchart of ARIMA process for a rail segment. 
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Validation 

 

In order to validate the modeling approach, ARIMA fits were determined for the first eight 

measurement points and projected to the next measurement following the process defined in Figure 

30. Thus, an ARIMA model was determined for each of the 306 locations in the curve (every 5.28 

feet) using data from 3/14/2007 to 11/4/2010, or 575 to 804 MGT. this model was then used to 

forecast to 10/26/2011 or 862 MGT, approximately one year later. 

 

 

Figure 31 shows the wear measurements for the last date that was modelled (11/4/2010; 

corresponding to 804 MGT) and the next measurement one year later (10/26/2011; corresponding 

to 862 MGT), along with the ARIMA and linear regression (LS) forecasts. In addition, the 

difference between the forecast and the actual measurement are shown as dotted lines at the bottom 

of the figure.  

 

 

 
 

Figure 31 Segment model results. 

 

It can be seen from  

Figure 31 that the ARIMA forecast more closely matches the actual measurements, i.e. has a 

smaller difference, while the linear regression fit tends to overstate the actual measurement. Both 

understate the ending spiral and provide good results in the leading tangent.  
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Considering the differences between the last actual measurement and corresponding predictions, 

the difference statistics were calculated for the wear forecasts through the entire curve and are 

shown in Table 8. 

Table 8 Model Comparison for Rail Segment 

 

 ARIMA LS 

Min (in) -0.0586 -0.0331 

Max (in) 0.0180 0.0564 

Avg (In) -0.0080 0.0131 

RMSE (in) 0.0177 0.0222 

 

 

These statistics show that the ARIMA model understates the forecast by 0.008” on average with a 

maximum understatement 0f 0.059” and maximum overstatement of 0.018”, while the linear 

regression model overstates the forecast by 0.013” on average with a maximum understatement of 

0.033” and maximum overstatement of 0,056”.  

 

Thus, in one year with an additional 58 MGT, the rail has worn between 0.035” and 0.075”, with 

an average of 0.057”. 

 

It should be noted that while the ARIMA forecast is more accurate (RMSE = 0.0177 in), the least 

squares fit is quite reasonable (RMSE =. 0.0222 in) 

 

Finally, since the ARIMA orders (and corresponding coefficients) are determined individually for 

each location, it is interesting to evaluate how these orders are distributed throughout the segment.  Figure 32 shows the ARIMA order (p, d, q) for each milepost. This figure shows that the 

predominant order of AR is 2, MA is 0 or 1 and differencing is 0. It should be noted that the order 

of differencing, d, is expected to be 0 since the linear trend was removed. However, even after 

removing the linear trend some mileposts exhibited non-stationary behavior and required up to 

two additional orders of differencing. 
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Figure 32 ARIMA orders distributed through segment. 
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Table 9. The left portion of the table is an absolute count of each order from 0 to 4, confirming the 

observations made from the figure above. The right portion of the table shows a count of all 

possible derived ARIMA(p, d, q) models . Clearly ARIMA(2, 0, 0) dominates (162 occurrences), 

indicating that the majority of the mileposts follow only an autoregressive model of AR(2), with 

ARIMA(2, 1, 1) having 47 occurrences. 
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Table 9 ARIMA Orders for Segment 

 

 
 

Forecasting 

 

The primary goal of the modeling approach is to forecast wear into the future to determine when 

the rail reaches a state at which it requires replacement due to increased risk of derailment. Using 

the approach outlined in Figure 30, the wear can be forecast to a defined accumulated MGT and 

evaluated against a defined threshold to determine its condition at any point in the future.  

 

For this step, all eleven measurements were utilized to determine the ARIMA models at each 

milepost. These models were then applied and the head wear forecast from its current accumulated 

MGT of 912 to 1010, 1110 and 1210 MGT. The results of the forecast are shown in  
Figure 33. This figure shows the progression of wear over time and accumulated tonnage. Note 

from this figure that the linear regression forecast and ARIMA forecast are similar with some small 

discrepancies in the spirals and areas where the rail has non-uniform changes in wear. Also, note 

from this particular example that the wear is not uniform in the full body and that the wear and 

associated rates seem to peak at the spiral to curve points. This is likely due to increased lateral 

curving forces in these areas. 

 

 

Order p d q

0 35 177 210 p d q Count

1 9 120 52 0 1 2 1

2 243 9 12 0 1 3 25

3 19 0 29 0 2 0 6

4 0 0 3 0 2 1 3

1 0 3 1

1 0 4 2

1 1 0 2

1 1 1 2

1 1 2 2

2 0 0 162

2 0 2 8

2 0 3 3

2 0 4 1

2 1 0 21

2 1 1 47

2 1 2 1

3 1 0 19

ARIMA(p, d, q)
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Figure 33 ARIMA forecast for entire rail segment. 

 

 

Figure 33 also shows that when the curve reaches approximately 1200 MGT, a head wear of 3/4” 

will be reached, and that at 1100 MGT the majority of the full body will exceed 5/8”. In this 

manner, depending on the railroads wear limits, a forecast of when the first portion of the curve 

will reach the limit can be forecast, or when 50% of the curve will reach the limit, or when any 

defined distribution of wear will be achieved. This becomes important when understanding the 

useful life of the asset, and future asset condition when considering deferred maintenance. 

 

Rail Wear Rate Model 

 

The mixture density network method described in Section 0 was utilized to develop separate 

models for the following: 

 

• Tangent Rail Head Wear 

• Low Rail Head Wear 

• High Rail Head Wear 

• High Rail Gage Wear 

 

These mixture density network models were developed utilizing the actual wear rate data 

developed as part of the EDA, and a two-parameter Laplace distribution. The Laplace distribution 

was chosen because, as noted previously, the data exhibited a Laplace behavior. The conditional 

distribution (+/- one shape factor) compared to the actual wear rates are shown for all four models 

in  
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Figure 349. Some observation can be made regarding these plots as follows: 

• a – Tangent Rail Head Wear: This is the same result shown in the sample application. 

The predictions are reasonable, and there is significant distribution around the mean 

values. 

• b – Low Rail Head Wear: The predictions are reasonable and there is fairly uniform 

variance for most of the observations. Seemingly outlier points show more variance. 

Overall the variance is larger than that for tangent rail. 

• c – High Rail Head Wear: Again, the predictions are reasonable, with a few outlier 

points with large variance, while most of the points have a uniform large variance (as 

compared to the other three modes). 

• d – High Rail Gage Wear: The gage wear shows the smallest amount of variance and 

has the fewest number of outliers. 

 
a – Tangent Head Wear   b – Low Rail Head Wear 

 
                                                
9 Note, the scale (in/MGT) for Tangent is 0 to 0.001, while the remainder are 0 to 0.002. 
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 c – High Rail Head Wear   d – High Rail Gage Wear 

 

Figure 34 MDNs for all four rail wear modes. 

 

The conditional rail wear rate determination methodology is summarized in Figure 35. 

 

 
Figure 35 Flowchart of conditional wear rate determination using MDN framework. 

 

Central Probability Determination 

 

In order to understand the effect of the shape factor from the Laplace distribution, and to have a 

practical sense of the conditional probability distribution, the middle 90% probability of 

occurrence (+/-45% from the condition mean) is determined (See Figure 36). 
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Figure 36 Central probability of Laplace distribution. 

 

Considering Figure 36, the shaded area is the desired central probability, and Δµ is the offset from 

the mean to be determined. This is calculated from the cumulative distribution function of the 

Laplace distribution, which is obtained by integrating the Laplace probability density function, 

and is given by the following: 

 

𝐹(𝑥) = ∫ 𝑓(𝑢)𝑑𝑢
𝑥

−∞

= {

1

2
exp (

𝑥 − 𝜇

𝑏
) 𝑖𝑓 𝑥 <  𝜇

1 −  
1

2
exp (−

𝑥 − 𝜇

𝑏
) 𝑖𝑓 𝑥 ≥  𝜇

(30) 

 

The desired value of wear rate (Δµ) for the defined central percentage (ΔF) is determined by 

solving for x = µ ± Δµ from the following, given the conditional wear rate (µ) and conditional 

shape factor (b):  

 

𝐹(𝑥) − 𝐹(𝜇) = ∆𝐹/2 (31) 

 

Using equations (5.14) and (5.15) results in the following: 

 

𝑥 = 𝜇 ± 𝑏 ln(1 − ∆𝐹)
𝑜𝑟

∆𝜇 = 𝑏 ln(1 − ∆𝐹) (32)
 

 

For the parametric study performed, ΔF = 0.9, thus Equation (5.16) reduces to ∆𝜇 = 𝑏 ln(0.1) 

and the plots show the conditional mean as well as the surrounding 90% probability of occurrence 

(shaded area) between µ±Δµ. 
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Parametric Graphs 

 

While the use of MDNs suggests a meaningful prediction, as well as includes information 

regarding the variance in the data, the data has shown some counterintuitive relationships, per the 

EDA. To better understand the predictions of the models, parametric studies were performed. This 

was achieved by passing suitable ranges of values for the independent variables to the MDNs and 

predicting the conditional distribution parameters, which can then be plotted to evaluate 

reasonableness. 

 

Test files were created for tangents (6 independent variables) and curves (8 independent variables) 

separately, and the respective ranges shown in Table 10. 

 

Table 10 Test File Parameter Ranges 

 

 Tangents Curves 

Parameter Range Num Range Num 

Grade 0 to 2 by 0.25 9 0 to 1 by 0.5 3 

Year Installed 1980 to 2015 by 5 8 1990 to 2015 by 5 6 

Speed 20 to 50 by 10 4 20 to 40 by 10 3 

Annual MGT 20 to 60 by 10 5 20 to 50 by 10 4 

Lubricator Distance 0 to 2 by 0.25 9 0 to 2 by 0.25 9 

Rail Weight 132, 136, 142 3 132, 136, 142 3 

Curvature N/A  0 to 14 by 2 8 

Super Elevation N/A  0 to 4 by 1 5 

     

Total Permutations  38,880  233,280 

 

 

The Tangent permutation file was input to the Tangent Rail Head Wear MDN model, while the 

Curve file was input to the High and Low rail curve MDN models. The resulting outputs were then 

used to generate parametric graphs.  

 

Utilizing the outputs from the MDN models, several selected parametric plots are presented and 

discussed. Note that hundreds of plots can be created due to the number of independent 

variables/permutations. In order to get a representation of the models, only a select few are 

presented. 

 

Tangent Rail Head Wear 
 

Grade and Speed were chosen as the primary parametric variable to compare against head wear 

rate, as a function of Annual MGT, Rail Weight and Year Installed. 

 

 



68 

 

Figure 37 shows the tangent head wear rate for grades from 0% to 2% for rail installed in years 

1985, 2000, 2015. This figure shows that as grade increases the head wear rate increases as 

expected. In addition, there is more variance (spread) in the middle of the grade zone (0.25% to 

0.75%). While rails of differing ages behave the same for level track (0% grade), older rail has 

more severe wear rates at higher grades as expected, as rail has progressively gotten harder10. 

There is more variance for the older1985 rail at higher grades. 

 

 
 

Figure 37 Tangent head wear rate as a function of grade and year installed. 

 

Figure 38 shows the tangent head wear rate for grades from 0% to 2% for the three rail sections. 

The larger section (141RE) shows more severe wear rates. This is not unexpected as 141RE has 

an 8” head radius while 132RE and 136RE have 10” and 14” head radii respectively. The sharper 

the radius on the head, the more severe the contact stress. All sections show and increase in wear 

rate with an increase in grade. 

 

 

Figure 39 shows the tangent head wear rate for grades from 0% to2% for three values of annual 

MGT (10, 30, 40 MGT/year). Note there are two plots, one for rail installed in 2000 and one for 

rail installed in 2010. These figures show an increase with head wear rate with an increase in grade 

and increase in annual MGT, for grades less than 1%. Greater than 1%, 20 and 30 MGT/year have 

                                                
10 Specifications for standard rail hardness have progressively increased in recent years. 
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significant increases in head wear rate while 40 MGT/year has a slight decrease, which is 

unexpected behavior. 

 

 

 
 

Figure 38 Tangent head wear rate as a function of grade and rail section. 
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Figure 39 Tangent head wear rate as a function of grade and annual MGT. 

 

 

Figure 40 shows the tangent head wear rate for grades from 0% to2% for three values of speed 

(20, 30, 40 mph). Again there are two plots, one for 2000 rail and one for 2010 rail. These plots 

shown an increase in wear rate with an increase in speed. The behavior is consistent for 20 and 30 

mph. 40 mph rail behaves counterintuitively at higher grades, however, since this is a freight 

railroad, it is unlikely that speeds of this magnitude will be reached for significant grades, therefore 

the model would be invalid at higher speeds. 

 

 
 

Figure 40 Tangent head wear rate as a function of grade and speed. 

 

Figure 41 shows the tangent head wear rate as a function of speed (from 20 to 50 mph) for three 

installation years. This figure shows consistent behavior for all three installation years (constant), 

with increased variance at higher speeds. 

 

Figure 42 shows the tangent head wear rate as a function of speed and the three rail sections. Again, 

the 141RE rail demonstrates a higher wear rate, while the lighter section behave similarly. The 

rates remain relatively constant with increases in speed (slight increase or decrease). Figure 43 

shows similar behavior for three values of annual MGT. 
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Figure 41 Tangent head wear rate as a function of speed and year installed. 

 
 

Figure 42 Tangent head wear rate as a function of speed and rail section. 
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Figure 43 Tangent head wear rate as a function of speed and annual MGT. 

 

Low Rail Head Wear 

 

As with tangent rail, the low rail in a curve will experience head wear (at the top mating surface 

of the rail with the wheel tread). Due to the solid axle set of a railway vehicle, the low rail will 

experience more sliding (depending on the degree of curvature, amount of super elevation and 

speed of the vehicle), and thus is expected to have a higher rate of wear than tangent rail. The 

parametric study performed on the low rail head wear MDN focused on the curvature, super 

elevation, and speed effects. 

 

It is important to note that speed in curves (Vmax) is limited based on the degree of curvature (D), 

amount of super elevation (E) and allowable amount of unbalance (Eu). Unbalance defines the 

allowable over-speed in curves, and is treated as that amount of elevation (in inches) by which the 

curve is unbalanced. The maximum allowable speed is defined according to the following 

equation: 

 

𝑉𝑚𝑎𝑥 = √
𝐸 + 𝐸𝑢

0.0007𝐷
(33) 

 

Applying this formula for ranges of data found within the sample dataset results in Table 11. This 

table provide maximum allowable speed for curves from 2 to 14 degrees, with 1 to 4 inches of 

super elevation, for balanced operations and 3 inches of unbalance. Note that the maximum 

allowable speed for severe curves (> 10 degrees) is less than 30 mph. Thus, the plots from the 

model do not take this into account and are strictly based on the inputs to the model. Results outside 

the allowable range will be ignored. 
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Table 11 Maximum Allowable Speed by Degree Of Curvature, Super Elevations and 

Maximum Unbalance 

 

 
 

 

Figure 44 shows the low rail head wear by degree of curvature (for 1” of super elevation at 20 

mph). The left hand plot shows the probability band for the central 90% and the right hand plot 

shows the probability band for the central 50%11. Note the wear increasing with degree of 

curvature and that all rail sections behave similarly, with 141RE performing slightly better. These 

plots are for 20 mph and 1 inch of super elevation, which fall with the maximum allowable 

operating speed.  

 

Figure 45 shows the low rail head wear rate as a function of curvature and amount of super 

elevation (SE in inches). The left hand plot is for operations at 20mph and the right hand plot is 

for operations at 30 mph (note that 1” of SE is only valid to 6 degrees, 2” SE only valid 8 degrees, 

and 4” SE only valid to 10 degrees). These plots show generally increasing wear with increases in 

curvature. The data for the 20 mph plot shows some anomalous behavior as super elevation shows 

no real correlation between wear rate and super elevation. There is a correlation, however, for 30 

mph. In addition, 20 mph shows larger rates than 30 mph. This is likely due to more vertical load 

transferred to the lower rail at slower speeds. At balance speed, the vertical load on each rail is 

theoretically equally, and below balance speed more of the weight is shifted to the low rail. 

   

                                                
11 The remaining plots for all curve analyses will be determined for the central 50% probability. 

Also, note that the wear rate scales are 0 to 0.002 in/MGT for all curve plots) 

Degree 1 2 3 4 1 2 3 4

2 27 38 46 53 53 60 65 71

4 19 27 33 38 38 42 46 50

6 15 22 27 31 31 35 38 41

8 13 19 23 27 27 30 33 35

10 12 17 21 24 24 27 29 32

12 11 15 19 22 22 24 27 29

14 10 14 17 20 20 23 25 27

Super Elevation (inches) Super Elevation (inches)

Balance Speed Vmax for 3" Unbalance
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Figure 44 Low rail head wear rate as a function of curvature and rail section. 

 
 

Figure 45 Low rail head wear rate as a function of curvature and super elevation. 

 

 

Figure 46 shows the low rail head wear as a function of curvature for three speeds of operation 

(20, 30, 40 mph). The left hand plot is for 2 inches of super elevation and the right hand plot is for 

4 inches of super elevation. The 2 inches of super elevation plot shows similar behavior for all 

speeds, however 30 mph is only valid to 8 degrees and 40 mph only valid to 4 degrees, as speeds 

in excess of those defined in Table 11 would not be allowed. The 4 inches of super elevation plot 

shows significant increases in wear rate as curvature increases (30 mph is valid to 12 degrees, 40 

mph valid to 8 degrees), with mild (< 6 degrees) and shallow curves behaving similarly. 
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Figure 46 Low rail head wear rate as a function of curvature and speed. 

 

High Rail Head Wear 

 

As with the low rail in a curve, the high rail will experience head wear (in addition to gage face 

wear). Similar plots to those for the low rail are shown for the high rail using the high rail head 

wear rate MDN, and again focused on the curvature, super elevation, and speed effects. 

 

 

Figure 47 shows the high rail head wear by degree of curvature (for 1” of super elevation at 20 

mph). The left hand plot shows the probability band for the central 90% and the right hand plot 

shows the probability band for the central 50%. Note the wear is constant or decreases with 

increasing degree of curvature and that all rail sections behave similarly at higher degrees of 

curvature. A possible reason for this slight decrease in wear rate is that as the degree of curvature 

increases, the high rail goes into two-point contact, i.e. the wheel flange makes contact with the 

gage face of the rail, picking up some of the load (especially at 1” of elevation). These plots are 

for 20 mph and 1 inch of super elevation, which fall within the maximum allowable operating 

speed. 
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Figure 47 High rail head wear rate as a function of curvature and rail section. 

 

 

Figure 48 shows the high rail head wear rate as a function of curvature and amount of super 

elevation (inches). The left hand plot is for operations at 20 mph and the right hand plot is for 

operations at 30 mph (note that 1” of SE is only valid to 6 degrees, 2” SE only valid 8 degrees, and 

4” SE only valid to 10 degrees). These plots show a variation in wear with increases in curvature. 

Wear rates for super elevation of 4 inches are generally less than those of 1 inch of elevation. This 

is as expected as the vertical load would shift more to the low rail, however 2 inches of elevation 

is not behaving consistently. 

 

 

 
 

Figure 48 High rail head wear rate as a function of curvature and super elevation. 
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Figure 49 shows the high rail head wear as a function of curvature for three speeds of operation 

(20, 30, 40 mph). The left hand plot is for 2 inches of super elevation and the right hand plot is for 

4 inches of super elevation. The 2 inches of super elevation plot shows lower wear rates for higher 

speeds, consistent with two-point contact, however 30 mph is only valid to 8 degrees and 40 mph 

only valid to 4 degrees. The 4 inches of elevation plot shows nearly constant wear rates as curvature 

increases that behave similarly with operating speed (30 mph on valid to 12 degrees, 40 mph valid 

to 8 degrees). This is not unexpected as 4 inches of elevation may cause consistent vertical contact 

forces on the high rail. This would need to be confirmed with dynamic simulation modeling. 

 

 

 
 

Figure 49 High rail head wear rate as a function of curvature and speed. 

 

High Rail Gage Wear 

 

The final MDN, high rail gage wear, was used to model the gage wear rate. The high rail 

experiences head wear and gage wear simultaneously, the rates of which are very much a function 

of the contact stresses; defined by the lateral and vertical force resultant. Comparative plots to the 

high rail head wear are shown for the high rail gage wear using the high rail gage wear rate MDN, 

and again focused on the curvature, super elevation, and speed effects. 

 

 

Figure 50 shows the high rail gage wear rates by degree of curvature (for 1” of super elevation at 

20 mph). The left hand plot shows the probability band for the central 90% and the right hand plot 

shows the probability band for the central 50%. Note that the gage wear has less variance then the 

head wear of the low and high rails. 
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Note the wear tends to decrease, then increase (at severe curves greater than 8 degrees) with 

increasing degree of curvature. However, the various rail sections behave differently, with the 

heavier sections performing better. A possible reason the heavier sections performing better is the 

higher lateral stiffness of the heavier rail section, but this would require further in-depth analysis. 

The primary reason for the “dip” in wear rate at the mild curvatures is the change over from 

dominant wear mode, i.e., head versus gage wear rate. Since gage is measured instantaneously for 

the current top of the rail, its location point of measure changes. It was noticed in the data that for 

mild curves, the head wear rate outpaces the gage wear rate. Thus, when the head wears faster than 

the gage face or side of the rail head, the point where gage wear is measured shifts (vertically) and 

it is possible to have a change in gage wear rate. 

 

These plots are for 20 mph and 1 inch of super elevation, which fall with the maximum allowable 

operating speed. 

 

 
 

Figure 50 High rail gage wear rate as a function of curvature and rail section. 

 

Figure 51 shows the high rail gage wear rate as a function of curvature and amount of super 

elevation (inches). The left hand plot is for operations at 20 mph and the right hand plot is for 

operations at 30 mph (note that 1” of SE is only valid to 6 degrees, 2” SE only valid 8 degrees, and 

4” SE only valid to 10 degrees). The 20 mph plots show relatively constant gage wear, with an 

increase at severe curves, however the 2 inches of super elevation seemingly performs much worse, 

which is counterintuitive. Also, the effect of super elevation is opposite of that expected. Note that 

these plots are for the middle 50% probability band, which shows some overlap between the 

predictions. The 90% band would show further overlap, indicating overlapping conditional 

probabilities. Thus, while the means may not behave as expected, there is a probability (at the 

extremes) that consistent behavior can occur as expected. 
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Figure 51 High rail gage wear rate as a function of curvature and super elevation. 

 

 

Figure 52 shows the high rail gage wear as a function of curvature for three speeds of operation 

(20, 30, 40 mph). The left hand plot is for 2 inches of super elevation and the right hand plot is for 

4 inches of super elevation. The 2 inches of super elevation plot shows lower wear rates for higher 

speeds, consistent with head wear outpacing gage wear, however 30 mph is only valid to 8 degrees 

and 40 mph only valid to 4 degrees. The 4 inches of elevation plot shows increasing wear rates as 

curvature increases. It also shows a decrease in wear rate with an increase in speed (30 mph on 

valid to 12 degrees, 40 mph valid to 8 degrees; where the plots tail off). This again is attributed to 

head wear outpacing gage wear. 

 

 
 

Figure 52 High rail gage wear rate as a function of curvature and speed. 
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The final sensitivity performed for high rail gage wear rate is with respect to lubrication.  

Figure 53 shows the high rail gage wear rate as a function of curvature for three levels of 

lubrication. The levels are defined by the proximity of a lubricator, i.e. the distance in miles to the 

nearest lubricator. 

 

The left hand plot shows the results for a speed of 30 mph and 1 inch of super elevation (only valid 

to 6 degrees) and the right hand plot shows the results for 30 mph with 2 inches of super elevation 

(only valid to 8 degrees). The left hand plot clearly shows that the closer the lubricator, the lower 

the gage wear rate. Note that a lubricator effectiveness diminishes significantly with distance away 

from the curve. The right hand plot shows the same benefit of lubrication, however for the higher 

end of curvature (8 degrees) the “close” and “far” lubricator results converge. This is unexpected 

and can again be attributed to head wear outpacing gage wear in this curvature range. 

 

 
 

Figure 53 High rail gage wear rate as a function of curvature and distance from lubricator. 

 

Discussion 

 

The ability of the mixture density network model to predict a conditional distribution, as opposed 

to just the conditional target value, offers a significant advantage. In addition, the model is 

unbiased, in that the data is driving this behavior. The current results show some counterintuitive 

behavior that requires further research. 

 

As a final comparison, the wear rates for each MDN were plotted by degree of curvature (See 

Figure 54). The left hand plot is for 20 mph with 1 inch of elevation, and the right hand plot is for 

20 mph with 2 inches of elevation. These plots show distinct traits that are worth noting as follows: 

 

• The tangent head wear is the lowest wear rate and shows very little variation. 

• The low rail head wear has the highest magnitude. 
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• The gage wear dominates the high rail for curves greater than 4 degrees with 1 inch of 

elevation and curves greater than 8 degrees with 2 inch of elevation. 

• The high rail head wear has the greatest variance. 

• The curve MDNs do not converge to the tangent MDN using the middle 50% 

probability band.  

 

 

 
 

Figure 54 Wear rates by degree of curvature for each MDN (mode). 

 

It should be noted here that for the high rail, the combined wear associated with head and gage 

wear rates must be accounted for. The wear mode (head or gage wear) that reaches the replacement 

limit the soonest (life=limit/rate) will control rail renewal. 

 

Forecasting 

 

The wear rate can be determined from the ARIMA process (as input to the MDN process), or for 

rail segments with too few wear measurements (no inspections), the MDN can be applied to 

determine the conditional wear rates, based on the known causal factors. Note that the MDN is 

used to determined conditional wear rates and variances regardless, to allow for classification 

based on the ARIMA wear rates. This is performed for head and gage wear separately, as 

appropriate. 

 

Once the wear rate is known, forecasting to an allowable level of wear is straight-forward and 

follows the equation: 

 

𝑊𝑒𝑎𝑟(𝑀𝐺𝑇) = 𝑊0 + [𝑊′(𝑋) ± ∆𝑊′(𝑋)][∆𝑀𝐺𝑇] (34) 

Where 

Wear(MGT) = inches of wear at some MGT level = MGT0 + ΔMGT 
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W0 = Wear in inches at current MGT, (=0 at MGT=0) 

W’(X) = conditional wear rate in inches/MGT 

Δ W’(X) = conditional offset wear rate based on desired probability band12 

ΔMGT = MGT from current measurement  

 

This equation can be reconfigured to forecast ΔMGT to wear limit, as appropriate. As indicated 

previously, for high rails in curves, the forecast must be performed for both head and gage wear, 

and the shortest MGT interval to the limit controls rail replacement. 

 

Classification of Wear Performance 

 

Given that the approach used herein is stochastic, a classification process based on stochastic 

principles was developed. Recalling Equations (5.14 – 5.16), the cumulative probability of a given 

wear rate, based on the mean wear rate and shape factor can be determined. And recalling that the 

MDN approach results in a predicted conditional mean wear rate and conditional shape factor, the 

wear rate calculated during the ARIMA process can be measured against the predicted conditional 

distribution to assess performance. This is outlined in the flowchart of Figure 55. 

 

For each rail segment, a wear rate {λ} was determined using the ARIMA process and least squares 

regression. In addition, the MDN model determines a conditional mean wear rate {µ(X)} and shape 

factor {b(X)} according to a Laplace distribution. It is these parameters for which the classification 

is determined. Taking advantage of Equation (5.14), F(λ|µ(X), b(X)) can be determined. Noting 

that F(µ) = 0.5 is average (based on input characteristics, X), a linear probability transformation 

can be utilized to classify performance (C), as follows: 

 

𝐶 = 1 − 𝐹(𝜆) (35) 

 

Classification can be shown schematically as in Figure 56, where the vertical lines represent values 

of wear rate (λ) that correspond to bands of classification (Cn).  

 

                                                
12 Using Equation (5.16) 
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Figure 55 Flowchart of stochastic classification. 
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Figure 56 Schematic of classification using F(µ). 

 

 

Thresholds can be set to define the performance of rail wear as follows: 

 

𝐶 = {
< 0.5 𝑃𝑜𝑜𝑟
= 0.5 𝐴𝑣𝑒𝑟𝑎𝑔𝑒
> 0.5 𝐺𝑜𝑜𝑑

(36) 

 

Where Poor indicated higher than expected wear rates, and Good indicates lower than expected 

wear rates. 
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MODEL APPLICATION 

 

The models and framework developed in the previous chapters are put into practice for the entire 

data set. Putting the flowcharts (See Figure 14, Figure 30, Figure 35 and Figure 55) into a graphical 

perspective shows the general implementation of the Rail-WASP model in  
Figure 57 below. 

 

 

 
 

Figure 57 Rail-WASP. 

 

The model is evaluated on a segment basis as well as a system basis. 

 

Segment Analyses 

 

In order to evaluate the model at the segment level, two curves are analyzed and presented here. 

The characteristics of the two segments are shown in  
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Table 12. The rails were installed between 2000 and 200213 and are from a 5 degree and 7.25 

degree curve, with 1.5 inches and 1.75 inches of super elevation respectively. 

 

Table 12 Segment Characteristics 

 

     Left/High Rail Right/Low Rail 

Rail Length Deg SE Speed Rl Wt Installed Rl Wt Installed 

1 634 5.00 1.50 25 141 2002 141 2000 

2 1795 7.25 1.75 25 141 2002 136 2011 

 

 

The data was collected for these two segments, and was aligned using algorithms developed and 

coded into the model.  

 

ARIMA Processing 

 

The ARIMA process was performed, and several MGT steps forward were forecast using the 

resulting ARIMA models.  

 

The forecast accumulated MGT values were determined for the following conditions: 

 

• First instance of crossing wear limit14 

• 50% of full body of curve exceeding wear limit 

• 100% of full body of curve exceeding wear limit 

 

The results of the ARIMA process and forecast are shown in Figure 58 through Figure 61. The 

high rail plots show the head and gage wear in the left and right panels. The top left and top right 

panels show the first and last inspection results (intermediate inspections values were not 

reproduced in these Figures, though they were used in the ARIMA modeling), and the three 

forecast wear sequences (first exceedance, 50% of full body, 100% of full body), for the head and 

gage wear respectively. The wear sequences are labeled by the accumulated MGT at which that 

prediction occurs. For the head wear plots the wear limit is shown for reference (since both curves 

reach the head wear limit much faster than the gage wear limit). In addition, the nominal wear rates 

through the curve are shown (by milepost location) in the bottom left and bottom right panels (head 

and gage wear rates respectively).  

 

For the low rail plots, only head wear is shown, with the top panel corresponding to the prediction 

and the bottom panel showing how the head rates are distributed through the curve.  

                                                
13 Note that the low rail of the 7.25 degree curve was replaced in 2011. However, the data was 

analyzed from the inspections prior to this date, for the rail that was originally installed in 2002. 

14 The wear limit was set at 11/16” for both head and gage wear, however, any limit can be set. 
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Figure 58 5.0 degree curve high rail wear results from ARIMA processing and forecasting. 

 

 

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

8.36 8.38 8.40 8.42 8.44 8.46 8.48 8.50

H
ea

d
 W

ea
r 

(i
n

ch
es

)

Milepost

5 deg High Rail - Head Wear

3/16/2007 9/20/2012 1257 MGT 1347 MGT 1577 MGT

0.0000

0.0005

0.0010

0.0015

8.36 8.38 8.40 8.42 8.44 8.46 8.48 8.50

H
ea

d
 W

ea
r 

R
a

te
 (

in
/M

G
T)

Milepost

5 deg High Rail - Head Wear Rates

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

8.36 8.38 8.40 8.42 8.44 8.46 8.48 8.50

G
a

ge
 W

ea
r 

(i
n

ch
es

)

Milepost

5 deg High Rail - Gage Wear

3/16/2007 9/20/2012 1257 MGT 1347 MGT 1577 MGT

0.0000

0.0005

0.0010

0.0015

8.36 8.38 8.40 8.42 8.44 8.46 8.48 8.50

G
a

ge
 W

ea
r 

R
a

te
 (

in
/M

G
T)

Milepost

5 deg High Rail - Gage Wear Rates



88 

 

 
 

Figure 59 5.0 degree curve low rail wear results from ARIMA processing and forecasting. 
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Figure 60 7.25 degree curve high rail wear results from ARIMA processing and forecasting. 
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Figure 61 7.25 degree curve low rail wear results from ARIMA processing and forecasting. 
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Figure 58 through Figure 61 easily allow for the visualization of locations of severe wear (and 

corresponding severe wear rates), distribution of wear rates through the curve and time to 

condemnation. Note the unstable nature of the ARIMA process in Figure 61. The progression of 

spikes in the last wear measurement are carried through, and filtering of the distribution may be 

required. 

 

Statistics for the wear rates determined using the ARIMA process are summarized in  

Table 13. Note that for ease of interpretations, the wear rates are shown as inches/100MGT. 

 

Table 13 Statistics of Wear Rates Determined Through Curve Using ARIMA Process 

 

 
 

 

The magnitudes of the wear rates show that head wear significantly outpaces the gage wear in the 

high rail, and that the wear rates in the 7.25-degree curve are higher than those of the 5 degree 

curve. In particular, the low rail head wear rate is nearly three times higher in the sharper curve.  

 

MDN Process 

 

The mixture density network models were run for these two curves. The conditional density 

distributions were determined for the characteristics available for these segments (year installed, 

degree of curvature, super elevation, speed, etc.).  

The resulting conditional distribution parameters (µ, b) are shown in Table 14, along with 

the least squares fit (Actual) of the wear data, corresponding to the average wear rate in the full 

body of the curve. The average rate from the ARIMA process is included for comparison purposes. 

 

Table 14 MDN Conditional Density Parameters15 

 

 
 

 

                                                
15 C is the classification parameter and is discussed in the next section. 

Wear Rates (in/100MGT) Wear Rates (in/100MGT)

Low Rail Low Rail

Head Gage Head Head Gage Head

Minimum 0.0427 0.0003 0.0448 Minimum 0.0823 0.0092 0.1133

Maximum 0.0574 0.0137 0.0499 Maximum 0.1074 0.0311 0.1390

Average 0.0515 0.0081 0.0479 Average 0.0932 0.0211 0.1273

Std Dev 0.0036 0.0028 0.0011 Std Dev 0.0069 0.0053 0.0060

High Rail

5 Deg Curve

High Rail

7.25 Deg Curve

Deg SE (in) Ann MGT Rail ARIMA Actual µ b C ARIMA Actual µ b C

5 1.5 31.35 High 0.0515 0.0523 0.0511 0.0174 46.9% 0.0081 0.0096 0.0341 0.0058 99.3%

7.25 1.75 31.35 High 0.0932 0.1022 0.1013 0.0182 47.6% 0.0211 0.0502 0.0496 0.0060 45.2%

5 1.5 31.35 Low 0.0479 0.0476 0.0482 0.0119 52.6%

7.25 1.75 31.35 Low 0.1273 0.1150 0.0766 0.0126 2.4%

Head Wear Rates (in/100MGT) Gage Wear Rates (in/100MGT)
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Table 14 shows that the ARIMA wear rates and least squares fit of the full body averages (Actual) 

are very similar, as expected. The minor differences are expected due to the difference in averaging 

techniques; ARIMA averages fit rates, Least squares averages wear measurements and fits a rate. 

In addition, the conditional probability density parameters can be used to show the bounded wear 

rates and how the Actual rates relate to the expected rates based on the input independent variables. 

 

Classification 

 

The classifications16 (C) of the wear rates, based on Equation (5.20), are also shown in Table 14. 

While the majority of the calculated wear rates are near the predicted conditional rates (+/- 5%), 

the head wear on the low rail of the 7.25 degree curve shows C = 2.4%. this means that the segment 

is behaving very poorly as a result of the unexpected severe head wear rate. In addition, the gage 

wear rate on the high rail of the 5 degree curve shows C = 99.3%, indicating that the rail is behaving 

extremely well with a much lower gage wear rate than expected based on similar segments (Actual 

<< Mu). 

 

Thresholds will be discussed in the next major section, as extreme values may indicate 

excellent/poor performance, or may in fact be outliers to be analyzed further. 

 

Forecast 

 

While the ARIMA process is a step forward process, and by definition provides a forecast, the 

wear rates determined in the MDN approach can also be used to forecast maintenance/renewal. 

Recognizing that the head wear rates are much greater than the gage wear rates, the forecasts for 

head wear for both the low and high rails for both curves are shown in  

Table 1517.  

 

This table has two parts; the first is the estimated life of the rail in accumulated MGT, and the 

second is the years to replacement, based on the life in MGT, the accumulated MGT to date, and 

the last annual MGT on the rail. Equation (5.18) was used to develop forecasts for each determined 

wear rate, and the ARIMA forecasts are included, for a replacement limit of 11/16”. 

 

The forecasts are explained as follows: 

 

• Actual: least squares rate based on averages of wear measurements in the full body of 

the curve 

• ARIMA 

o First: first instance a wear measurement will exceed the wear limit 

o 50%: 50% of the full body will exceed the wear limit 

                                                
16 C = 50% indicates the calculated wear rate is the same as the conditional target wear rate. As C 

goes to zero the segment performs worse, and as C goes to 100, the segment performs better. 

17 Note that the model evaluates the head and gage wear independently, and the mode that controls 

replacement is determined. For purposes of discussion, the gage results are left off. 
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o 100%: 100% of the full body will exceed the wear limit 

• MDN: using middle 50% probability 

o µ-Δµ: lower 50% probability band 

o µ: conditional probability 

o µ+Δµ: upper 50% probability band  

 

Table 15 Comprehensive Forecast for Head Wear for Two Segments 

 

 
 

It can be seen from  

Table 15 that the projected lives and replacement dates for the Actual, ARIMA at 50% and 

conditional probability (µ) are relatively close to one another, however, the differences can amount 

to large savings. While the entire model results are presented, it is important to note that in some 

case, actual inspection data may not be available. Thus, the MDN results can be used to show a 

stochastic forecast of when the rail will be required for replacement. When data is available, the 

Actual and ARIMA forecasts can be utilized. The ARIMA forecast range allows for the 

determination of risk, by evaluating what percentage of the rail will exceed the limit at any given 

point in the future. 

 

Summary 

 

The model was applied on two specific rail segments for both the high and low rails. Since 

sufficient data was available to employ all processes, from data alignment to forecast, the entire 

model was utilized. However, if rail segments do not have sufficient inspection data to forecast 

using ARIMA, or even have no inspection data, the MDN process can be used to develop 

conditional probability densities. The probability density distribution can then be utilized to 

forecast rail wear and provide a stochastic range of dates for rail replacement. 

 

Deg Ann MGT Rail MGTo Wo (in) Actual First 50% 100% µ-Δµ µ µ+Δµ

5 31.35 High 477 0.244 1325 1257 1347 1577 1612 1344 1179

7.25 31.35 High 477 0.418 741 706 796 866 781 743 714

5 31.35 Low 557 0.255 1466 1346 1416 1486 1640 1454 1322

7.25 31.35 Low 416 0.598 494 434 484 534 548 533 521

Deg Ann MGT Rail MGTo Wo (in) Actual First 50% 100% µ-Δµ µ µ+Δµ

5 31.35 High 477 0.244 27.1 24.9 27.7 35.1 36.2 27.7 22.4

7.25 31.35 High 477 0.418 8.4 7.3 10.2 12.4 9.7 8.5 7.5

5 31.35 Low 557 0.255 29.0 25.2 27.4 29.6 34.5 28.6 24.4

7.25 31.35 Low 416 0.598 2.5 0.6 2.2 3.8 4.2 3.7 3.3

Rail Lives in MGT

Years to Replacement based on Last Annual MGT

ARIMA MDNHead

Head ARIMA MDN
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The ability to quantify performance through the stochastic classification method allows for 

maintenance interventions, such as lubrication or rail grinding, to extend the life of the rail when 

it is in the early stages of rapid wear. 

The results show consistency between methods as well as reasonable values, as will be discussed 

later in this chapter 

 

System Analysis 

 

While the previous section showed the analysis framework deployed in detail (on a micro level), 

railroads often need to make system wide, or route wide (macro level) decisions. This section 

utilizes a larger subset of data to provide comprehensive results for the line segment being 

analyzed. The primary results used in this analysis are from the MDN component of the model. 

Each rail segment (defined as a curve or tangent stretch of track, averaging 0.25 mile for curves 

and 0.5 mile for tangents) was analyzed to provide an average wear rate in the segment (tangents 

between curves and full bodies of curves). The MDN component was then applied to provide a 

conditional density for each segment. These values were then used to classify the segment and 

forecast annual rail requirements. 

 

Classification 

 

Utilizing the calculated wear rates and the calculated conditional densities for each rail segment, a 

classification parameter was calculated using Equation (5.19). The distribution of classification 

for each rail and wear location are shown in Figure 62. 

 

Recall that C > 50% is well performing rail (lower wear rate), and C < 50% is poor performing 

rail (higher wear rate), with respect to the conditional (expected) wear rate. Rails at the extreme 

tails of the distribution are likely outliers. For example, the high population of 100% rails for the 

high rail gage wear represent calculated wear rate less than zero, which fall very far from the 

conditional wear rate. This calculated wear rate of <= 0 is often a function of the head wear 

outpacing the gage wear, since the location of measurement of the gage wear point changes, and 

may result in an appearance of growth, i.e., appearing as if metal has been added, resulting in a 

negative rate. 

 

Figure 62 shows that the majority of high and low head wear rates are well behaved, falling 

between 40% and 60%, with a mean slightly on the well performing side. There are a number of 

segments at 100% associated with bad data showing negative wear rates, and there are several 

segments < 40% and > 60% that show unexpected performance. 

 

The high rail gage wear rates are flatly distributed and shifted slightly to the well performing side, 

with a large population of outliers. The tangent rail head wear rates are uniformly distributed with 

a slight shift to the poor performing side. The further away from 50% a classification is, the more 

prone it is to require maintenance intervention. Thus, segments should be identified based on their 

classification and investigated. 

 

Thresholds were arbitrarily selected as shown in Table 16, along with counts of segment in the 

respective bands. These thresholds will require verification with railway personnel to ascertain 
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validity. However, it is useful to see the number of segments that require additional attention and 

possible intervention. 

 

 
 

Figure 62 Distribution of wear rate classifications by rail and wear location. 

 

 

Table 16 Distribution of Segments Based on Classification Thresholds and Occurrence 

 

 
 

 

Forecast 
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Utilizing the calculated rate as well as the conditional density rates, several long range 

forecasts can be determined. The same process used in Section 0 is followed, and the results are 

summarized for all the segments. The stochastic forecast for tangent rail is shown in  

Figure 63.  

 

The majority of the tangent rail still has more than 30 years of service life remaining with respect 

to wear. This is as expected since tangent rail is most often replaced due to fatigue. While the 

stochastic forecast using the expected rate compares well with the actual rate forecast, probability 

band forecast allows for understanding the possible fluctuation in rail replacement requirements 

over time.  

 

 
 

Figure 63 Forecast for tangent rail for entire route. 

 

The low rail forecast is shown in  

Figure 64. This forecast shows that the forecast from the actual rate and expected rate are nearly 

identical, thus, the model can be used for a similar route to make predictions where no inspection 

data may be available. This forecast also shows a large amount of rail due within the next 10 years, 

and in fact, in year 10, while 24 miles is expected to be required, this could be between 21 and 29 

miles of rail. 
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Figure 64 Forecast for low rail for entire route. 

 

The forecast for the high rail is provided in Figure 65. Note that this forecast was developed 

considering both head wear rate and gage wear rate to determine the controlling wear rate. The 

results showed that 85% of the segments required replacement due to head wear. Rail requirements 

for the high rail are similar to those of the low rail. 

 

 
 

Figure 65 Forecast for high rail for entire route. 

 

0

5

10

15

20

25

30

35

< 
0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0

0

1
0

5

1
1

0

1
1

5

1
2

0

> 
1

2
0

M
il

es
 o

f R
a

il

Years to Replacement

Low Rail Rail Forecast

Actual µ-Δµ µ µ+Δµ

0

5

10

15

20

25

30

35

40

< 
0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0

0

1
0

5

1
1

0

1
1

5

1
2

0

> 
12

0

M
il

es
 o

f R
a

il

Years to Replacement

High Rail Forecast

Actual µ-Δµ µ µ+Δµ



98 

 

To better understand the overall requirements by rail, Figure 66 shows the forecast for each rail 

position (tangent, low and high) utilizing the conditional rate (µ). The forecast shows that the low 

rail is requiring replacement slightly sooner than the high rail, and that the tangent rails are pushed 

further out in time. The proximity of the high and low rail forecasts allows for determining if both 

rails in a curve should be replaced simultaneously, or if one of the rails should remain in track a 

few years longer to maximize asset life. 

 

Finally, the forecast for the tangent, low and high rails are summed to give an overall rail 

requirement by year (See  Figure 67). This figure clearly shows the variation in rail requirements over time, as well as the 

stochastic nature of the forecast. 

 

 
 

Figure 66 Forecast by rail location for the conditional wear rate, µ. 
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Figure 67 Total forecast for entire route. 

 

Discussion 

 

Utilizing the stochastic processes to determine rail requirements for an entire route (or railroad) as 

well as classify the rail segments as to their wear performance allows for better decision making 

with regard to rail maintenance and renewal. The similarities in forecast with the actual wear rate 

and the conditional wear rate lend validation to using the MDN model as a first step in forecasting 

when inspection data is limited. 

 

It is important to understand the life of the rail. The conditional model allows for the comparison 

of rail wear lives. While the many input factors have a direct effect on the wear rate and its resulting 

life, a simple calculation of the median rail wear life is useful, and is shown in Table 17. This table 

shows median rail wear lives in accumulated MGT. Of course, evaluating the effects of the causal 

factors, and defining maintenance interventions to prolong rail life is of paramount importance to 

the railways.  

 

Table 17 Median Rail Wear Lives by Rail 

 

 
 

Taking advantage of the stochastic nature of the model allows for changing the central probability 

band and understanding the risks associated with the unknown latent variables, and their effects 

on rail requirements. 
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Utilizing the forecast lives, a comprehensive maintenance and renewal plan can be developed. This 

can often be challenging, in that practical and logistical concerns must be accounted for.  

 



101 

 

CONCLUDING REMARKS 

 

The focus of this research was developing a new approach to rail wear modeling utilizing available 

data and emerging data science analysis techniques. Wear, including wear of rail steels, has been 

the topic of extensive research for well over 100 years. Rail steel is expensive and is a vital asset 

to the railway in order to maintain safe and reliable operations. 

 

Much research has been performed in the laboratory to understand the relationships of load, contact 

geometry, metallurgy and lubrication to understand the effects of these components on wear rate, 

predominantly in the form of wear coefficients. Several in depth field studies have been conducted 

to monitor wear and relate the rate of wear to everyday railway conditions and operations. 

However, the many factors that affect rail wear are not, or cannot, be measured in practice. Thus, 

all things being equal, a rail may wear at different rates even at the same location. 

 

Inspection data is readily available to railways in the form of rail profiles and corresponding lineal 

wear measurements at specific locations across the railhead. These inspections can be quite 

frequent (weekly) and result in a tremendous amount of wear data. Significant factors that affect 

rail wear are also known or measured during inspections. This data has been used in the past to 

develop rail wear models, as well as linearly forecast rail wear with some success. However, 

shortcomings due to unknowns made the forecasts less reliable. 

 

The focus of this research was to address some of these shortcomings using stochastic processes 

to determine ranges of more reliable forecasts, thus taking advantage of the variation in the data, 

which was directly related to the unknowns. With the continued development of low cost 

computing power, and emergence of advance data science techniques, the ability to better 

understand the variance in measured data was made possible. 

 

Stochastic techniques were adapted, incorporating Laplace distribution parameters, formally 

unknown to the industry, and were made immediately apparent in the Exploratory Data analysis. 

ARIMA processing of segments for forecasting, and MDNs for developing conditional density 

functions for each rail segment resulted in stochastic classification and forecasts that can be used 

to make better maintenance and renewal decisions. 

 

Impact of the Research 

 

The results of the research have direct impact on the railway industry for optimizing rail 

maintenance and renewal. In particular, the ability to classify a rail segment’s wear performance 

allows the railway engineer to make more informed decision regarding maintenance. Some 

examples include: 

 

• Determine why a rail segment is performing better than expected: 

o Better rail emetallurgy? 

o Better lubrication practices? 

o Optimal grinding? 

o Better vertical support? 

o Proper curve geometry; elevation, length of spirals? 
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• Determine why a rail segment is performing worse than expected: 

o Poor track geometry, rough track? 

o Improperly elevated curves for speed of operations? 

o Lubrication ineffective? 

o Improper grinding, or transverse rail profile? 

• Monitor the as expected wear rates: 

o Compare routes 

o Compare over time to see if improving in general 

 

In addition, the approaches developed can be applied to other readily available inspection data for 

various railway assets. 

 

Challenges 

 

The data that was used for this research was in poor condition. Some of the inspection data was 

obviously out of calibration. While algorithms were put into the code to clean up the data, they 

were not 100% effective. 

 

Only 277 miles of data were used for this research, from a railway that has 20,000+ miles of track. 

More data (and cleaner data) would help to improve the models. In addition, access to the data was 

difficult, and code scripts to import and manage the data would accelerate the research. 

 

The data is quite large. Analyzing an entire railway may be beyond the capabilities of personal 

computer, thus, access to higher power computing resources is required. 

 

Conclusions 

 

The results of the stochastic modeling proved to be useful and reliable when validating the 

techniques developed and adapted herein.  

 

The data showed explicitly that rail wear rates do in fact vary significantly based on many factors, 

and that for like segments (all known factors being equal), there is still variation with the measured 

wear data (and corresponding wear rates). This is due to the unknown factors manifesting 

themselves into the inspection data. The wear rate data was observed to follow a Laplace 

distribution, with defined mean and variance. 

 

Traditional modeling techniques have focused on predicting target values based on independent 

variables, calibrated to laboratory and field experience. The stochastic approach developed herein 

(Rail-WASP) derives suitable ranges of results that are a direct function of the knowns and 

unknowns, in particular, the conditional mean and conditional variance. While traditional methods 

allow for developing expected values, the stochastic methodology allows for understanding a range 

of expected values, thus allowing practitioners to better understand time to failure, and associated 

risk. 
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As a comparison, Rail-WASP was evaluated against the Reiner-Staplin model (Reiner & Staplin, 

1984), as this model provided related results for primary inputs used in Rail-WASP. Specifically, 

the Reiner-Staplin model was evaluated for the following parameters: 

 

• Axle Load: P = 32.9 kips 

• Annual MGT: T = 30 MGT/year 

• Wear Limit: Wt = Wc = 5/8 inch 

• Grade: G = 0% - 1% 

• Curvature: D = 0 ̊- 14 ̊

• Constants: Kt = Kc = 0.3 

• Note that Reiner-Staplin used a value of 1.0 for standard carbon rail with no lubrication for rail 

rolled in the 1960’s and 1970’s, while Rail-Wasp was evaluated for rail rolled in 2000. Rail 

hardness has increased significantly over that time period. The FAST report (Steele, 1982) 

concluded that the effect of hardness (H) for non-lubricated rail on wear rate (W) is of the form: 

log(W) = -0.014-0.0066H. Per the FAST report, assuming standard carbon rail to have a 

hardness H = 26018, and 2000 rail to have a hardness, H = 34019, results in a reduction of the 

coefficient from 1.0 to 0.3. 

• The corrosion component of the Reiner-Staplin equation was ignored (set to zero) as the wear 

rates developed in Rail-Wasp were over a shorter timeframe (6 years), whereby significant 

corrosion would not contribute to the overall wear. 

 

 

The results of this comparison are presented for 136RE rail at 20 mph operating speed, no 

lubrication and 30 MGT/year. The Reiner-Staplin model results in a rail life in accumulated MGT 

and was transformed to a wear rate (inches/MGT) by dividing the life in MGT into the wear limit 

in inches, to be consistent with Rail-WASP. Figure 68 and Figure 69 show the comparison for of 

Rail-WASP and the Reiner-Staplin model for tangent rail and the low rail in a curve respectively. 

 

Figure 68 shows that Rail-WASP has slightly more sensitivity to grade and predicts better wear 

performance of the tangent rail than the Reiner-Staplin model. In particular, it is important to note 

the conditional variance of the predicted wear rate. 

 

                                                
18 Representative of rail hardness for standard rail during the time period of the Reiner-Staplin 

model. 

19 Representative of modern rail steels. 
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Figure 68 Comparison of Rail-WASP and Reiner-Staplin for tangent rail as a function of 

grade. 

 

 
 

Figure 69 Comparison of Rail-WASP and Reiner-Staplin for the low rail as a function of 

curvature. 
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Figure 69 shows that the data used to develop Rail-WASP does not show a significant effect to 

curvature (as does the Reiner-Staplin model20), though the trend is clearly the same. Again, the 

conditional variance provides a range of expected wear rates.  

 

Having an acceptable range of expected wear rates as output allows the railway engineer to develop 

of range of expected renewal dates, with corresponding probability (classification) using the 

Laplace distribution.  

 

In addition, a measured wear rate can be compared to the expected conditional distribution to 

classify the performance of a particular rail segment. This can be extremely valuable for 

identifying rail segments that are candidates for maintenance intervention (lubrication, grinding) 

to extend the life of the rail, which has significant economic returns. 

 

Finally, the approach developed herein allows the railway engineer to make more informed 

decisions as to rail maintenance and renewal, at both the system and subsystem level. This allows 

for better control of risk associated with the structural integrity of the rail, and is particularly true 

when budget constraints are imposed. 

  

 

 

 

  

                                                
20 Note that the Reiner-Staplin model provides a rail life value for curved rail and does not identify 

rail location or rail mode. For this comparison the low rail head wear model from Rail-WASP was 

utilized. 
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