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ABSTRACT 
 
The quality of track geometry is directly linked to vehicle safety, reliability and ride quality. The 
performance of track is therefore considerably hindered when track geometry indicators deviate 
from the specified and approved limits due to loads and continuous usage. Information obtained 
from the analysis of track geometry data can inform the prompt application of preventive and 
corrective maintenance measures like tamping, to increase the lifespan of the track and provide 
higher train speeds, optimizing track performance. Recently, there has been the application of 
Bayesian statistical methods in track degradation models. However, most models rely heavily on 
likelihood functions which are intractable. The aim of this paper is to apply Approximate Bayesian 
Computation (ABC), also known as the likelihood-free method, in estimating Track Quality 
Indices (TQIs) which are essential for track degradation modeling.  ABC is applied using methods 
like the rejection algorithm and Markov Chain Monte Carlo (MCMC). In ABC, it is essential that 
summary statistics are computed from the observed data followed by the simulation of summary 
statistics for different parameter values. Two ABC-MCMC algorithms were used for parameter 
estimation in this paper. Although ABC is computationally expensive, it was successfully applied 
in TQI estimation in this paper.  
 
Keywords: Railway, Track Geometry, Track Degradation, Approximate Bayesian Computation, 
Bayesian Statistics, Markov Chain Monte Carlo. 
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INTRODUCTION 
 
The modern society recognizes the railway transportation system as an important and invaluable 
element of its structure.  Research has shown that the global railway system market is estimated to 
grow at a Compound annual growth rate of 5.2%, from USD 26.0 billion in 2019 to USD 35.3 
billion by 2025 [1]. This growth is due to the increase in demand for passenger and goods 
transportation. The demand also comes with the need to transport the passengers and goods at 
higher speeds and in larger numbers. The speed and weight of modern trains have a direct impact 
on static and dynamic forces that influence track geometry and therefore, track degradation. The 
quality of track geometry is directly linked to vehicle safety, reliability and ride quality.  The 
performance of track is therefore considerably hindered when track geometry indicators deviate 
from the specified and approved limits due to loads and continuous usage.  Information obtained 
from the analysis of track geometry data can inform the prompt application of preventive and 
corrective maintenance measures like tamping, to increase the lifespan of the track and provide 
higher train speeds, optimizing track performance.  Recently, there has been the application of 
Bayesian statistical methods in track degradation models.  However, most models rely heavily on 
likelihood functions which are not available. The purpose of this paper is to demonstrate the 
application of Approximate Bayesian Computation (ABC), also known as the likelihood-free 
method, in predicting Track Quality Indices (TQIs) for track degradation modeling.   
 
LITERATURE REVIEW 
 
Track Geometry  
 
The Federal Railroad Administration (FRA) Automated Track Inspection Program (ATIP) is in 
charge of collecting track geometry, ride quality and additional track related data on the United 
States rail transportation network [2]. Track geometry defects can be detected by visual inspection, 
in line with FRA requirements and these inspections could be performed biweekly for mainline in 
Class 4 and Class 5 tracks. Track geometry cars are also used to collect data on track geometry 
parameters and the data is stored in a Track Data Management System (TDMS) which has 
functions of track data manipulation, data viewing, record keeping, and route scheduling [2].  
Track geometry is measured regularly in order to identify any defects that could compromise safety 
and good ride quality. Track Geometry may be defined as the three-dimensional geometry of track 
layouts and related measurements used in design, construction and maintenance of railroad tracks 
[1]. The information collected through track geometry measurement is used in maintenance 
planning, reduction of costs and reduction in the risk of emergency maintenance. The main track 
geometry parameters measured are Gage, Alignment, Cant/ Crosslevel, Surface/Profile and Twist. 
FIGURE 1 shows how the various parameters are measured. 
 

• Gage: It is measured between the rail heads at right‐angles to the rails five‐eighths of an 
inch below the top of the rail head. The limits of the gage differ according to the class of 
track. For instance for Class 2 and 3 track, the gauge must be at least 4’ 8” and not more 
than 4’ 10”. 

• Alignment: is done by using a predefined length of string line to measure along the gauge 
side of the reference rail. It is the distance from the midpoint of the string line to the gauge 
of the reference rail. The design horizontal alignment for tangent track is zero (perfect 



straight line on the horizontal layout). In the United States the design horizontal alignment 
on the curved track is 1 inch for each degree of curvature. 

• Cant/ Crosslevel: It is the difference in height between two rails. Maximum cant is usually 
regulated to control the unloading of the high rail wheels at low speeds. 

• Surface/ Profile: The Surface/ Profile is the surface uniformity in the vertical plane. The 
measurement of uniformity is done using a predefined length of string line (normally the 
same length used in horizontal alignment) along the track. If the midpoint of the 
measurement has higher elevation, it is called hump deviation. On the other hand, if the 
midpoint has lower elevation, it is called dip deviation. 

• Twist: It is the difference in crosslevel of any two points within the specific distance along 
the track.  

 
 

 
 

FIGURE 1  Some track geometry parameters [3] 
 
Track Quality Index (TQI) 
 
Track is divided into numerous short segments in order to assess track condition and also for the 
purpose of obtaining different statistical measures from them. The statistics obtained are then 
summed up and used to assess the overall quality of the track segment. The measures used to assess 
the track quality, particularly the deviations from the standard measures are called Track Quality 
Indices (TQIs). TQIs are used to assess railway track performance indicators, design interventions 
to improve track quality, and to compare and contrast track performances before and after the 
interventions are been applied [4]. There are eight main statistics used worldwide to assess the 
quality of track segments [4]. These statistics are presented below. 
 
SD Index 



SD index is made of different standard deviations for each parameter. Each different standard 
deviation is related to a unique track quality parameter and is calculated from measured values of 
the parameter over a track segment using Equation 1[4]. Higher values of the SD index indicate 
that track segments are in bad condition.  The formulation of the SD index is 
 

 𝜎𝜎𝑖𝑖 = �1
𝑛𝑛
∑ (𝑥𝑥𝑖𝑖𝑖𝑖2 −  �̅�𝑥𝑖𝑖2)𝑛𝑛
𝑖𝑖=1 ,                                                                                                           (1) 
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𝑛𝑛

𝑛𝑛
𝑖𝑖=1 , 

 
where, 
 
𝜎𝜎𝑖𝑖 = standard deviation of a quality parameter in mm 
𝑥𝑥𝑖𝑖𝑖𝑖 = Measurement value in mm for the parameter at the jth sampling point in the track segment 
n = number of sampling points in the track segment. 
 
Q Index 
In the Netherlands, ProRail converts the SD index into a universal form across different classes of 
tracks, as shown in Equation 2[4]. The Q index ranges from 0 to 10. The higher the Q index value, 
the better the track quality of a 200 m long track segment. 
 

𝑁𝑁 = 10 ∗ 0.675
𝜎𝜎𝑖𝑖
𝜎𝜎𝑖𝑖80                                                                                                                    (2) 

 
Where,  
 
N = Q index for a quality parameter over a 200 m long track segment, 
𝜎𝜎𝑖𝑖 = standard deviation for the quality parameter, 
𝜎𝜎𝑖𝑖80 =  80th percentile of standard deviations for 200 m long segments in a maintenance section 
ranging in length from 5 to 10 km). 
 
Track Geometry Index 
In order to measure the quality of a track segment, the Track geometry index (𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖) uses the 
measurement value space curve length, 𝐿𝐿𝑖𝑖 for a quality parameter over a track segment as shown 
in Equation 3. A higher the value, the worse the track segment quality. 
 

𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 = �
𝐿𝐿𝑖𝑖
𝐿𝐿𝑜𝑜
− 1� ∗  106 

𝐿𝐿𝑖𝑖 = ∑ ��𝑥𝑥𝑖𝑖(𝑖𝑖+1) − 𝑥𝑥𝑖𝑖𝑖𝑖�
2

+ �𝑦𝑦𝑖𝑖+1 − 𝑦𝑦𝑖𝑖�
2𝑛𝑛−1

𝑖𝑖=1 ,                                                                          (3) 
 
Where, 
 
𝐿𝐿𝑖𝑖 = measurement value space curve length for a quality parameter over a track segment 
𝐿𝐿𝑜𝑜 = length of the track segment 
𝑦𝑦𝑖𝑖 = milepoint of the jth sampling point on the track segment 
 



Track Roughness Index 
In 1998, Track Roughness Index was proposed by Amtrak [4]. It is defined as the average of 
squared measurement value for a quality parameter over a track segment (Equation 4). 
 

𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 = ∑ �𝑥𝑥𝑖𝑖𝑖𝑖�
2

𝑛𝑛
𝑛𝑛
𝑖𝑖=1                                                                                                                       (4) 

 
CN’s Track Quality Index 
Canadian National Railway Company (CN) developed a measure whereby a 2nd order polynomial 
equation of the standard deviation of measurement values is used for a track quality parameter for 
track segments in order to assess its partial quality (Equation 5).  
 
𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 = 1000 − 𝐶𝐶 ∗ 𝜎𝜎𝑖𝑖2                                                                                                              (5) 
 
Where: 
 C = a constant which has a maximum value of 700 for the main line tracks.  
𝜎𝜎𝑖𝑖 = standard deviation for the parameter 
 
The overall quality assessment is obtained by calculating the average of six partial quality indices 
for gauge, cross level, left (right) surface, and left (right) alignment. Tracks with better quality 
have higher values for track quality index. 
 
P Index 
Japanese railroads use the P index for the assessment of track quality and it is calculated by finding 
the ratio of the number of sampling points whose quality parameter measurements fall outside 
±3mm to the number of all sampling points in a track segment [5]. The P index is applied to two 
specific lengths of track segments, 100 m and 500 m. The larger the P index, the worse the quality 
of the track segment. 
 
SNCF’s Mean Deviation Indices 
SNCF’s indices are quite different from the above mentioned indices. Standard deviations are not 
used in this case. Instead, the weighted moving average over a track segment is used. This is 
formulated in Equation 6. 
 
𝑇𝑇𝐿𝐿𝑖𝑖(𝑦𝑦0) = 1

300 ∫ 𝜂𝜂𝑖𝑖𝑦𝑦0
−∞ (𝑦𝑦) 𝑒𝑒𝑥𝑥𝑒𝑒 �𝑦𝑦−𝑦𝑦0

300
� 𝑑𝑑𝑦𝑦                                                                                   (6) 

 
Where, 
𝑦𝑦0 =  maximum milepoint value in the track segment 
𝜂𝜂𝑖𝑖(𝑦𝑦) = measurement data for a quality parameter at the milepoint y. 
 
Chinese Track Quality Index 
The Chinese Track Quality Index is similar to the SD index. The national railroads, as well as the 
Nanjing Metro in China mainland use the sum of standard deviations of seven quality parameters 
to evaluate the general track quality of a track segment using Equation 7. The two lengths used for 
the overall track quality assessment are 200 m and 500 m. The track length of 500 m is used for 
high-speed railroads. The higher the TQI value, the worse the condition of the track segment. 
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Track Degradation 
 
Changes in track geometry occur with time after repeated traffic loading resulting in track 
settlement. This settlement occurs in two phases [6]:  
 
1. Immediately after tamping, the settlement occurs rapidly until the gaps between the ballast 
particles have been reduced and the ballast is consolidated. 
 2. The second phase of settlement occurs less rapidly and there is a nearly linear relationship 
between settlement and time (or load). 
 
Track geometry degradation is assessed with the aforementioned track geometry parameters. 
Researchers have used both statistical and mechanistic approaches to assess and predict the 
deterioration in track geometry. Due to the high levels of uncertainty involved in maintenance, 
Bayesian methods have been employed by various researchers to predict track geometry 
degradation thorough its life-cycle. Andrade and Teixeira [7] built up a framework that updated 
the uncertainty in rail track geometry degradation throughout its life-cycle. The results from their 
study showed that at the design stage, the uncertainty associated with degradation rates was very 
high, but reduced drastically as more inspection data was collected. They proposed that 
maintenance costs assessments related to track geometry degradation should not be assessed at the 
design stage based only on the prior probability distributions of the degradation model parameters. 
Instead, they suggested that these costs should be assessed only after a ‘warm-up’ period of 
operation based on their posterior probability distributions. 
 
Markov Chain Monte Carlo methods have been adopted in different variations of Bayesian models 
for track geometry degradation for example Hierarchical Bayesian [7] and Hybrid Bayesian-
Wiener models [3]. The Hierarchical Bayesian study modeled the two quality indicators related to 
railway track geometry degradation which are the standard deviation of longitudinal level (SDLL) 
defects and the standard deviation of horizontal alignment defects (SDHA) [8].  The outcome of 
the research was that Hierarchical Bayesian models exhibited a worse fit of SDHA compared to 
the quality indicator SDLL which led to the conclusion that the horizontal alignment defects 
appeared to be less predictable. The Hybrid Bayesian-Wiener Process was also used to formulate 
track geometry degradation [3].  The Wiener process sample paths simulated using the output from 
the adaptive Metropolis-Hastings algorithm [3] showed that the predicted sample paths were able 
to capture the variability of the degradation process by bounding the observed degradation data 
points.  



Sequential Monte Carlo methods were adopted to test and rank different prognostics models and 
algorithms for railway track degradation [9]. The researchers proposed this Bayesian model class 
methodology for prognostics performance assessment where various prognostics algorithms could 
be thoroughly assessed and ordered based on their relative probability to predict the future 
degradation process.  
 
Approximate Bayesian Computation 

The Approximate Bayesian computation (ABC) method has its roots in Bayes’ Theorem, P(θ |D) 
= P(D|θ)P(θ)/P(D) where P(θ |D) is the probability of the parameters given the data, P(D|θ)  is 
the probability of the data given the parameters, P(θ)  is the probability of the parameters and P(D) 
is the probability of the data. In interpreting Bayes Theorem, the conditional probabilities represent 
what is known as the degree of belief. These beliefs about the parameters θ can be updated as more 
information or evidence is gathered about the data, D. The prior, P (D), is the initial degree of 
belief in D. P(θ |D), the posterior, is the degree of belief having accounted for D. P(D|θ)/P(D) is 
the quotient that represents the support D provides for θ and the expression P(D|θ) is proportional 
to the likelihood function. Researchers have developed ways to compute likelihood functions using 
various methods that approximate these functions. Case in point, methods like h-likelihood, 
variational approximations, local likelihood, composite likelihood, weighted likelihood, indirect 
inference, quasi-likelihood and Laplacian approximations have been explored and executed. 
Instead of applying these methods, there exists a category of methods/ techniques that can be used 
to estimate the posterior while bypassing the computation of expensive likelihood functions known 
as Approximate Bayesian computation (ABC). 
 
Approximate Bayesian computation (ABC) is a group of methods used for the analysis of complex 
stochastic models whose posterior distributions are difficult to compute because of intractable 
likelihood functions. ABC bypasses the computation of likelihood functions to compute a posterior 
that is approximate to the actual posterior distribution through simulations which involve sampling 
distribution [10]. Rubin introduced the ABC idea in the early 1980’s in an attempt to provide 
bayesianly justifiable calculations for use in applied statistics [11]. He suggested that this method 
of sampling would be appropriate as a way around complex likelihood functions with lower 
dimensional data. The algorithm he suggested at the time would later be known as the ABC 
rejection algorithm. After its conceptual introduction, ABC was developed by Pritchard et al [12] 
where they did model simulations that produced an artificial data set. ABC has been applied in 
different disciplines like the fields of Genetics [13], Cosmology and Astrophysics [14], and 
Environmental Engineering [15] , and is steadily gaining popularity in Mechanical Engineering 
[16][17].  
 
ABC is comparable to the Method of Least Squares but the difference lies in the objectives of both 
methods [18]. While the Method of Least Squares is used to find point estimates of parameters by 
minimizing the sum of offsets or residuals, ABC is used to estimate the posterior distribution of 
parameters. The ABC posterior distribution is denoted PABC (θ |D) = P (θ|δ (D,𝐷𝐷�) < ϵ). ABC 
approximates the posterior with a set of simulated summary statistics. In order to bypass the 
likelihood function, ABC relies on a distance function δ(·,·) to compare statistics from the 
simulated data 𝐷𝐷�  to the data D that was observed. This method of simulating data to compare to 
observed data in order to estimate model parameters is not new in the field research [19]. The ABC 



algorithm works as follows: The method samples values of the parameter from the prior 
distribution P(θ). This prior could be for example, a binomial distribution of each parameter. The 
prior could be subjective, objective and informative, or noninformative. The subjectivity of a prior 
means that it is based on the experimenter’s personal belief. A prior is said to be objective and 
informative if it is either based on historical data on the distribution of parameter values or based 
on data from experiments preceding the one being undertaken. A noninformative prior is one that 
expresses ignorance as to the value of the parameter. In Approximate Bayesian Computation, the 
posterior will mainly reflect the observational data so long as the prior is suitably noninformative.  
The rate of rejection of the simulated data tends to be higher if the prior is unlike the posterior 
thereby increasing computational costs.  
 
When the parameter values are chosen, a dataset 𝐷𝐷�(with summary statistics 𝑆𝑆� ) is simulated from 
the prior distribution which has the same number of observations as the observed data set D (with 
summary statistics S). This step is taken in order to make sure that the distribution and summary 
statistics of the simulated data 𝐷𝐷� match that of the observed data D.  The summary statistics of the 
simulated data (�̂�𝑆) and the observed data (S) are compared by computing a distance between them 
represented by a predefined distance function δ (D,𝐷𝐷�). If δ (D,𝐷𝐷�) is small enough(less than ϵ 
(tolerance)), then the simulated data 𝐷𝐷� is comparable to the observed data D such that there is a 
high probability that the observed parameters of the data have an approximate posterior 
distribution P (θ|δ (D,𝐷𝐷�) < ϵ).  The parameters are therefore accepted if δ(D,𝐷𝐷�) is less than or equal 
to the associated threshold ϵ or rejected if the threshold is exceeded. The ABC rejection algorithm 
is summarized in FIGURE 2. 
 
It is worth mentioning that some summary statistics provide more information about some 
parameters than others. This is why it is required that the summary statistics used in ABC should 
be “sufficient”. This sufficiency means that the statistics should be chosen in such a way that it 
represents all or as much of the information about the parameter θ included in the data, D.  In doing 
so, ABC is then able to approximate the full posterior. The posterior can then be written as δ (θ | 
D) = δ (θ | S). In addition, to estimate the exact posterior, δ (D,𝐷𝐷�) must be chosen in a way that δ 
(θ | D) = δ (θ | S) ≈ P (θ|δ (D,𝐷𝐷�) < ϵ). The process of choosing δ (D,𝐷𝐷�) could be quite complicated 
since it does depend on the unknown likelihood function. Nonetheless, it has been shown that 
depending on the statistics used for different models, the choice of δ (D,𝐷𝐷�) could be quite robust 
[18]. Apart from the basic ABC rejection algorithm in which approximate data is simulated from 
a predetermined prior, there are more complex ABC algorithms that improve upon the basic 
rejection algorithm. In this paper, Markov Chain Monte Carlo ABC methods will be applied in the 
analysis of track geometry data.  



 
 

FIGURE 2  ABC Rejection Algorithm 
 
CASE STUDY 
 
Data preparation 
The dataset used in this paper was from a US Class I railroad. For every foot of track covered by 
the track geometry car, data related to track geometry parameters was collected. Data for the case 
study was distance based track geometry data that consisted of 253602 records and 37 variables/ 
field names. The track geometry parameters in the dataset include:  
 

a. Track surface, left rail 79ft space curve  
b. Track surface, right rail 79ft space curve  
c. Track alignment, left rail 79ft space curve  
d. Track alignment, right rail 79ft space curve  
e. Track alignment, left rail 31 ft chord  
f. Track alignment, right rail 31 ft chord  
g. Track alignment, left rail 62 ft chord 
h. Track alignment, right rail 62 ft chord  
i. Track alignment, left rail 124 ft chord  
j. Track alignment, right rail 124 ft chord  
k. Track surface, left rail 22ft chord  
l. Track surface, right rail 22ft chord  
m. Track surface, left rail 31ft chord  
n. Track surface, right rail 31ft chord  
o. Track surface, left rail 62ft chord  
p. Track surface, right rail 62ft chord  
q. Track surface, left rail 124ft chord 
r. Track surface, right rail 124ft chord 

4. If ||S - �̂�𝑆i|| ≤ Є
output θi

3. Calculate  distance ||S -
�̂�𝑆i||

2. Simulate approximate data 
xi ~ Pθi

1. Generate θi ~ P(θ)

P(θ)
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P(x|θ1)
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θ2

P(x|θ2)
x2

S2

≈ So

θm......
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s. Rail Cant, left rail  
t. Rail Cant, right rail 

 
The units for the above variables is mm * 100.  
 
The initial inspection of the data prior to analysis revealed that there were no missing values or 
irregularities. Three 200 ft segments (named L1, L2 and L3) were subsequently selected from the 
data for the case study. The two variables selected for analysis were Track surface, left rail 31ft 
chord (SURF_31_L) and Track alignment, left rail 31 (ALIGN_31_L). For the sake of simplicity, 
they will be referred to as the Surface and Alignment parameters. 
 
METHODOLOGY 
 
ABC methods 
 
The fundamental Approximate Bayesian Computation algorithm has been updated, improved and 
extended by several researchers over the years. Choosing summary statistics is an important step 
in ABC and the reduction of dimensionality in data increases its efficiency[20]. The curse of 
dimensionality subsequently comes into play when the rejection algorithm is used such that large 
numbers of simulations have to be run to obtain an adequate number of accepted runs, resulting in 
inefficiency [20].  To solve this problem, it has been suggested that ABC be combined with 
Markov Chain Monte Carlo (MCMC) principles [21]. MCMC allows one to characterize a 
distribution without knowing the mathematical properties of the distribution [22].  This is done by 
randomly sampling values out of the distribution. It offers the advantage of being used to draw 
samples from distributions even when the only thing known about the distribution is how to 
calculate the density for different samples [22].  This paper focuses on two methods of performing 
ABC-MCMC proposed by different researchers. 
 
Marjoram Method 
The first method to be discussed and used in this research was presented by Marjoram et al. [21]. 
They first proposed the ABC-MCMC likelihood-free approach. These researchers demonstrated 
that a Markov chain where simulated data is accepted when equal to the observed data D, and 
rejected if it is different form the observed, converges to the right posterior distribution. They 
suggested that for complex data sets, summary statistics should be used to replace the full data, 
just as in the traditional ABC. The algorithm proposed [21], which will be referred to as the 
Marjoram Algorithm in this paper is as follows: 
 

Step 1. If now at θ propose a move to θ’ according to a transition kernel 𝑞𝑞(𝜃𝜃 → 𝜃𝜃′). 
Step 2. Generate 𝐷𝐷′ using model 𝑀𝑀 with parameters 𝜃𝜃′. 
Step 3. If 𝐷𝐷′ = 𝐷𝐷, go to Step 4, and otherwise stay at θ and return to Step 1.  
Step 4. Calculate  

               ℎ = ℎ(𝜃𝜃,𝜃𝜃′) = min �1, 𝑃𝑃(𝜃𝜃′)𝑞𝑞(𝜃𝜃′→𝜃𝜃)
𝑃𝑃(𝜃𝜃′)𝑞𝑞(𝜃𝜃→𝜃𝜃′)

�                                                          (8) 
 

Step 5. Accept 𝜃𝜃′ with probability ℎ and otherwise stay at 𝜃𝜃, then return to Step 1. 
 



Wegmann Method 
The second technique, by Wegmann et al. [23] introduced the idea of using partial least-squares 
(PLS) transformation in the choice of summary statistics for ABC-MCMC.  PLS regression seeks 
linear combinations of the original summary statistics which are simultaneously maximally 
decorrelated and have high correlation with the parameters [24].  
 
PLS is comparable to Principal Component Analysis (PCA) in that instead of finding linear 
combinations that maximize the explained variance in the summary statistics space, PLS 
components are chosen to maximize the product of the variance among summary statistics and the 
covariance between parameters and statistics [25]. The algorithm proposed, which will be referred 
to as the Wegmann Algorithm  in this paper is as follows [25]: 

 
Step 1. Perform 𝑛𝑛 simulations with parameters 𝜃𝜃′ randomly drawn from their priors, and 

each time compute their associated set of summary statistics 𝑆𝑆′.  
Step 2. Compute PLS components from the n 𝜃𝜃′ and  𝑆𝑆′ vectors. 
Step 3. For all n simulations, transform their associated summary statistics  𝑆𝑆′  into k 

retained PLS components, as  𝑆𝑆′PLS. Transform the observed summary statistics S 
as 𝑆𝑆PLS and compute pn (δ| 𝑆𝑆PLS, 𝜃𝜃). 

Step 4. Fix ϵ, estimate δϵ from pn (δ| 𝑆𝑆PLS, 𝜃𝜃), and set the proposal range of the parameters 
(for the transition kernel 𝑞𝑞(𝜃𝜃 → 𝜃𝜃′)  based on 𝜌𝜌   and the variability of the 
parameters among the nϵ retained simulations. 

Step 5. Start an MCMC chain of total length s from a position θ randomly chosen from the 
nϵ simulations closest to D. Set i = 0. 

Step 6. If now at θ, propose a move to 𝜃𝜃′  according to a transition kernel 𝑞𝑞(𝜃𝜃 → 𝜃𝜃′). 
Increment i. 

Step 7. Simulate 𝐷𝐷′ based on 𝜃𝜃′. Compute the summary statistics  𝑆𝑆′ and transform them 
into  𝑆𝑆′PLS. 

Step 8. If δi = || 𝑆𝑆′PLS - 𝑆𝑆PLS|| ≥ δϵ  stay at 𝜃𝜃 and go to Step 10. 
Step 9. Accept  𝜃𝜃′ with probability min �1, 𝑃𝑃(𝜃𝜃′)𝑞𝑞(𝜃𝜃′→𝜃𝜃)

𝑃𝑃(𝜃𝜃′)𝑞𝑞(𝜃𝜃→𝜃𝜃′)
�, else stay at 𝜃𝜃. 

Step 10. If i < s go to Step 6. 

In this paper, the focus is estimating the posterior distribution of TQIs for different track segments. 
Non-informative priors (uniform distribution) were used to minimize subjective assessments 
which could impact the posterior distribution. The ABC-MCMC chain was calibrated from 10,000 
simulations conducted under the prior. The length of the “burn in” period for the Markov chain 
was 2000. The Markov Chain was allowed to “burn in” in order for it to enter a high probability 
region where the state of the Markov chain is more representative of the distribution being sampled. 
 
Results and Discussion 
 
For track lengths L1, L2 and L3, ABC-MCMC was performed using both the Marjoram and 
Wegmann algorithms for the Surface and Alignment parameters. The resulting Markov chains for 
each length and algorithm were then plotted. To visually assess model convergence, trace plots, 
density plots and autocorrelation plots were employed. The process of assessing the Markov chain 



convergence is extremely important because valid inferences cannot be drawn if the chain does 
not converge. Assessing convergence of a chain could however prove difficult since chains do not 
converge to a fixed point but rather to a distribution.  The test of stationarity in this paper is the 
Heidelberg and Welch diagnostic test. Subsequently, the approximated posterior distributions are 
presented and compared to the actual distributions with the aid of density plots. Finally, cross-
validation was performed and the accuracy obtained was reported. 
 
Trace Plots 
The trace plots in the top row were produced by applying the Marjoram Algorithm to lengths L1, 
L2 and L3, in that order. Figure 3A contains the trace plots for the Surface parameter. The trace 
plots on the bottom row were also obtained by applying the Wegmann Algorithm to lengths L1, 
L2 and L3, in that order. Figure 3B, contains the trace plots for the Alignment parameter. As was 
done for the Surface Parameter, the trace plots in the top row were produced by applying the 
Marjoram Algorithm to lengths L1, L2 and L3, in that order. The trace plots on the bottom row 
were also obtained by applying the Wegmann Algorithm to lengths L1, L2 and L3, in that order. 
MCMC was implemented such that its stationary distribution reflects the posterior distribution of 
the parameter vector θ, which in this case are Surface and Alignment. As mentioned earlier, there 
was a burn in period, a period in which the initial iterations were removed from the simulation 
process so that the remaining chain can be used to infer the parameters. A visual inspection of the 
chain shows that the trace plots for the Marjoram Algorithm for both the Surface and Alignment 
parameters were less stationary than the trace plots for the Wegmann Algorithm.  
 
Histograms 
The associated histograms for the trace plots are presented in Figure 4A and Figure 4B. Figure 4A 
contains histograms for the Surface parameter. Those in the top row of were produced by applying 
the Marjoram Algorithm to lengths L1, L2 and L3, in that order.  
 
The histograms on the bottom row were also obtained by applying the Wegmann Algorithm to 
lengths L1, L2 and L3, in that order. The presentation of the resulting histograms in Figure 4B 
follows the same format as Figure 4A except that Figure 4B represents histograms for the 
Alignment parameter.  For all the histograms, the true values true values were generally slightly 
left skewed in the posterior distribution. 
 



 

 
Figure 3A  Trace plots for Surface Parameter 

 
 



 
Figure 3B  Trace plots for Alignment Parameter 

 



 
 

Figure 4A  Histograms for Surface Parameter 
 
 



 
Figure 4B  Histograms for Alignment Parameter 



Autocorrelation Plots 
Autocorrelation plots were used to detect if there was any non-randomness in the chains. The plots 
were used to identify the correlation (found on y-axis) of samples for each step of the chain with 
prior estimates of that same variable (Surface or Alignment), lagged by 500 iterations (found on 
x-axis). Figure 5A and Figure 5B are the autocorrelation plots for the Surface parameter and 
Alignment parameter respectively. The autocorrelation plots follow the same arrangement as the 
trace plots and histograms for each parameter. In Figure 5A(Surface parameter), for lengths L1, 
L2 and L3, the autocorrelation plots for the Marjoram algorithm generally declined more slowly 
than the plots for the Wegmann algorithm. It can be inferred that the samples from the stationary 
distributions obtained using the Wegmann Algorithm were less reliant on initial values in the chain 
than the distributions obtained using the Marjoram Algorithm. 



 

 
 

Figure 5A  Surface Autocorrelation plots 
 
 



 
Figure 5B  Alignment Autocorrelation plots 



Heidelberg and Welch Diagnostics 
The Heidelberg and Welch diagnostic is in two parts. In the first part of this test, a test statistic is 
calculated based on the Cramer-von Mises statistic. This is used to assess the Markov chain by 
testing the hypothesis that the chain comes from a stationary process. Specifically, the test statistic 
is used to accept or reject the null hypothesis that the Markov chain is from a stationary distribution. 
In this test, a p-value of ≤ 0.05 means that we reject the hypothesis that the samples have the same 
mean. The second part of this test is the half-width test which determines whether the Markov 
chain sample size can be used to adequately approximate the mean values of the parameters under 
study given a particular confidence interval (95% CI in this case). TABLE 1 and TABLE 2 contain 
the results for the Heidelberg and Welch Diagnostic test performed for the surface and alignment 
parameters respectively. All the Markov chains from the analysis passed the stationarity and half-
width tests. Noticeably, the half-widths for the Wegmann Algorithm across the different track 
lengths were generally wider than those for the Marjoram Algorithm.  
 

TABLE 1  Heidelberg and Welch Diagnostics for Surface Parameter 
 

SURFACE 
Heidelberg and Welch Diagnostic 

  ABC Algorithm Stationarity test(ST) ST p-value Halfwidth test Halfwidth 

L1 Marjoram passed 0.870 passed 28.32 
Wegmann passed 0.051 passed 22.86 

L2 Marjoram passed 0.321 passed 13.1 
Wegmann passed 0.604 passed 8.118 

L3 Marjoram passed 0.136 passed 20.61 
Wegmann passed 0.232 passed 14.05 

  
TABLE 2  Heidelberg and Welch Diagnostics for Alignment Parameter 

 
ALIGNMENT 

Heidelberg and Welch Diagnostic 
  ABC Algorithm Stationarity test(ST) ST p-value Halfwidth test Halfwidth 

L1 Marjoram passed 0.77 passed 14.31 
Wegmann passed     0.12 passed 23.7 

L2 Marjoram passed     0.45 passed 22.9 
Wegmann passed     0.23 passed     6.823 

L3 Marjoram passed     0.41 passed     12.04 
Wegmann passed     0.784 passed     7.02 

 
Kernel Density Plots and MCMC SE 
To approximate the posterior distribution, kernel density plots used to summarize the sampled 
values that define the stationary distribution of values [26] . In the density plot, the value with the 
most support from the data and the prior is found at the apex (the maximum a posteriori) and is 
the mode of the distribution. With this plot, summary statistics like posterior mean and posterior 
median can be obtained quite effortlessly. The main function of kernel density estimation is to 
smooth over the samples and provide an estimate of the posterior distribution [26]. In FIGURE 6A 
and FIGURE 6B, the kernel density plots obtained from using the Marjoram and Wegmann 
Algorithms to predict Surface and Alignment parameters respectively were superimposed. The 



dashed green line represents the true value of the TQI for each track segment in Figure 6A. The 
dashed black line represents the true value of the TQI for each track segment in Figure 6B. The 
Marjoram and Wegmann density plots can be identified using the color key provided on the plots. 
Plots for the surface parameter revealed that the Marjoram Algorithm produced estimates that were 
closer to the actual parameter values for L2 and L3.  Also, plots for the Alignment parameter reveal 
that the Marjoram Algorithm produced estimates that were closer to the actual parameter values 
for L1 and L3.  In general, the Wegmann Algorithm produced lower estimates than the Marjoram 
Algorithm. TABLE 3 and TABLE 4 contain the estimated TQI values from analysis of the Surface 
and Alignment parameters respectively.  
 
The Markov Chain Monte Carlo Standard Error (MCMC SE) gives an estimate of the inaccuracy 
of Monte Carlo samples, regarding the expectation of posterior samples, from Markov chain Monte 
Carlo (MCMC) algorithms used in this research. Alternatively, it can be said that MCMC SE 
quantifies the uncertainty in the posterior mean estimate. MCMC SE approaches zero as the 
number of independent posterior samples also approaches infinity. MCMC SE is a standard 
deviation around the posterior mean of the samples resulting from the uncertainty related to using 
the ABC-MCMC algorithms. The errors are approximately equal for each track segment analyzed 
and can be found in TABLE 3 and TABLE 4 for the Surface and Alignment parameters 
respectively.



 

 
 

FIGURE 6A  Combined kernel density plots for Marjoram and Wegmann Algorithms (Surface)



 
 

TABLE 3  MCMC SE and TQI values for Surface Parameter 
 

 Surface 
 ABC Algorithm Mean of TQI (mm*100) MCMC SE 

L1 
Marjoram 469.0 20.6 
Wegmann 470.0 20.6 

L2 
Marjoram 264.2 11.2 
Wegmann 270.1 11.2 

L3 
Marjoram 407.1 17.6 
Wegmann 414.1 17.8 

 
 

 
 

FIGURE 6B  Combined kernel density plots for Marjoram and Wegmann Algorithms 
(Alignment) 

 
  



TABLE 4 MCMC SE and TQI values for Alignment Parameter 
 

 Alignment 
 ABC Algorithm Mean of TQI (mm*100) MCMC SE 

L1 Marjoram 339.7 14.4 
Wegmann 341.1 15.9 

L2 Marjoram 203.0 8.7 
Wegmann 199.7 8.2 

L3 Marjoram 254.3 10.5 
Wegmann 257.0 10.9 

 
Accuracy and Credible Interval for TQI estimates 
In ABC, the summary statistics of the simulated data (�̂�𝑆) and the observed data (S) are compared 
by calculating a distance between them. If this distance is less than a selected tolerance ϵ, the 
parameter values related to the summary statistics are retained and are used to determine the 
posterior distribution. In this analysis, the accuracy of estimation related to different tolerance rates 
was calculated (Figure 7). Calculations indicated that a tolerance of 0.01 used in TQI estimation 
for the Alignment parameter gave the highest accuracy of 90%. In addition, a tolerance of 0.005 
used in TQI estimation for the Surface parameter gave the highest accuracy of 86%.  
 
The uncertainty related to the parameter estimates was quantified by computing the 89% credible 
interval, which is an important concept in Bayesian statistics. In other words, the interval within 
which the TQI estimates fall with an 89% probability was estimated and results have been 
compiled in Table 5. The 89% credible interval was used because it has been determined by 
McElreath [27] to be more stable than the default 95% that is used in frequentist statistics. Table 
5 contains the lower and upper confidence intervals computed for TQI estimates for produced by 
both Marjoram and Wegmann algorithms. It is observed that for each length of track (L1, L2 or 
L3), narrower credible intervals were related to the Marjoram algorithm estimates while wider 
credible intervals were associated with the Wegmann algorithm estimates. Narrower credible 
intervals indicate higher precision hence it can be inferred that the application of the Marjoram 
algorithm produces more precise estimates.  
 



 
 

FIGURE 7 Accuracy of TQI Estimates at Difference Tolerance Levels.  
 
 

Table 5  89% Credible Interval (CI) for TQI Estimates 
    Alignment Surface 

  Lower CI Upper CI Lower CI Upper CI 
L1 Marjoram 203 450 307 624 
  Wegmann 184 489 257 711 
L2 Marjoram 122 280 181 373 
  Wegmann 101 298 140 398 
L3 Marjoram 164 340 242 532 
  Wegmann 137 368 215 611 

 
 
CONCLUDING REMARKS 
 
The ABC method was successfully applied in this paper for the estimation of Track Quality Indices 
(TQIs), which are essential components in the modelling of track degradation. The ABC-MCMC 
method was applied using different algorithms referred to in this paper as the Wegmann and 
Marjoram algorithms. Although initial visual inspection of the diagnostic plots indicated that the 
Wegmann Algorithm had better convergence than the Marjoram Algorithm, the kernel density 
plots revealed that the Marjoram Algorithm produced more accurate posterior predictions. This 
was confirmed when the 89% CI was computed, hence it was concluded that the Marjoram 
algorithm is best used for TQI estimation since it produces more precise estimates. This research 
has brought to light the fact that to obtain high accuracy of estimates the Surface and Alignment 



parameters, tolerances of 0.005 and 0.01 must be used respectively. Although TQI estimation using 
ABC is computationally expensive, it allows for the reasonable estimation of the statistic. In 
addition, it provides the advantage of potentially estimating probabilities associated with obtaining 
certain high TQI values for each track segment. Hence, abnormally large parameter values can be 
detected and maintenance activities can be undertaken if needed. This tackles the issue of 
uncertainty related to the behavior of track geometry parameters. Professionals can therefore make 
informed decisions on which track segments to prioritize depending on the probability of obtaining 
TQI estimates beyond standard thresholds, optimizing time and financial resources, and improving 
track safety. 
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