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EXECUTIVE SUMMARY 
 
Globally, the railroad industry represents an integral part of any nation through supportive 
economic recovery and long-term sustainable growth. In the United States, the railway 
infrastructure accounts for approximately 40% of intercity freight and is worth over $80 billion. 
Today, many people depend on the railroad for different reasons such as safety, an alternative to 
traffic congestion and carbon emission. However, substantial efforts need to be expended to 
position the railway as the lead transportation infrastructure continuously.  
 
On the flip side, no infrastructure ever exits without its associated risks. However, the 
sustainability of such systems depends on the swift actions of the maintenance agency. A common 
railroad problem that’s has received significant attention amongst rail experts is track geometry 
defects. The unavailability of requisite techniques to manage the issues often strains on 
infrastructure safety amidst other pressured concerns. Intuitively, to keep the assets viable, the 
maintenance officer must capture possible faults that could impact the existing infrastructure’s 
safety, reliability, and operations in real-time. 
 
For years, track geometry vehicles have been deployed to capture rail defects. However, the 
limitation associated with the operation is the possibility of non-stationarity of the observed 
measurements due to external influence. The effect of non-stationarity may lead to the false 
representation of track conditions and thereby increases the likelihood of false output. For that 
reason, we considered the possibilities of supervised machine learning techniques for detecting 
and correcting the track geometry inherent anomalies. The methods include Random 
Forest (R.F.), Logistic Regression (L.R.), and Support Vector Machine (SVM). To ascertain the 
discrepancies within the data, we varied the train-test and validation ratio in phases.  
 
Conclusively, the developed models’ application indicates that the Random Forest is a more 
practical approach to detecting the non-stationarity of track geometry data. Also, it optimizes the 
cost of maintenance and supports accurate decision making to improve track safety better. 
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INTRODUCTION 
 

1.1 Background & Motivation 
 
In recent years, railway infrastructure functioned as a panacea for pressured conventional 
transportation systems. Railroads have been recognized and promoted as an effective means of 
mass transit that significantly reduces road traffic, and the resulting emissions (Falamarzi et al. 
2019). In general, a US Class I railroad provides a safe, efficient, and cost-effective transportation 
network that con- veniently pivots the nation’s economy (Association of American Railroads 
2020). Additionally, climate change, which is considered a global challenge, also contributed to 
railway transportation rel- evance. Intuitively, its importance could be attributed to reducing fossil 
fuels that could deplete the sustainable atmospheric organic compound. 
 
Since issues that could affect the rail infrastructure systems must be prevented, track maintenance 
and accident-related problems have attracted attention amongst the rail experts. Periodic track 
measurement is required to evaluate track system status -track quality (Pwayblog 2021). Figure 1 
shows the track geometry parameters that are measured to ascertain the condition of a rail track. 
The track lines are described with some deterministic parameters defined in Table 1. Some of the 
parameters are alignment and gauge in the horizontal and longitudinal planes, respectively, and 
twist and cross-level in the vertical directions.  The maintenance engineer is bound to exercise 
three fundamental tasks with the railroads, i.e., safety, comfort, and economy. A typical track 
quality index of a track system is shown in Figure 2. Whilst track geometry recovery actions will 
improve the track condition; it’s almost impossible to rejuvenate the geometry condition to an as-
good-as-new state (Sancho et al. 2021). It is essential to adopt a reliable deem algorithm that could 
dampen the track geometry degradation. According to Andrade and Teixeira (2015), Bayesian 
statistical models provide a flexible framework to combine prior information from past samples or 
expert prediction with the new data. Although several factors come into play as the track sections 
exhibit different types of degradation behaviour over time, the proper understanding of the track 
geometry parameters needed to avoid possible derailment leads to a careful understanding of track 
quality indices. Asides from the fact that the parameters must be ascertained before any 
construction or maintenance of rail track, they are also used as indicators to evaluate the track 
geometry’s performance. Considering the geometry overview, the interoperability of these 
components is inarguably worth studying.  
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      Figure 1. Track Geometry Parameters 
 

 
                                   Figure 2. Track Quality Index of a Railway System 
 
1.2 Statement of the Problem 
 
Track geo-defects and track are vital prerequisites for safe railroad operations. Investigations 
revealed that even when all track geo-defects parameters are observed to conform within the 
threshold’s standards, track accident still occurs. Due to the versatility and complexity of data 
structure, track managers decide the maintenance scheme that best describes track conditions. 
Techniques that have existed are the statistical and stochastics method.  Grace and Nii-Okine, 
(2020) considered approximate Bayesian computation techniques to estimate the track quality 
indices for track degradation. It is interesting to see that ABC, as it is called, estimates the track 
system’s irregularities without computing the likelihood functions, which are computationally 
expensive (Ashley and Attoh-Okine 2020).  
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In the past, both statistical and stochastic methods are helpful. However, the recent size of track 
data has forced analysts to machine learning methods. Lasisi and Okine (2018) apply the Principal 
Component Analysis (PCA) to determine the track quality index of multi-dimensional geometry 
data. The study shows the possibility of transforming huge track geometry data into low sample 
space without compromising the geometry information (Lasisi and Okine 2018). 
 
It is ironic to see that with the level of accuracy of most machine learning techniques, minor 
shortcomings are still identified. Therefore, no free lunch theorem will always exist. One of the 
shortcomings of machine learning methods is the low performance with high dimensional data, 
stream data, and covariate data. The reason is that the techniques are train and test on the same 
data. However, when they are exposed to new data, their adaptability diminishes. The investigation 
into the poor performance of the techniques due to the data handling is called data-shift.  
 
Data shift problem has been explained in many fields with real-life problems except railroad. 
Whenever a shift occurs in data distribution, the accuracy of the solving techniques is usually 
affected. In railway engineering, considering a track data of 30 years, it will be difficult to isolate 
the likelihood of train accident for a season since rail track response to seasonal temperature. Thus, 
track data exploration for possible deterioration should be done with a consideration of external 
influence.  

 
1.3 Objective of the Study 
 
This research aims to address the non-stationarity of track geometry data using machine learning 
technique-random forest-based covariate shift. The output of the study is dependent on the 
following sub-objectives:  
 

• To explore the threshold of all observed measurements using FRA standards (see 
Table 1). 

• To identify non-stationary parameters using the data shift framework (see Figure 
3).  

• To apply random forest-based covariate shift techniques on the non-stationarity 
parameters. 

• To infuse the re-oriented data in the machine learning algorithm (train, test, and 
validation) for accurate predictions 

 
 
Table 1. Track Geometry Parameter Definition 
 
S/N Parameter Definition 

1 Gauge The distance between the inner face of two adjacent rails. The 
standard gauge in North America is 1435mm. 

2 Cross-Level This is the measurement of the difference in elevation between the 
top surface of the two rails at any point of the track. 



4 
 

3 Alignment Also known as straightness of the track. It is the projection of the 
track geometry of each rail or track centerline unto the horizontal 
plane. 

 
 

 
                                                            Figure 3. Covariate Shift Framework 
 
 

NON-STATIONARITY OF TRACK GEOMETRY 
 
There has been a long discussion over the acceptable representation of defects on the rail systems. 
Although a relationship exists between these defects, research has shown that geometry defects 
increase dynamic wheel load (fatigue), leading to increased pressure on the rail (Zarembski et al. 
2016). These stresses, bending and contact stress, will over time cap to rail defects. Researchers 
consider studying the non-stationarity of track geometry conditions to better understand the track’s 
dynamic and provide sustainable maintenance planning. The excessive train speed over the 
initially designed track speed will automatically distort the track geometry, resulting in 
maintenance related interruptions. Uneasy track geometry can cause the degradation of track 
components and rolling stock, freight damage, passengers’ discomfort, and in extreme cases, 
derailment. However, a common problem associated with non-stationary is the track data 
imbalance. For instance, using the traditional method of maintenance, it is possible to mismeasure 
defects. As such, there would be a possibility of misclassification in the geometry data (Faghih-
Roohi et al. 2016). A small patch on the rail may grow into a large squat, thereby increasing the 
track’s amplitude vibration, delivering poor ridership, and ultimately resulting in a derailment in a 
long time. To better minimize these effects, the track stationarity of track data needs to be 
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investigated. The question begging for an answer is, “how do we detect the shift in the data, if it 
ever existed, in a distribution?” 
 
2.1 Covariate Shift 
 
The field of machine learning has been leveraged to account for anomalies in data structures. See 
Table 2. These anomalies stem from how data are harnessed or collected over a specified period. 
Many researchers have expressed the concept of data shift in their areas of specialization, using 
technical terminologies such as “concept shift”, “concept drift”, “changes of classification”, 
“changing environment”, “contract mining in classification learning”, “fracture points, and 
fracture between data”. In recent times, McGaughey et al. (2016) have introduced the data shift 
concept to illustrate the variations of the train test distributions. Since the real problem arises, the 
covariate shift concept has gained ground as machine learning techniques are forced to process 
non-independently identically distributed (non-iid) data (Shimodaira 2000).  
 

Table 2.  Machine Learning Applications in Railway Track Engineering 
 

Authors Objective Machine learning technique. 
 

Jamshidi et al. (2017) Risk assessment evaluation 
of rail surface defect using 

image data. 
 

Deep convolution neural; 
networks (DCNN) 

 

Heidarysafa et al. (2019) Rail accident report 
interpretation for a non-

expert reader. 

Convolution neural 
networks (CNN), Recurrent 

neural networks (RNN), 
Deep neural networks 

(DNN), Word to vector 
(Word2Vec) 

Song et al. (2019) Fasteners detection based on 
neural networks 

Faster R-Convolution neural 
networks. 

 
Chenariyan Nakhaee et al. 

(2019) 
Application of machine 

learning in rail track 
maintenance. 

 

Review of existing 
applicable machine learning, 
shortcomings, and solutions. 

Qi et al. (2020) Real-time detection of track 
fasteners with deep network 

architecture. 

YOLOv3-Tiny 
 

 
Research has shown how a machine learning-based approach can detect a covariate shift in a 
feature. In a compact mathematical form, the condition for the covariate shift can be expressed as 
follows: 
 

𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑋𝑋) ≠ 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑋𝑋)                                                 (1) 
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𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑌𝑌|𝑋𝑋) = 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑌𝑌|𝑋𝑋)                                         (2)  
 
In the above equations, X represents the geometry defects (gauge, alignment, cross-level,  surface) 
for both the training and testing. In a distribution sample, it is expected that the train and test 
samples should be drawn from the same distribution and independently identically distributed (iid). 
The distribution plot in Figures 4a & 4b  clearly shows the disparity or drift in the gauge dataset 
even when it is reshuffled. Researchers often make the mistake of predicting unobserved data with 
a performing algorithm that has been built from a different distribution. This misconception will 
give a false result and can be catastrophic in some senses, depending on the analysis’s application. 
One way to alleviate the covariate shift problem is by reweighting the log-likelihood terms 
according to their importance. Another sophisticated approach is by measuring the densities of the 
training and testing data before the importance is estimated.  
 
 

 
Figure 4a. A gauge plot from training geometry data 

 
 



7 
 

 
Figure 4b. A gauge plot from testing geometry data 

 
In the space domain D of iid for n features of a real number R, the 𝑃𝑃𝑡𝑡𝑡𝑡(𝑥𝑥) > 0 for all x subset of D. 
Estimating the densities of the training or testing set, i.e., 𝑃𝑃𝑡𝑡𝑡𝑡(𝑥𝑥) or 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥), should be avoided 
when estimating the weight importance: 
 
                               𝑤𝑤(𝑥𝑥) = 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥)

𝑃𝑃𝑡𝑡𝑡𝑡(𝑥𝑥)                                                                                          (3) 
 
where the 𝑃𝑃𝑡𝑡𝑡𝑡(𝑥𝑥) is the probability of experiencing a feature x in the training set while 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥) 
represent the probability of experiencing a feature x in testing. Intuitively, one will realize that if 
a sample has a low chance effect in the prediction, it is important to reweight it to affect the 
prediction sample considerably. From equation (3) above, we can then say that the probability 
𝑃𝑃𝑡𝑡𝑡𝑡(𝑥𝑥), which is analogous to the test input data, can be expressed as follows: 
 
                     𝑃𝑃𝑡𝑡𝑡𝑡(𝑥𝑥) = 𝑤𝑤(𝑥𝑥) ∗ 𝑃𝑃𝑡𝑡𝑡𝑡(𝑥𝑥)                                                                              (4) 
 
The divergence between the test distribution and the weighted predicted test can be expressed by 
the following: 
 
                   K.L.�𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥)�𝑃𝑃𝑡𝑡𝑡𝑡� (x)� = ∫𝑃𝑃𝑡𝑡𝑡𝑡� (x) log( 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥)

𝑃𝑃𝑡𝑡𝑡𝑡(𝑥𝑥)𝑤𝑤�(x))dx                              (5) 
 
The importance estimate 𝑤𝑤(𝑥𝑥) is formulated based on the Kullback-Leibler Importance Estimation 
Procedure (KLIEP). This method was proposed by Sugiyama (2007), and it is formulated from the 
Kullback-Leibler divergent theorem to minimize the divergence of the training and prediction 
dataset:  
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                      𝑤𝑤�(x) = ∑ 𝛼𝛼𝑡𝑡 ∗ 𝜑𝜑𝑡𝑡(𝑥𝑥)𝑏𝑏
𝑡𝑡=1                                                          (6) 

 
In the above equation, the 𝛼𝛼𝑡𝑡 represents the weight to be learned, while 𝜑𝜑𝑡𝑡 represents the basis 
function. In this process, we realize that it is possible to remove some terms which are independent 
of 𝑤𝑤�(x). The resulting problem will be a convex optimization problem. We then incorporate this 
to get the covariate shifted version of the classifier: 
 
                                 �∑ log�∑ 𝛼𝛼𝑡𝑡 ∗ 𝜑𝜑𝑡𝑡�𝑥𝑥𝑗𝑗�𝑏𝑏

𝑡𝑡=1 �𝑡𝑡𝑝𝑝
𝑗𝑗=1 �                                                       (7) 

 
Constraint                     ∑  ∑  𝛼𝛼𝑡𝑡  ∗  𝜑𝜑𝑡𝑡�𝑥𝑥𝑗𝑗�𝑏𝑏 

𝑡𝑡=1
𝑡𝑡𝑝𝑝
𝑗𝑗=1  = 1                                                (8) 

                                      and 𝛼𝛼𝑡𝑡  ,𝛼𝛼𝑡𝑡, . . . . . . . .𝛼𝛼𝑡𝑡  ≥  0                                                 (9) 
 

EXPLORATORY DATA ANALYSIS 
 
3.1 Introduction 
 
This research used the geometry data from a U.S. Class IV railroad’s routine maintenance for one 
year (2018-2019). The Track Geometry Vehicle (TGV), which operates at 180 km/h, focused on 
individual segments of the track. The track geometry safety thresholds for Track Class IV can be 
seen in Table 3. The parameters measured cover over 20 features, including gauge, unloaded 
gauge, alignment, surface, and twist for the examined track segments. Some of the parameters are 
defined in Table 4. 
 
Table 3. Track Geometry Safety Thresholds for Track Class IV 
 
                                    Track Class IV Thresholds (mm) 62ft Chord 
Superelevation Cross-level Alignment Twist Profile 
      85       32      32     44     51 

 
 
Table 4. Some Selected Parameters from the Railroad Data.  
 
S/N Parameter Definition 

1 Alignment_31_L Left 31(ft) wavelength of alignment 
2 Alignment_31_R Right 31(ft) wavelength of alignment 
3 Alignment_62_R Right 62(ft) wavelength of alignment 
4 Alignment_62_L Left 62 (ft) wavelength of alignment 
5 Surf_31_L Left 31(ft) wavelength of the surface 
6 Surf_31_R Right 31(ft) wavelength of the surface 
7 Surf_62_L Left 62 (ft) wavelength of the surface 
8 Surf_62_R Right 62(ft) wavelength of the surface 
9 Cant_L Left Cant 
10 Cant_R Right Cant 
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3.2 Data Description 
 
The exploratory data analysis of the geometry data exposes the underlying relationships between 
components. In Figure 5, it is evident that a strong correlation exists between a different 
wavelength of the same parameter on the same side of the rail (Surf_31_L and Surf_62_L) and 
(Alignment_31_L and Alignment_62_L). Careful consideration also unearths the hidden 
relationship between the alignment and the surface for the same wavelength. One may conclude 
that the correlation results from the longitudinal axis; however, some parameters, such as cant and 
gauge, also exhibit weak correlations. It is also interesting to see that the superelevation shows no 
corresponding relationship with any geometry data. In general, the importance of exploratory data 
analysis has been proven to unravel and further derive meaning from hidden data. 
 

 
                                 Figure 5. Geometry Track Parameter Correlation Plot. 
 
3.3 Validation Study 
 
In order to ascertain the results of the classifiers, we validated the algorithm with a class I railroad 
track data. The data consists of one-year track geometry defects measurements for seasonality 
comparison of track support conditions. Although the data is relatively small,  it was relevant for 
the analysis. We detected a shift (drift)  in the track parameters due to the track usage’s seasonal 
variation. Figures 4(a&b) show the bimodal distribution of the gauge parameter. We further 
established the influence of right and left track parameters on accuracy. We grouped the data into 
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three sections. In the first section, we considered all the parameters, including right and left 
components, while in the second section, we considered the only left parameters. In the third 
section, we considered only the right parameters. The results are shown in Tables (5-8), 
respectively. The results demonstrate that it is important to consider the position of the parameters 
when making a maintenance prediction. The accuracy of the classifier confirmed this through the 
distribution phases.  
 
Table 5. Machine Learning Training Results for Phase Distributions: All components 
 
Predictor Accuracy (%) 

 First Distribution Second Distribution Third Distribution 

Logistic Regression 96.76 96.92 97.10 

SVM 97.10 96.96 97.00 

Random Forest 97.10 97.00 97.11 

 
 
Table 6. Machine Learning Validation Results for Phase Distributions: All components 
 
Predictor Accuracy (%) 

 First Distribution Second Distribution Third Distribution 

Logistic Regression 98.75 96.82 97.81 

SVM 98.80 98.74 98.81 

Random Forest 98.10 98.92 99.04 

 
 
Table 7. Machine Learning Validation Results for Phase Distributions: Right component 
 
Predictor Accuracy (%) 

 First Distribution Second Distribution Third Distribution 

Logistic Regression 90.36 93.92 95.33 

SVM 87.62 89.96 87.40 

Random Forest 89.10 80.67 86.22 
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Table 8. Machine Learning Validation Results for Phase Distributions: Left component 
 
Predictor Accuracy (%) 

 First Distribution Second Distribution Third Distribution 

Logistic Regression 91.25 91.33 90.89 

SVM 89.61 90.65 91.60 

Random Forest 84.91 83.67 88.71 

 
Results and Discussion 
 
Clearly, the advantages of considering a covariate shift in track analysis cannot be downplayed in 
any engineering application with traces of data irregularities. We realized that various parameters 
have significantly different behaviours in different track sections, which strongly depend on the 
track curvature. The discrepancies in the data distribution are detected using the Kullback-Leibler 
divergent criterion. The training and testing sets are analyzed with supervised machine learning 
for three training/testing distribution phases. In the first phase, the SVM and the Random Forest 
performed better than the logistic regression. In the second and the third phase of the distribution, 
the Random forest performed better than the other learners. It then tells that the Random forest 
worked best in adjusting the training set to match the testing set and reduce the divergence. 
Similarly, the ROC graph in Figure 6c shows that the random forest best predicted the defects 
compared to all the other learners, while in the validation analysis, the Random Forest does not 
work well with a single component. The result shows that the supervised learning methods gave a 
better accuracy when all the components were considered compared to a single component. 
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Figure 6a Alignment 62ft left  chord scatterplot      
 

 
Figure 6b Alignment 62ft right  chord scatterplot 
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                                 Figure 6c  ROC curve of improved predictors 
 

 
 
                                       Figure 6d. The graph of percentage variance explained 
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CONCLUDING REMARKS 
 
Conclusions 
 
Track quality assessment depends on the data obtained from automated inspections. However, a 
grey area in the chain of the process is data sparsity. Many literary works have outlined the use of 
machine learning, but they emphasize data orientations. This research attempted to develop a 
method to establish the data shift in the track geometry data and further process it with supervised 
machine learning and the Kullback-Leibler divergent approach. The study revealed a divergence, 
and the less weighted dataset was then reweighted with a minimized error. A data of similar 
structure was used to validate the model, considering the components holistically.  
 
The findings show that the Random forest-Based Covariate Shift can best handle the imbalance of 
track geometry data. 
 
Summary/Future Research 
 
In summary, the models formulated in this research can correct possible underlying track geometry 
discrepancies that could impede TQI predictions. In subsequent research, we hope to explore 
dimension reduction techniques (TSNE) as a pipeline technique for covariate shift framework. 
This is because the ML techniques are expected to correct the space collinearity of observed 
measurements. Additionally, the results will be validated by comparing them with other existing 
methods.   
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