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ABSTRACT 
 

The railroad industry has used for the past 50 years the 2-Parameter Weibull equation to determine 
the rate of rail fatigue defect occurrences and to forecast the fatigue life of railroad rail. With the 
advent of more powerful computers, more frequent data collection and new techniques to analyze 
data, a new field of data analysis has been created, Data Analytics, sometimes referred to as “Big 
Data”. This report makes use of this new area of Data Analytics to develop and implement an 
improved rail defect forecasting approach building upon the traditional Weibull equation to 
overcome many of its limitations and problems. 
 
Because of the serious nature of broken rail defects and the approximately 100 broken rail 
derailments that occur in the US each year, railroads continue to improve rail inspection 
techniques, rail maintenance techniques and its rail defect data collection process. The railways 
industry currently collects data on the occurrence of defects, rail inspection results, rail 
maintenance techniques such as rail grinding and a broad range of rail statistics, which have the 
potential to provide increased insight into the rate of occurrence of rail defects. The Weibull 
Equation, while giving a basic forecast capability, does not explicitly account for many of the key 
operating and maintenance variables that affect the development of rail defects. As such, using 
traditional Weibull analysis techniques, it is not possible to predict what the effects of differing 
maintenance operating or material parameters would be on the rate of defects development. Thus, 
while the current use of the 2-Parameter Weibull equation is adequate for its current limited use in 
rail life forecasting, it appears to be possible to improve on the rail life forecasting and prediction 
of defects through the use of new Data Analytic techniques which make more aggressive use of 
the extensive rail defect data available. These improvements can lead to a more accurate prediction 
method with practical implications in rail life forecasting, maintenance management and 
replacement planning.  
 
This report a novel Data Analytic method developed from Parametric Bootstrapping. This 
approach is designed to provide for an application of the Parametric Bootstrapping modified 
Weibull forecasting to rail segments with insufficient numbers of defects to allow for the 
traditional Weibull forecasting analysis. Thus, the Bootstrapping method provides reasonable 
estimates of the rate of defects for track segments that have little or no prior defect data, which 
allows far more track to be analyzed, and to be accounted for in maintenance planning efforts. In 
addition, there is a range of values used in the prediction, allowing for an estimate of “best case” 
and “worst case” scenario. This approach results in an ability to forecast the probability of rail 
defect occurrence as a function of cumulative tonnage experienced by the rail as well as other key 
track and traffic parameters that affect the development of fatigue defects.  
 
The results presented here show that the Parametric Bootstrapping Weibull Analysis approach 
offers a more accurate and effective approach to determining the probability of developing future 
defects with an overall benefit to the railroads in their maintenance of an expensive rail asset. 
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CHAPTER 1 INTRODUCTION 
 

Rail Transportation in the United States of America plays a vital role in the transportation of goods, 
as well as passengers, across the vast distances that make up the nation. Railroads have had an 
overall average share of 31.8% of all freight ton-miles from 2007 to 2016; averaging over 
1,712,000 ton-miles0F

1 per year (1). In specific corridors, such as the New York to Washington 
metropolitan area, passenger rail transportation can rival airlines, and in some areas has grown to 
over 11 million passengers per year (2). Helping to drive this increase in usage is the increased 
loading on the rails themselves; for example, freight axle loads have increased over the past 
decades, from pre-1970 limits of 27 tons, to current limits of 36 tons. Likewise, higher-speed 
passenger lines generate higher dynamic loads, resulting in more stress on the rails than previously 
seen. One of the major factors in handling this increased stress is the maintenance work done to 
ensure that the rails themselves are in a state of good repair, which demands both prompt alerts to 
unsafe conditions, and the ability to do the work without undue delay on revenue operations. This 
is handled two ways; through the constant monitoring of the railway network’s rails using various 
non-destructive testing, such as ultrasonic testing and remote sensing technologies, and through 
the use of preventative maintenance planning, which allows maintenance work to be done during 
expected downtimes prior to when issues arise, instead of when the issues arise during revenue 
operations. Thus, for example, avoiding broken rails in service, which have the potential for highly 
undesirable broken rail derailments.  
 
In order to improve maintenance activities, railroads have been developing analytical techniques, 
which forecast the rate of rail defect development and the potential for future failure, e.g. broken 
rail. Since the late 1970’s, when research was published showing that rail defect occurrences 
follows a Weibull Probability Distribution, railroads have used the Weibull equations to determine 
the current and future useful lifetime of rail (3). This directly influences the decision on when and 
where to focus maintenance efforts, and directly impacts when and where defects are more likely 
to turn into accidents, track failures, and other incidents. 
 
1.1 Statement of Problem 
 
The problem that will be examined and addressed is the development of an improved, more 
accurate, and more encompassing methodology for the prediction of rail fatigue defect growth and 
occurrence with respect to the currently collected rail fatigue defect data. While railroads have 
collected rail defect data for over a hundred years, it is only within the last few decades that the 
use of this defect data to predict rail life has been used (3, 6, 7, 8) and that with limited accuracy. 
The focus of this defect forecasting and prediction was on the use of the Weibull approach. 
However, this methodology only allows analysis of track segments which have had sufficient prior 
defects identified to allow for this traditional Weibull analysis. Analysis of large-scale defect data 
bases from a major Class 1 railroad, shows that there are many track segments with few or no 
defects, which does not allow for the traditional Weibull analysis approach on these segments. By 
developing a methodology which can account for the lack of defect data in these track segments, 

 
 
1 A ton-mile represents one ton of goods moved by rail one mile.  
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it becomes possible to develop a more extensive forecasting model which in turn allows for more 
effective scheduling of maintenance efforts based upon the forecast life of the rail.  
 
1.2 Objective of Research 
 
The objective of this research is to develop an advanced fatigue defect prediction methodology 
which mitigates the issues of the source data. The second objective is to make sure that this 
methodology is expandable and accessible to railway maintenance planners, to ease the 
introduction of, and acceptance of, this new methodology. This will then allow the maintenance 
planners to create predictions for their track in question, allowing them to draw conclusions from 
the data as to favorable times for maintenance or rail replacement.  
 
The objectives for developing this methodology include: 
 

• Clean and Combine all the source data into one easy-to-use database. 
• Develop a baseline Weibull analysis from which to compare new methodologies to. 
• Investigate Machine Learning techniques, as they have had success in producing results 

from limited or obfuscated datasets. 
• Approach the problem from a Weibull point of view; expand upon the function in some 

way to improve results 
• Condense what has been learned from both approaches into a single methodology that 

is easily used. 
• Apply the methodology to a sample of track, and detail the process for repeatability. 

 
1.3 Research Approach 
 
This research was conducted in three stages. The first stage dealt with finding out which methods 
would or would not work with the data to produce a viable result. Initially hampered by the failure 
to find a baseline from which other analyses could be compared to, this stage expanded into 
machine learning and improvements on the Weibull methodology. Based upon the results from 
this first stage, the second stage, a development of a methodology was accomplished by combining 
what was learned from the machine learning and failures of the Weibull analyses, into a new 
methodology that applied parametric bootstrapping to the Weibull analysis. This suddenly allowed 
all the track in the data to have relatively quickly computed Weibull distributions developed, 
removing issues where few track segments had enough data to develop reasonable Weibull 
outputs. The third stage of the research focused on applying this parametric bootstrapped Weibull 
method into a full methodology, taking into account how the railway maintenance planners operate 
and what they would find useful, and developing ways to provide that information. This was done 
by showing how the parametric bootstrapped Weibull results could be used to predict the estimated 
failure range for a broad range of track lengths ranging from a single piece of track, all the way up 
to any group or collection of track segments going to division or even system level with each made 
up of their own data. 
 
1.4 Rail Defects 
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Discussion of methods to improve the accuracy of predicting fatigue defects requires at least 
some discussion of the rail and track structure, as well as the mechanics of defect growth. Figure 
1 shows an idealized track cross section, consisting of the rail, track, ties, ballast, and sub-ballast. 
The rails support the train, and dissipate the contact forces into the ties, which then spread the 
forces over a larger area into the ballast, sub-ballast and subgrade.  
 

 
 

Figure 1: Track Cross-section showing Ballast, Sub-ballast, and Subgrade 
 
Focusing on the rail itself, Figure 2 provides a more detailed view. Of interest is the head of the 
rail, which is where many fatigue defects originate. This is due to the concentration of stress from 
the wheel being focused in the area, which can result in an internal flaw or discrepancy in the metal 
of the rail. As more wheels travel over the rail in this area, that flaw is subject to repeated loading 
and unloading, and undergoes a fatigue-based failure growth. This growth, if left unchecked, can 
proceed to expand and remove substantial area from the rail that would go into mitigating the 
stresses involved, which further exacerbates the failure of the rail. 
 

 
Figure 2: Cross section of the Rail on a Tie 

 
Defects themselves can be found in multiple ways. Historically, defects were found when the rail 
itself broke, but advances in non-destructive testing have allowed newer technologies such as 
ultrasonic scanning, to identify defects. 

 
1.5 Weibull Distribution 
 
The Weibull Distribution is a log-log representation of the probability of an event occurring as a 
function of a defined input. Thus, in its fatigue applications, the Weibull distribution would 
represent the probability of a defect occurring as a function of cumulative loading. In other 
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applications, it is the probability of a specified event or observation as a function of a defined input 
variable (9).  
 
1.5.1 History of Weibull Distribution 
 
The Weibull distribution was first identified by Frechet (10), and applied by Rosin & Rammler 
(11) on particulate matter, but achieved popularity after Waloddi Weibull described it in detail in 
1951 (9) and hence its name. Waloddi Weibull’s paper showed how the formula, Equation 1, 
satisfied the distribution of a variety of observations; yield strength of Bofors steel, size 
distribution of fly ash, length of Cyrtoideae1F

2, and more. He explicitly states that the equation did 
not have a theoretical basis, however that many such distribution functions often do not have 
theoretical relations with their populations in question. 
 
 𝐹𝐹(𝑥𝑥) = 1 − 𝑒𝑒−𝜑𝜑(𝑥𝑥) Equation 1 
 
Weibull initially describes the formula with regard to the form shown in Equation 2, then 
transformed it from a single case, to the inverse; all but one case, as shown in Equation 3. 
 
 (1 − 𝑃𝑃)𝑛𝑛 = 𝑒𝑒−𝑛𝑛𝜑𝜑(𝑥𝑥) Equation 2 
 𝑃𝑃𝑛𝑛 = 1 − 𝑒𝑒−𝑛𝑛𝜑𝜑(𝑥𝑥) Equation 3  
 
This change shifted the goal of the equation from finding out the probability of a single cause of 
failure, to the probability that it will not fail from any causes; as Weibull describes it, the failure 
of a link in a chain. Of note is that this analogy focuses on just a single failure, which will come 
up later. 
 
 1.5.2 Weibull Distribution 
 
The Weibull Distribution, Equation 4, is normally defined by two parameters, Alpha(α), and Beta 
(β), which are analogous to Slope and Intercept respectively as illustrated in Figure 3. Note, the 
vertical axis of Figure 3 is the probability of a defect in a single rail (cumulative probability) and 
the horizontal axis is cumulative loading as defined by Millions of gross Tons of traffic (MGT). 

 

 𝑓𝑓(𝑥𝑥) = 1 − 𝑒𝑒−�
𝑥𝑥
𝛽𝛽�

𝛼𝛼

 Equation 4 
 

 
 
2 Also called Radiolaria or Radiozoa, are protozoa of sub-millimeter size which produce 
skeletons; often used as a diagnostic fossil. 
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Figure 3: Original example of Weibull plot used in (3) 
 
Different Alpha and Betas will correspond to different probability distributions as shown in Figure 
4 and Figure 5.  
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Figure 4: Representative Graph of Varying Alpha values of the Weibull equation 

 

 
 

Figure 5: Representative Graph of varying Beta values of the Weibull equation 
 
While the Weibull equation can help determine the chance of failure of a single unit, that poses an 
issue when there are a large number of units over a long time period. In the same way that a 
probability can be converted into an expected value, it is possible to convert the Weibull equation 
into outputting a rate of defects per group of units per year. This is done by differentiating Equation 
4, which results in a defect rate function, as shown in Equation 5. This equation allows the 
estimation of the number of failures per unit of loading (or other input variable) for a specific 
group of units, allowing the planning to focus more on the overall “health” of the units, instead of 
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individual units. As shown in Figure 6, varying Alpha results in significant changes to the shape 
of the Weibull Rate Distribution, while Beta changes the intercept, as shown in Figure 7. 
 
 𝑓𝑓(𝑥𝑥) =  � 𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑎𝑎

𝐵𝐵𝐵𝐵𝐵𝐵𝑎𝑎𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑎𝑎
� ∗ �𝑥𝑥(𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑎𝑎−1)� Equation 5 

 

 
 

Figure 6: Representation of varying Alpha values on the Weibull Rate function 

 

 
 

Figure 7: Representation of varying Beta values on the Weibull Rate function 
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1.5.3 Railroad use of Weibull Distribution 
 
In the late 1970’s, the Association of American Railroads conducted research to see how the rate 
of defect development in freight railroad track could be best modelled. The result was the 
application of the Weibull distribution, specifically, the two-parameter Weibull distribution, which 
appeared to fit the rail defect development data (3, 8). This research initially focused on six sections 
of track totaling about 270 miles of track and 1160 defects, with the rail laid between 8 and 20 
years previously (3) and was later extended to several different railroads in the US and Canada (8), 
as well as varying car loadings (12). 
 
These research efforts worked to develop a relationship between known variables, in this case the 
cumulative load applied, as well as the when and where defects were found, and the unknown 
probability of a defect occurring in a unit of rail. 
 
Initially, the research suggested the use of a relationship based on an “Effective MGT” value based 
on the crack propagation rate, which is tied to the fourth power of stress, as shown in Equation 6, 
over using plain cumulative MGT2F

3. However, the report admits that this would require detailed 
knowledge of the wheel loadings and load spectra data, which was still in the developmental stages 
at the time. 
\ 
  𝑀𝑀𝑀𝑀𝑀𝑀𝐵𝐵𝑒𝑒𝑒𝑒𝐵𝐵𝑒𝑒𝐵𝐵𝑒𝑒𝑒𝑒𝐵𝐵 = �∑ (𝑀𝑀𝑀𝑀𝑀𝑀𝐵𝐵𝑎𝑎𝑒𝑒ℎ 𝑤𝑤ℎ𝐵𝐵𝐵𝐵𝐴𝐴

4 )⬚
𝑎𝑎𝐴𝐴𝐴𝐴 𝑤𝑤ℎ𝐵𝐵𝐵𝐵𝐴𝐴 𝐴𝐴𝑙𝑙𝑎𝑎𝑙𝑙𝑙𝑙 �

1 4⁄
 Equation 6 

 
As a result, the research then focused on using the defect data directly, within an application of the 
Weibull parameters, as defined previously, and specifically the two factor Weibull parameter 
which appeared to fit the cumulative defect growth data, as presented in references 3 and 8. 
 
Based on this work, the railroad industry started to use the Weibull method for calculating the 
useful lifetime of the rail, and rail components (13), and has done so for the past 40 years (14). 
This method allowed railroads to shift from using a years-to-failure approach, to one that focused 
on the actual use of the rail, which tied in better with the actual physical processes going on that 
cause defects and failures (15). 
 
Of interest is that many of the research applications mentioned used a single 39-foot rail as the 
base structural unit, determining that it was a natural unit since rails at the time were manufactured 
in 39-foot lengths, and that the probability of more than one defect in the same unit would be 
negligible compared to no defect, or one defect.  In addition, infant mortality3F

4 defects, are often 
ignored in the analysis, as the Weibull method is not suited to predict them (8, 15, 16).  

 
1.5.4 Current Weibull Distribution methods 

 
 
3 The sum total of Million Gross Tons of traffic that has passed over the rail in question since it was installed. Used 
as a lifetime variable, similar to airplane pressurizations. 

4 Failures at the very beginning of the life of the object, usually due to creation or instillation errors, such as 
inclusions in the metal or being damaged during instillation. 
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In the decades since the Weibull Distribution was introduced, novel methods of expanding it have 
been developed in order to better fit the data being examined, as well as provide representation of 
physical behaviors in the distribution. Many of these, such as (17, 18, 19, 20, 21, 22), include new 
variables, with (23), a Beta Modified Weibull (BMW) Distribution, appearing to cover the most 
sub-models by having a 5-parameter (A, B, Alpha, Gamma, Lambda) expansion along with the 
inclusion of the Beta function. Equation 7 and Figure 8 show the Beta Modified Weibull 
Distribution Density function, and the relationship with the various sub models going back to the 
original Weibull, Exponential, and Rayleigh distributions. 
 

 𝑓𝑓(𝑥𝑥) = 𝛼𝛼𝑥𝑥𝛾𝛾−1∗(𝛾𝛾+𝜆𝜆𝑥𝑥)∗𝐵𝐵𝜆𝜆𝑥𝑥

𝐵𝐵(𝑎𝑎,𝑏𝑏) ∗ �1 − 𝑒𝑒�−𝛼𝛼𝑥𝑥𝜆𝜆∗𝐵𝐵𝜆𝜆𝑥𝑥��
𝑎𝑎−1

∗ 𝑒𝑒�−𝑏𝑏𝛼𝛼𝑥𝑥𝑦𝑦∗𝐵𝐵𝜆𝜆𝑥𝑥� Equation 7 

 

 
 

Figure 8: Relationships of the BMW sub models; adapted from (22) 
 
Where: 

W = Weibull distribution 
R = Rayleigh distribution 
E = Exponential distribution 
E- = Exponential, such as Exponentiated Exponential (EE) 
G- = Generalized, such as Generalized Rayleigh (GR) 
B- = Beta modified, such as Beta Weibull (BW) 
M- = Modified, such as Modified Exponential (ME) 

 
As for actual uses, several industries still use the standard 2-parameter form, such as the 
automotive industry, which uses it to determine the failure rates of components (24, 25, 26), and 
the airplane industry (27, 28). However, some fields have seen issues with using the Weibull 
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distribution, where conditions do not follow the basis of the formulization, such as: brittle ceramic 
failures (29), the tensile strength of composites (30). Other industries use various failure 
approximations, including but not limited to logistic regression (31, 32) and K-Nearest Neighbors 
(33, 34), to calculate a total risk assessment (35, 36, 37, 38). In other fields, when a crack or defect 
is not deemed as failure critical, methods which estimate the time until the crack or defect becomes 
failure critical are used, such as in (39, 40, 41, 42, 43, 44).  This stimulates the movement away 
from Weibull, towards other methods which fit the empirical evidence. 
 
1.5.5 Going beyond Weibull Distribution for Failure Analysis 
 
Several industries are shifting towards Finite Element Analysis models for determination of failure 
rates, computationally simulating the object of interest over various inputs, and observing when 
and where material limits are exceeded, as in (35, 45). This sees use in multiple fields where safety 
is of utmost importance, and when the object in question is of reasonable size, such as aircraft and 
automobiles. But, while the growth of computational power and methods of mimicking, or creating 
a “digital twin” of objects has increased dramatically in the past ten years, the ability to accurately 
process tens of thousands of miles of track is still some time away. As reference 46 mentions, even 
for smaller objects, high accuracy requires considerable effort in both modeling the object in 
question correctly, and the computation of the simulations. 
 
In some cases, mainly with track geometry defects, the railway industry has moved to other 
methods of prediction, such as Multivariate Regression Splines (MARS) (47), using Naïve Bayes 
and Bayesian networks methods to link geometry defects to rail defects (48), and Logistic 
Regression methods to link Ground Penetrating Radar data to geometry defects (49, 50, 51).  These 
advances have been spurred on by the development and use of “Big Data” analytics (52), where 
the advances in recording and storing data about track conditions, defect locations, and usage 
statistics have developed large databases that are ripe for analysis. 
 
As mentioned in the previous section, modifications to the Weibull method, such as the Beta-
Modified Weibull distribution, are being developed for use in failure analysis. These newer, more 
complex, distributions can help to find a better formula to fit the known data points. Of course, 
these new methods come with caveats, such as having a parameter translate to a physical state that 
may not exist, such as a failure-free time period.  
 
1.5.6 Failings of Weibull Distribution 
 
The Weibull Distribution, as used by the railroad industry, reports the probability of a single defect 
in a 39-foot length of rail. However, as data collected has shown, the assumption that a 39-foot 
length of rail will see only one or no defect, and the probability of multiple defects are negligible, 
does not hold true. This stems, paradoxically, from the increase in safety measures and monitoring 
of the rail for defects; instead of only finding defects when they cause the rail to fail, it is now 
possible to detect defects before the rail fails through non-destructive methods, such as ultrasonic 
testing. However, since such testing cannot be done continuously, defects can originate and grow 
in the periods between testing, usually several months, at which point several of them are found at 
once. In addition, since these testing methods are not perfect, sometimes defects missed in one run 
are found at a later date, when their increase in size makes them more apparent. This results in 
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multiple defects being recorded on the same day, essentially the same Cumulative MGT, and thus 
violates the assumption that the Weibull method is based upon. 
 
Another shortcoming of the Weibull method is that for rail that has been in track for a very long 
time, 30 years or more, data on the earlier year’s defects is often incomplete or not available. This 
then does not allow for an accurate compilation of cumulative defects and introduces a potentially 
large error in the analysis. This has been seen in numerous track segments analyzed in this study. 
 
In addition, the Weibull method is bound by probability on the 0 to 1 range, while the Weibull 
Rate method, commonly used to set thresholds for maintenance, is unbounded positively. This, as 
shown in the research performed, leads to situations where backtracking from a set rate of defects 
leads to the Weibull method reporting “100% chance of defect”. Since this only means a single 
defect, issues arise when trying to convert from a Weibull probability to an expected number of 
defects. 
 
1.5.7 Bootstrapping 
 
Bootstrapping is any test or metric that relies on random sampling with replacement. 
Bootstrapping allows assigning measures of accuracy (defined in terms of bias, 
variance, confidence intervals, prediction error or some other such measure) to sample estimates. 
This technique allows estimation of the sampling distribution of almost any statistic using random 
sampling methods. Generally, it falls in the broader class of resampling methods (53). 
 
Bootstrapping is the practice of estimating properties of an estimator (such as its variance) by 
measuring those properties when sampling from an approximating distribution. One standard 
choice for an approximating distribution is the empirical distribution function of the observed data. 
In the case where a set of observations can be assumed to be from an independent and identically 
distributed population, this can be implemented by constructing a number of resamples with 
replacement, of the observed data set (and of equal size to the observed data set). 
 
It may also be used for constructing hyporeport tests. It is often used as an alternative to statistical 
inference based on the assumption of a parametric model when that assumption is in doubt, or 
where parametric inference is impossible or requires complicated formulas for the calculation 
of standard errors. 
 
In the process of classifying the output for the methodology developed, it falls into a confidence 
interval use of bootstrapping. The output itself is saying that, given similar rail sections, there is a 
confidence interval of some probability that the track will report back a number between the upper 
and lower bounds. 
 
1.5.7.1 Methodology of Bootstrapping 
 

https://en.wikipedia.org/wiki/Sampling_(statistics)#Replacement_of_selected_units
https://en.wikipedia.org/wiki/Confidence_interval
https://en.wikipedia.org/wiki/Resampling_(statistics)
https://en.wikipedia.org/wiki/Estimator
https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/Empirical_distribution_function
https://en.wikipedia.org/wiki/Independent_and_identically_distributed
https://en.wikipedia.org/wiki/Independent_and_identically_distributed
https://en.wikipedia.org/wiki/Resampling_(statistics)
https://en.wikipedia.org/wiki/Statistical_hypothesis_testing
https://en.wikipedia.org/wiki/Statistical_inference
https://en.wikipedia.org/wiki/Statistical_inference
https://en.wikipedia.org/wiki/Standard_error
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For normal bootstrapping, the “output” is developed from sequentially picking, with replacement4F

5, 
the known observations. Given a set consisting of {1,2,3}, bootstrapping will create new sets from 
those values, such as {1,1,2}, {1,2,3}, or {3,3,3}. Individually, these sets don’t provide the insight 
into the makeup of the population of the dataset, but together, the sets can provide some insight 
into the distribution of the data while also providing a higher number of samples to work with. If 
the samples are the same length as the source data, or there are enough samples taken, then these 
samples tend to mimic the same distribution as the initial data set.  
 
1.5.7.2 Parametric Bootstrapping 
 
Parametric Bootstrapping operates in a similar way to normal Bootstrapping, but exchanges the 
use of the exact values, for the use of a probability function. This allows more variation in the 
output, along with allowing values to exceed the known observation values. Instead of picking 
sample values based on the source data values, the source data is transformed into a distribution 
function, which is then used to develop the samples. For example, if the source data was 
approximated by a normal distribution centered around 0, with a standard deviation of 1, we would 
expect that some 99% of all samples would occur within [-3,3], but there lies the possibility of 
having extreme values, such as 5 or -8. Of course, these values do not need to be whole numbers; 
given that the distribution is continuous, the resulting samples will be as well. 
 
 
  

 
 
5 The new observation is returned to the set of known observations. 
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CHAPTER 2 DATA 
 
2.1 Source of Data 
 
The data used for this analysis came from a Class 1 Freight Railroad operating in the United 
States of America, as well as companies contracted to provide maintenance operations, such as 
ultrasonic testing. This data was collected during routine operations and maintenance efforts, not 
as part of this research. It represents 20 years of data collected on a 20,000+ mile railroad, with 
over 200,000 defects in the data set.  
 
This had two major impacts on the research; the data was “real-world” data, as would be seen by 
the railroads during normal operations, and that the collection of the data did not require the 
research to be delayed. The use of real-world data posed several issues, the most common being 
data quality, a common real-world problem, where the data had gaps in it for various reasons; data 
collection errors, administrative changes, or otherwise unavailable. However, dealing with these 
issues only helps to reinforce the usefulness of the results built from it, as it shows that even badly-
behaved real-world data can provide useful results. In fact, the resulting analysis approach is based 
on use of such real-world data with associated issues in data quality. 
 
2.2 Data Received 
 
As detailed in the table below, the data was received over the course of the research, which resulted 
in multiple analyses, with each new analysis incorporating the additional data set. The initial data 
was received directly from the Class 1 railroad as part of the University Transportation Center’s 
(UTC) research for railroads, and portions of the data had been used previously in earlier research 
projects. Later data was received both from the railroad itself and from contractors who had worked 
with the railroad, and were allowed to share the data under the prior UTC agreement. Table 2 
presents a summary of the data received.  
 

Table 1: Summary of File Acquisitions 
 

File Name Description Date Acquired 

MGT <Year>, MGT 2010  Three Excel files covering 2010, 
2011, and 2012 reported Annual MGT Jan 2015 

Rail Grind Milepost 
Four Excel files covering 2011, 2012, 
2013, and 2014 Rail Grinding 
Operations 

Jan 2015 

All Curves Single Excel file with all reported 
Curves Jan 2015 

All Defects by Year 
Three Excel files containing all 
Defects reported for 2010, 2011, and 
2012 

Jan 2015 

Detected Rail Defects 
Single Excel file containing all 
reported Defects between 1/1/2014 
and 12/31/2016 

Mar 2017 
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Rail in Track 
Single Excel file containing all 
reported Rail locations in the network 
for 2017 

Sep 2017 

MGT <Year>, MGT 1988 

Individual Excel files containing the 
Annual MGT data for the years of 
1988, 1989, 1990, 1991, 1992, 1993, 
1994, 1995, 2005, 2007, 2009, 2010, 
2011, 2012 

Sep 2017 

Defects All 

Originally a single Excel file, split into 
two due to data limitations; Contains 
all reported defects from 1/1/1999 to 
5/31/2017 

Dec 2017 

 
As newer or more complete data was acquired from the railroad, as shown by the date received 
column in Table 2, previous data was removed and/or consolidated resulting in a single complete 
set of data. This was done at the starting points of the analyses, as changing the source data midway 
through the analyses would delay the work, requiring the re-computation of analyses already done. 
 
2.3 Structure of Data 
 
The data was primarily received as Microsoft Excel files (.xls, .xlsx), or was extracted from a 
Microsoft Access database and then saved as an Excel file. In order to import the data into the R 
Programming Language, the file formats were changed to the Comma Separated Value (.csv) 
format, which is handled by R’s data handling routines, whereas importing the .xls/.xlsx files 
would require various workarounds and plugins that did not seem to be suitable at the time. With 
the exception of converting Microsoft Dates to standardized dates, the data itself was not changed 
by this conversion. Microsoft Excel stores dates as the number of days since 1/1/1900, instead of 
as a plaintext MM/DD/YYYY format, such as reporting 1/1/2000 as 36526. 
 
2.4 Ranges of Data Inputs 
 
The date was introduced into a master data base as a series of files. The following tables detail the 
contents of the files; what the data represented, and the range of that data. 
 

Table 2:INPUT.MGT file data ranges 
 

ID Numeric Number specifying the row the data was in 
Prefix Alphanumeric 3 characters corresponding to the location of the track 
MP.From Numeric The starting milepost value 
MP.To Numeric The ending milepost value 
MP.Tot Numeric The total number of miles in the track segment 
MILES Numeric The total number of miles in the track segment; not the 

same as MP.Tot 
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Table 3: INPUT.DEFECT file data ranges 
 

Division Text Broad location identifier 
Subdivision Text Midrange location identifier 
Prefix Alphanumeric Narrow location identifier 
Milepost Numeric Milepost of the defect 
Track_type Alphanumeric What the track was labeled as (Main, 

track 1, track 2…) 
Track_code Text Identifier for Main, Siding, or Other 
Side Text Which side of the track the defect 

occurred on 
Defect_type Text Shorthand for the type of Defect 
Size Numeric Size of defect 
Date_Found Date Date the defect was found 
Date_FD Date Duplicate? of Date_Found 
Car_Name Alphanumeric Identifier of the track inspection car 

which found the defect, or In-Service 
defect 

Prepared.By Text Who prepared the defect report 
Curve.Tang Text Track type where the defect was 

found 
Roadmaster Text Roadmaster of the track where defect 

was found 
Joint.Weld Text/numeric Primarily W, J, or “blank”, but values 

from next column blended in 
Rolled.Year Date Year the rail was rolled 
Mill Text Which mill cast the track 
Weight Numeric The weight of the rail in lbs/yard 

 
For the INPUT.DEFECT file, the Joint.Weld data had to be double checked, as the rolled year data 
had somehow merged into the column. While the Joint.Weld data was mostly (~75%) blank, 8896 
entries were dates, which necessitated checking and moving those values to the appropriate 
column.  
 

Table 4: INPUT.RAIL file data ranges 
 

ID Numeric Row ID of the track segment 
Prefix Alphanumeric 3-character location identifier 
From.Milepost Numeric Starting milepost for the track segment 
To.Milepost Numeric Ending milepost for the track segment 
Track Alphanumeric Identifier for the track number (Main, 

Track 1, Siding…) 
Left.Rail.Weight Numeric Weight of the Left Rail, in lbs/yds 
Right.Rail.Weight Numeric Weight of the Right Rail, in lbs/yds 
Left.Rail.Laid Date Date the Left Rail was laid 
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Right.Rail.Laid Date Date the Right Rail was laid 
New.Relay.Left Text Was the Left rail a relay? 
New.Relay.Right Text Was the Right rail a relay? 
Joint.Weld.Left Text The type of joint used for the Left rail 
Joint.Weld.Right Text The type of join used for the Right rail 
Curve.Degrees Numeric Degree of curvature, for curves 
Curve.Direction Text Handedness of the curve 
Division Text Division in which the track was located 
Subdivision Text Subdivision in which the track was 

located 
LR_Date Date Left Raid Laid Date 
RR_Date Date Right Rail Laid Date 

 
The INPUT.Rail file had a few interesting quirks to it. First, the Left/Right Laid Date, and the later 
LR/RR Date were duplicates, which meant that one pair of them could be removed to compact the 
dataset. But, the dates themselves tended to always be January 1st, possibly due to a lack of definite 
knowledge of when the rail was laid. As for deciding on what counted as Left and Right, it was 
assumed that positive increase in milepost would be the direction in which left and right would 
correspond to, and it was assumed that this held true for all cases where Left/Right were used. 
 
2.5 Cleaning and Joining of Data sets 
 
While the process varied between Weibull Analyses, the cleaning and joining of the data sets 
followed a similar pattern across all of the analyses performed. Initially, columns which contained 
extraneous information were removed, such as rarely filled-in Latitude and Longitude data. Next, 
the columns were formatted to the appropriate data type. When loading the .csv5F

6 files into R (54), 
the data file assumes a data-type called “Factor”, which is restrictive to what can be done to it; by 
changing the data from “Factor” to Numeric or Character, the data assumes the form of numbers 
or a text string, allowing easier manipulation of the data. It is at this point that the track data had 
the length of the track computed and bound to the dataset as well, by taking the absolute difference 
between the start and end mileposts listed. For text/string values, there was additional cleaning 
done, in order to correct issues in the data due to transcription errors, non-standard word choice, 
and shortening full names. This consisted of things such as converting a track value from “SG”, 
“S1”, and “Main”, to “1”6F

7. 
 
Once all of the input data was cleaned and properly formatted, the track and MGT data was bound 
together. This process consisted of taking each individually reported track segment, finding all of 
the breaks in homogeneity in that segment, such as changes in curvature or annual MGT, and then 
creating new track segments based on those breaks. As a part of the creation of the new track 

 
 
6 Comma Separated Value format, a common method of saving plaintext data with delimiters 
which is easy to load into many programs  

7 Respectively, Single Track(SG), Singe One (S1), Main Track (Main), and Track 1(1) 
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segments, the track segments would have the correct data applied to them, instead of requiring 
another pass to apply that data. 
 
Starting with the Third Weibull Analysis, the track data was noted to have gaps existing between 
reported segments, apparently as a byproduct of the format the data was stored in, which truncated 
the milepost information. As such, synthetic track segments were created, based on the data of the 
neighboring track segments. This process essentially cloned the neighboring lower-milepost track 
data, but changed the Milepost and derived data. 
 
This new dataset using the combined data would then be used in any further analyses. At this point, 
it was also necessary to separate the track into two rails, left and right rail, thus shifting the analyses 
from a “track” to a “rail” analysis. This split was based upon the differences in rails for the same 
segment of track. Rails on the left of a track segment may be a different weight, or more often, laid 
at different dates. By splitting the data into rail segments, it became possible to calculate 
Cumulative MGT, the summation of annual MGT since the rail was laid, based on the individual 
rail’s Laid Date, the date the rail was said to be installed in operational service, instead of one 
based on both rails’ laid date. While this doubled the size of the datasets used, and thus their 
computational requirements, it allowed finer control over the data. It also allowed for more careful 
collection of homogeneous data. It was expected that this would help with the issues found in prior 
analyses. 
 
2.6 Lessons Learned for Manipulating Data 
 
The first lesson learned for manipulating the data was that care needed to be taken when cleaning 
the data. The varying input values, including unexpected values such as text when the value should 
be a number, can easily mess with the structure of the dataset, which results in errors and erroneous 
results when forced through computations. 
 
The second lesson learned was that for adjusting/correcting variables that were collected, it was 
far more effective to go by columns than by rows. By inspecting each individual row for an 
offending variable, time is spent pulling that row out, checking it, and then putting the row back, 
with corrections if needed. By wholesale adjusting columns, complicated IF/THEN statements 
were avoided, drastically shortening the required code, as well as making it far easier to 
understand. 
 
A third lesson learned for manipulating the data was to frequently clean the working memory of 
unused variables. Over time, variables that were used once or twice as a stepping stone to reach a 
further endpoint ended up making up a large part of the working memory in use by the program. 
These unused variables were often created in order to debug errors that cropped up, such as a faulty 
adjustment, or a data error, without requiring the whole process to go back to the beginning. While 
the completed code could be condensed and eliminate the need for such temporary variables, the 
utility to use them to help track down any errors that may crop up with new datasets lends the 
advice to just make sure the variables are cleaned up after the data input process is completed. 
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CHAPTER 3 WEIBULL ANALYSIS 

 
3.1 Traditional and Expanded Weibull Analysis 
 
The initial 2-Parameter Weibull Analysis was run for two primary reasons: to provide a baseline 
in which all other analyses can be compared to, and to provide information on the data. The choice 
to use the 2-Parameter Weibull method stemmed from its use in the railway industry already; 
mimicking the same way they would do the analysis on their own. After combining the track data 
along geographic location (Prefix) values, the defect data was then processed and bound based 
upon matching locations given in the track data. Initially, the process of correlating defects with 
track segments was based on the unique combinations of Division, Subdivision, and Prefix, but 
was changed to use just the Prefix due to the general uniqueness of the Prefix data compared to 
the additional uniqueness from Division and Subdivision. Later, this was changed to only Division, 
as Prefix was shown to have issues across years, where Prefixes changed year-to-year, eliminating 
their use as unique identifiers for track location. As such, Division was then chosen, with more 
dependence on milepost values, to bind track together, as shown in the grouping of track function. 
Concurrent with this, the Defect dataset also had the track data bound to it, developing a parallel 
dataset that was focused on the defect data. As the defects were bound together, their Cumulative 
MGT was calculated, based on the Annual MGT data and the age of the rail containing the defect, 
as shown in Equation 10. The age of the rail was taken from the Defect data’s Year Laid, compared 
to the current year of interest, and taking into account a 2% annual rate of change of MGT. 
 

 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑒𝑒𝐸𝐸 𝐶𝐶𝐶𝐶𝐸𝐸𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸𝐶𝐶𝑒𝑒 𝑀𝑀𝑀𝑀𝑀𝑀 = 𝐴𝐴𝑀𝑀𝐸𝐸 ∗ �1 − (2 ∗ �
𝐴𝐴𝐴𝐴𝐴𝐴
2
100

�)� ∗ 𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶𝐸𝐸𝐶𝐶 𝑀𝑀𝑀𝑀𝑀𝑀 Equation 8 

Where: 
 AGE = Current year – Installation year. 
 Annual MGT = Annual traffic in Million gross tons (MGT) 
 Cumulative MGT is the sum total Annual MGT from installation to current year.  
 
As shown in Figure 10, this equation works well when AGE is a small value, but as AGE increases, 
eventually the Estimated Cumulative MGT starts to decrease, eventually becoming negative after 
100 years. While main track should have been replaced in the 50 year range, siding and yard track 
that saw low usage, or in cases where the date laid was in error, ended up with Cumulative MGT 
values which did not make sense, such as the right hand side of Figure 9. 
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Figure 9: Age vs Estimated Cumulative MGT per Previous Equation 
 
At this time though, there was no other option for developing a way to calculate Cumulative MGT 
based on the few data points on-hand. However, once more data was acquired later on in the 
analysis, the cumulative MGT would be recalculated based on historical trends. 
 
At this point, the datasets were bundled together based on their Division specification, primarily 
to reduce the computational effort needed for analysis until a promising avenue of development 
was found. It was also thought of at this point that the varying effects of the location conditions 
could become apparent through comparing the outcomes of the analyses, such as seeing higher 
occurrences of one type of defect over another, that could be traced back to environmental factors.  
 
3.1.1 Basic Weibull Analysis 
 
The process of computing the Weibull Parameters started by pulling all of the defects that fit the 
same Division/Subdivision/Prefix location identifiers up to a nominal 30-mile total length, and 
ordering them based on their Cumulative MGT. Next, the defect data is cleaned of any defects that 
may have an MGT Age which is less than 0, indicating that the defect occurred in rail that had not 
yet been laid (most likely a data error), and defects which did not have a Rolled Year, indicating 
that the age of the Rail could not be defined by the data on-hand. The next batch of code applied 
the Median Ranking method to the defect data to determine what each defect’s probability would 
be when plotting on the Weibull graphs. As shown in Equation 11, the Ranking depended on the 
total number of rails being observed, and the ordinal index number of the case being looked at. 
 
 𝑅𝑅𝐸𝐸𝐴𝐴𝑅𝑅 = 𝑂𝑂𝑂𝑂𝑙𝑙𝐵𝐵𝑂𝑂𝐵𝐵𝑙𝑙 𝐼𝐼𝑛𝑛𝑙𝑙𝐵𝐵𝑥𝑥 𝑙𝑙𝑒𝑒 𝐶𝐶𝐶𝐶𝑂𝑂𝑂𝑂𝐵𝐵𝑛𝑛𝐵𝐵 𝑂𝑂𝑏𝑏𝑙𝑙𝐵𝐵𝑂𝑂𝑒𝑒𝑎𝑎𝐵𝐵𝑒𝑒𝑙𝑙𝑛𝑛

𝑇𝑇𝑙𝑙𝐵𝐵𝑎𝑎𝐴𝐴 𝑁𝑁𝐶𝐶𝑁𝑁𝑏𝑏𝐵𝐵𝑂𝑂 𝑙𝑙𝑒𝑒 𝑂𝑂𝑏𝑏𝑙𝑙𝐵𝐵𝑂𝑂𝑒𝑒𝑎𝑎𝐵𝐵𝑒𝑒𝑙𝑙𝑛𝑛𝑙𝑙
 Equation 9 
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With the probabilities and the corresponding cumulative MGT, the data points could now be 
plotted and have a line fit to them, as shown in Figure 10.  
 

 
Figure 10: Early Analysis Weibull Plot; Green is the 2-parameter fit, Red is the 3-paramter fit 

 
As shown, there is a strong vertical grouping of defects, which came about due to the collection 
methods employed by the railroad. Instead of spotting each defect when it became a break, non-
destructive testing spotted the defects prior to them breaking the rail. Due to the railways operating 
the non-destructive testing on an interval basis and not continuously, there is a pronounced 
clustering of the defects on Cumulative MGT values, as any defect which could be seen was 
recorded, and then removed from the track. As for the points themselves, future analyses 
condensed the points together on the highest Ranking value of the cluster at each reported 
Cumulative MGT. This was done to compute a cautious value for the Weibull analysis, given that 
the exact MGTs that the defects would have been found through service failures was unknown. 
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In the very first few Weibull functions fit and plotted, defects which had identical cumulative MGT 
were not consolidated but treated as unique points. This was later changed once it became apparent 
that many defects were “stacked” due to the way the defects were recorded. Fitting a line to the 
data points was done using R’s Nonlinear Least Squares function (nls). The first of these, Equation 
12, is the fit to the basic 2-Parameter Weibull equation, solving for Alpha and Beta values. 
Equation 13 is fitting the 3-Parameter Weibull equation, solving for Alpha, Beta, and Gamma. The 
3-Parameter Weibull differs from the normal 2-Parameter model by including an offset value, 
Gamma. While this offset value often improves the fit of the Weibull curve, it corresponds 
physically to a “defect free” period, which as numerous following figures show, was often not the 
case. However, due to the simplicity of adding a second fitted line to the analyses, it was often 
included in calculating and plotting of the data. 
 

 𝑃𝑃(𝐷𝐷) = 1 − 𝑒𝑒
−��𝑀𝑀𝐴𝐴𝑀𝑀

𝐵𝐵𝐵𝐵𝐵𝐵𝑎𝑎�
𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑎𝑎

�
 Equation 10 

 𝑃𝑃(𝐷𝐷) = 1 − 𝑒𝑒
−��𝑀𝑀𝐴𝐴𝑀𝑀−𝐴𝐴𝑎𝑎𝐺𝐺𝐺𝐺𝑎𝑎

𝐵𝐵𝐵𝐵𝐵𝐵𝑎𝑎 �
𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑎𝑎

�
 Equation 11 

 
These fits are then graphed, using the same Alpha, Beta, and Gamma values found, to generate a 
smooth line showing the fit, as well as the defect points overlaid on the same plot. This allows a 
visual check of the fit, similar to the process originally done in (3). Initially, the Ranking values 
were normalized between 0 and 1, due to an error in coding. These graphs and results, as shown 
in Figure 10 did provide some insight into some problems with the data. 
 
3.1.2 Alterations to Basic Weibull Analysis 
 
After the initial run through the data, seeing the issues presented, and fixing errors in the code 
itself, further analysis was deemed necessary in order to find the cause of the wide variation in 
Weibull Parameters. Prior work in both industry and research had tended to show an Alpha range 
of 2 to 4, and a Beta range of 1500 to 3000, while the current data did not fit with the prior results. 
This led to several iterations of the Weibull Analysis, varying the grouping of the data, in order to 
see if there was some unreported step or behavior that was done with prior work. 
 
The first alternation was shifting to whole-division grouping. Instead of subdividing the data into 
groups of a nominal 30-mile length, the data was bound based on just the Division value. This 
resulted in far fewer results, 61, due to some divisions not having enough data points for a Weibull 
curve to be fit, and parameters found. In addition, these analyses saw the first reduction in data 
points due to identical Cumulative MGT values. The process removed all duplicate values except 
for the one with the highest Ranking, as shown in the differences between Figure 11 and Figure 
12. The difference in Alpha and Beta values were usually minor, as shown in the reported Alpha 
and Beta values for the two following figures. 



 22 

 
 

Figure 11: 2 and 3 Parameter Weibull with duplicate Cum. MGT 
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Figure 12: 2 and 3 Parameter Weibull without duplicate Cum. MGT 
 
The second alteration looked at restricting the grouping based on Annual MGT, and length of 
track. The track saw the removal of all segments below the mean, and then anything beyond 25% 
of the new mean. This had the result of cutting off low Annual MGT trackage, which would tend 
to see fewer defects anyway, and the very high MGT outliers which would see many defects. In 
addition, the track was then grouped into nominal 30-mile segments, reducing the impact that some 
track might have on the overall results. An issue with this analysis is that there were far fewer track 
groups that had enough datapoints to compute a Weibull Alpha, Beta, and in the case of the 3-
parameter Weibull, Gamma values. There were 57 sets of valid values compared to the first 
Weibull analysis’s 352 sets of values. 
 
The next major alteration was the restriction of defect and track data based on full history. As the 
data only contained defects going back to 1999, any track that was laid prior to that date was 
removed from consideration. In addition, defects with a track rolled date prior to 1999 were also 
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removed. This had the result of severely limiting the possible datapoints for a fit, oftentimes to the 
minimum 3 points required, and resulted in only 32 sets of Weibull values. In addition, these values 
tended to be more extreme than prior results, mostly due to the reduction in track length raising 
the Ranking values, as shown in Figure 13. 
 

 
 

Figure 13: 2 and 3 Parameter Weibull plot using Full History 
 
Following the lack of results with the focus on “full history”, the approach was reversed back to 
the Division grouping at 30-mile lengths, but this time was split based on the type of defect found. 
As shown in Table 6, a majority, over 60%, of the defects were of the Detail Fracture classification, 
with split heads, both vertical and horizontal, making up another 20% together. 
 

Table 5: Fatigue Defect Frequencies 
 

Defect Shorthand Long name Frequency 
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FH Flat Head 4288; 3.7% 
HSH Horizonal Split Head 10597; 9.1% 
SD Shelly Spots 7967; 6.8% 
TDC Compound Fissure 1111; 0.9% 
TDD Detail Fracture 71633; 61.8% 
TDT Transverse Fissure 4392; 3.8% 
VSH Vertical Split Head 15865; 13.7% 

 
While the results, Figure 14, Figure 15, Figure 16, and Figure 17, were similar to previous analyses 
in that few segments showed reasonable results, the plotting of multiple defect types over one 
another, Figure 18, and in comparison to the combined case, provided some interesting thoughts. 
For one, that some defects, such as Shelly Spots, may only occur later on in the rail’s life, but have 
a higher rate of defect accumulative, whereas previously strong defect types started to decrease in 
appearance. However, since the Weibull Parameters themselves were in question, further 
examination was not done. 

 

 
 
Figure 14: 2- and 3- Parameter Weibull fits for Horizontal Split Head defects in a designated 
rail 
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Figure 15: 2- and 3- Parameter Weibull fits for Shelly Spot defects in a designated rail 
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Figure 16: 2- and 3- Parameter Weibull fits for Detail Fracture defects in a designated rail 
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Figure 17: 2- and 3- Parameter Weibull fits for Vertical Split Head defects in a designated 
rail 
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Figure 18: Overlaid 2-Parameter Weibull plots of all defect types on the same rail section 
 
The next permutation of the analysis consisted of consolidating all track based on three broad 
categories: Annual MGT, Year Laid, and Curvature. As shown in Table 7 through Table 18, when 
the data was restricted to only “full history” track and defects, there were limited data points usable, 
and it was thought at the time that consolidating them along these three parameters would allow 
usable results. 
 

Table 6: MGT-Year-Curve-Defect Count, Years 1999 to 2004 
 
 1999 2000 2001 2002 2003 2004 
MGT_0-5 18 6 6 9 19 2 
MGT_5-10 11 16 11 9 1 0 
MGT_10-15 6 17 5 21 8 19 
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MGT_15-20 14 17 11 27 4 3 
MGT_20-25 6 5 10 43 12 25 
MGT_25-30 24 18 58 59 19 17 
MGT_30-35 6 13 14 46 12 23 
MGT_35-40 2 3 4 24 8 10 
MGT_40-45 15 5 7 18 10 6 
MGT_45-50 12 10 12 23 15 15 
MGT_50-55 13 1 4 14 2 3 
MGT_55-60 0 0 17 5 1 16 
MGT_60-65 5 3 3 3 7 2 
MGT_65-70 0 3 0 4 3 1 
MGT_70-75 0 0 0 0 2 0 
MGT_75-80 0 0 0 0 0 0 
MGT_80-85 0 0 0 0 0 0 
MGT_85-90 2 8 0 0 0 4 
MGT_90-95 0 0 0 0 0 0 
MGT_95-100 0 0 0 0 0 0 

 
 

Table 7:MGT-Year-Curve-Defect Count, Years 2005 to 2010 
 
 2005 2006 2007 2008 2009 2010 
MGT_0-5 3 11 2 87 7 20 
MGT_5-10 0 3 3 10 9 26 
MGT_10-15 11 22 31 45 23 52 
MGT_15-20 18 7 30 9 16 20 
MGT_20-25 19 53 46 17 58 51 
MGT_25-30 18 60 10 64 103 46 
MGT_30-35 4 28 15 101 51 51 
MGT_35-40 11 4 52 40 44 61 
MGT_40-45 13 22 38 64 41 32 
MGT_45-50 17 9 34 28 61 43 
MGT_50-55 6 5 7 19 20 34 
MGT_55-60 1 0 3 8 3 9 
MGT_60-65 0 2 4 3 1 1 
MGT_65-70 0 4 0 0 0 5 
MGT_70-75 0 0 0 0 0 0 
MGT_75-80 0 0 0 0 0 6 
MGT_80-85 0 1 0 0 0 0 
MGT_85-90 0 0 0 0 0 2 
MGT_90-95 0 0 0 0 0 0 
MGT_95-100 0 0 0 0 0 0 
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Table 8: MGT-Year-Curve-Defect Count, Years 2011 to 2017 

 
 2011 2012 2013 2014 2015 2016 2017 

MGT_0-5 60 3 9 5 10 1 1 
MGT_5-10 13 28 52 8 13 24 0 

MGT_10-15 69 19 99 9 20 3 0 
MGT_15-20 18 8 20 5 14 20 3 
MGT_20-25 50 17 54 34 23 38 22 
MGT_25-30 49 109 37 34 88 88 83 
MGT_30-35 52 25 55 31 26 44 4 
MGT_35-40 63 14 22 55 30 74 0 
MGT_40-45 8 15 42 40 53 41 19 
MGT_45-50 20 44 40 10 63 52 0 
MGT_50-55 16 8 23 23 90 104 0 
MGT_55-60 18 0 1 1 40 28 0 
MGT_60-65 15 13 0 0 72 7 0 
MGT_65-70 3 11 0 0 9 15 0 
MGT_70-75 2 0 4 0 0 0 0 
MGT_75-80 0 0 0 0 0 0 0 
MGT_80-85 0 0 0 0 0 0 0 
MGT_85-90 0 0 0 0 0 0 0 
MGT_90-95 0 0 0 0 0 0 0 

MGT_95-100 0 0 0 0 0 0 0 
 

Table 9: MGT-Year-Curve Weibull Alpha Values, Years 1999 to 2004 
 
 1999 2000 2001 2002 2003 2004 
MGT_0-5 0.58 1.44 2.74 0.00 10.22 0.00 
MGT_5-10 0.00 4.74 3.78 3.25 0.00 0.00 
MGT_10-15 1.54 2.92 1.39 4.67 0.00 6.59 
MGT_15-20 0.00 4.47 6.64 4.79 0.00 0.00 
MGT_20-25 8.29 2.68 1.36 9.92 1.18 2.09 
MGT_25-30 5.30 2.35 4.46 2.90 5.93 0.00 
MGT_30-35 0.00 6.51 2.11 3.42 1.65 2.70 
MGT_35-40 0.00 0.00 3.58 2.13 3.88 2.35 
MGT_40-45 2.10 0.00 0.00 2.52 0.00 0.00 
MGT_45-50 0.00 1.77 0.00 2.81 0.00 1.60 
MGT_50-55 0.00 0.00 0.00 0.00 0.00 0.00 
MGT_55-60 0.00 0.00 0.00 0.00 0.00 0.00 
MGT_60-65 0.00 0.00 0.00 0.00 0.00 0.00 
MGT_65-70 0.00 0.00 0.00 1.05 0.00 0.00 
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MGT_70-75 0.00 0.00 0.00 0.00 0.00 0.00 
MGT_75-80 0.00 0.00 0.00 0.00 0.00 0.00 
MGT_80-85 0.00 0.00 0.00 0.00 0.00 0.00 
MGT_85-90 0.00 1.99 0.00 0.00 0.00 0.00 
MGT_90-95 0.00 0.00 0.00 0.00 0.00 0.00 
MGT_95-100 0.00 0.00 0.00 0.00 0.00 0.00 

 
Table 10: MGT-Year-Curve Weibull Alpha Values, Years 2005 to 2010 

 
 2005 2006 2007 2008 2009 2010 
MGT_0-5 0.00 0.00 0.00 4.57 0.00 0.86 
MGT_5-10 0.00 0.00 1.70 8.68 6.83 4.52 
MGT_10-15 0.00 5.95 5.44 6.15 5.87 3.41 
MGT_15-20 1.58 0.00 2.89 0.00 3.45 3.15 
MGT_20-25 3.91 4.74 3.31 10.89 3.09 5.00 
MGT_25-30 4.01 3.91 2.84 5.00 2.84 9.26 
MGT_30-35 0.00 4.78 2.47 2.66 4.50 4.47 
MGT_35-40 3.08 0.00 3.06 0.00 3.55 0.00 
MGT_40-45 11.56 3.26 3.54 0.00 2.51 2.60 
MGT_45-50 4.48 2.83 0.00 3.51 3.38 0.00 
MGT_50-55 0.00 0.00 2.08 0.00 3.41 0.00 
MGT_55-60 0.00 0.00 5.11 1.16 10.03 0.92 
MGT_60-65 0.00 0.00 0.00 0.00 0.00 0.00 
MGT_65-70 0.00 1.37 0.00 0.00 0.00 0.91 
MGT_70-75 0.00 0.00 0.00 0.00 0.00 0.00 
MGT_75-80 0.00 0.00 0.00 0.00 0.00 0.00 
MGT_80-85 0.00 0.00 0.00 0.00 0.00 0.00 
MGT_85-90 0.00 0.00 0.00 0.00 0.00 0.00 
MGT_90-95 0.00 0.00 0.00 0.00 0.00 0.00 
MGT_95-100 0.00 0.00 0.00 0.00 0.00 0.00 

 
Table 11: MGT-Year-Curve Weibull Alpha Values, Years 2011 to 2017 

 
 2011 2012 2013 2014 2015 2016 2017 

MGT_0-5 0.42 0.00 0.00 0.00 0.90 0.00 0.00 
MGT_5-10 0.00 2.33 2.47 7.64 2.16 4.45 0.00 

MGT_10-15 6.02 0.00 4.24 0.00 3.93 8.51 0.00 
MGT_15-20 2.45 0.00 4.73 0.00 4.29 6.49 5.24 
MGT_20-25 6.72 8.86 9.82 5.48 3.76 5.43 26.88 
MGT_25-30 4.83 0.00 3.76 3.23 10.60 4.02 5.50 
MGT_30-35 3.35 0.00 5.32 4.45 3.24 4.62 5.71 
MGT_35-40 5.30 0.00 7.15 3.73 7.94 6.50 0.00 
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MGT_40-45 6.78 6.17 4.52 4.58 2.77 0.00 8.17 
MGT_45-50 3.22 2.49 2.63 3.53 0.00 2.93 0.00 
MGT_50-55 8.54 0.00 0.00 5.57 0.00 0.00 0.00 
MGT_55-60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
MGT_60-65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
MGT_65-70 0.00 3.42 0.00 0.00 1.03 2.53 0.00 
MGT_70-75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
MGT_75-80 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
MGT_80-85 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
MGT_85-90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
MGT_90-95 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

MGT_95-100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
 

Table 12: MGT-Year-Curve Weibull Beta Values, Years 1999 to 2004 
 

 1999 2000 2001 2002 2003 2004 
MGT_0-5 1861178 4471 385 0 59 0 
MGT_5-10 0 738 945 1188 0 0 
MGT_10-15 10416 2883 24108 1133 0 885 
MGT_15-20 0 1898 1166 1588 0 0 
MGT_20-25 1178 6939 55959 979 104909 7334 
MGT_25-30 2258 8428 2634 3973 1890 0 
MGT_30-35 0 1708 10965 2964 36035 5549 
MGT_35-40 0 0 4635 9874 2204 10095 
MGT_40-45 10045 0 0 8819 0 0 
MGT_45-50 0 55136 0 8702 0 54722 
MGT_50-55 0 0 0 0 0 0 
MGT_55-60 0 0 0 0 0 0 
MGT_60-65 0 0 0 0 0 0 
MGT_65-70 0 0 0 125325 0 0 
MGT_70-75 0 0 0 0 0 0 
MGT_75-80 0 0 0 0 0 0 
MGT_80-85 0 0 0 0 0 0 
MGT_85-90 0 19182 0 0 0 0 
MGT_90-95 0 0 0 0 0 0 
MGT_95-100 0 0 0 0 0 0 

 
Table 13: MGT-Year-Curve Weibull Beta Values, Years 2005 to 2010 

 
 2005 2006 2007 2008 2009 2010 
MGT_0-5 0 0 0 301 0 21857 
MGT_5-10 0 0 8506 414 470 685 
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MGT_10-15 0 839 852 835 838 1389 
MGT_15-20 23826 0 3892 0 3075 3498 
MGT_20-25 2044 1891 2962 986 3276 1583 
MGT_25-30 2197 2463 5514 1882 3297 1177 
MGT_30-35 0 2399 6872 4741 2538 2632 
MGT_35-40 5224 0 4247 0 3309 0 
MGT_40-45 1595 3733 4777 0 7668 8904 
MGT_45-50 2818 7491 0 6237 4450 0 
MGT_50-55 0 0 30024 0 5812 0 
MGT_55-60 0 0 3417 163088 2200 1782368 
MGT_60-65 0 0 0 0 0 0 
MGT_65-70 0 22765 0 0 0 514156 
MGT_70-75 0 0 0 0 0 0 
MGT_75-80 0 0 0 0 0 0 
MGT_80-85 0 0 0 0 0 0 
MGT_85-90 0 0 0 0 0 0 
MGT_90-95 0 0 0 0 0 0 
MGT_95-100 0 0 0 0 0 0 

 
Table 14: MGT-Year-Curve Weibull Beta Values, Years 2011 to 2017 

 
 2011 2012 2013 2014 2015 2016 2017 
MGT_0-5 1056827 0 0 0 22754 0 0 
MGT_5-10 0 2714 1593 530 3412 609 0 
MGT_10-15 785 0 977 0 1206 679 0 
MGT_15-20 7279 0 1631 0 1767 1035 979 
MGT_20-25 1268 1199 1008 1689 2593 1503 606 
MGT_25-30 2021 0 2636 3674 1125 2215 1456 
MGT_30-35 3153 0 1883 2263 3889 2565 1733 
MGT_35-40 2284 0 1958 3253 1814 2097 0 
MGT_40-45 2075 2283 2344 2863 6262 0 1717 
MGT_45-50 7077 7014 6937 7042 0 7734 0 
MGT_50-55 2274 0 0 3122 0 0 0 
MGT_55-60 0 0 0 0 0 0 0 
MGT_60-65 0 0 0 0 0 0 0 
MGT_65-70 0 6200 0 0 389911 12279 0 
MGT_70-75 0 0 0 0 0 0 0 
MGT_75-80 0 0 0 0 0 0 0 
MGT_80-85 0 0 0 0 0 0 0 
MGT_85-90 0 0 0 0 0 0 0 
MGT_90-95 0 0 0 0 0 0 0 
MGT_95-100 0 0 0 0 0 0 0 
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Table 15: MGT-Year-Curve Rail Lengths, Years 1999 to 2004 

 
 1999 2000 2001 2002 2003 2004 
MGT_0-5 21.74 11.79 6.52 4.38 19.24 2.09 
MGT_5-10 4.77 13.83 7.1 7.06 2.02 4.76 
MGT_10-15 4.79 27.33 7.73 22.15 8.25 31.42 
MGT_15-20 32.02 29.54 12.32 27.11 25.54 15.48 
MGT_20-25 15.14 15.2 18.78 25 18.7 13.84 
MGT_25-30 43.14 19.73 64.42 30.26 20.38 13.72 
MGT_30-35 17.36 5.45 11.09 13.35 21.71 14.03 
MGT_35-40 6.57 1.41 6.69 19.25 2.87 11.66 
MGT_40-45 7.14 3.64 6.55 13.48 11.58 12.71 
MGT_45-50 17.48 29.9 10.06 25.3 18.07 24.48 
MGT_50-55 3.06 2.59 3.25 5.05 4.73 4.21 
MGT_55-60 0.06 0.85 5.05 5.13 3.69 11.89 
MGT_60-65 12.36 8.52 2.43 14.19 13.01 6.2 
MGT_65-70 2.16 4.84 0.67 2.25 1.55 0.96 
MGT_70-75 0.22 0.8 0.01 0.25 1.33 0.17 
MGT_75-80 0.37 0.1 0 0.38 0 0.09 
MGT_80-85 0.01 2.44 0 0 0 0 
MGT_85-90 2.69 7.38 0 0 0.01 0.08 
MGT_90-95 0 0 0 0 0 0 
MGT_95-100 0 0 0 0 0 0 

 
Table 16: MGT-Year-Curve Rail Lengths, Years 2005 to 2010 

 
 2005 2006 2007 2008 2009 2010 
MGT_0-5 4.95 9.17 6.9 33.22 19.69 22.95 
MGT_5-10 6.41 6.38 4.98 6.74 9.89 20.3 
MGT_10-15 12.96 16.22 17.9 33.59 21.28 21.43 
MGT_15-20 15.98 19.11 40.29 39.09 33.42 34.38 
MGT_20-25 6.82 30.31 24.84 26.96 35.57 21.18 
MGT_25-30 10.69 34.51 12.47 31.98 33.21 24.61 
MGT_30-35 3.9 17.51 9.4 33.44 29.28 29.29 
MGT_35-40 6.54 2.79 22.49 22.45 15.31 22.58 
MGT_40-45 6.12 8.05 23.51 39.63 23.99 29.08 
MGT_45-50 3.32 7.46 26.66 37.29 22.96 43.2 
MGT_50-55 2.43 7.14 19.2 7.98 12.89 19.53 
MGT_55-60 0.29 1.19 5.03 6.52 5.47 24.52 
MGT_60-65 1.54 7.76 7.86 11.82 10.43 4.79 
MGT_65-70 0.62 0.61 0.51 0.6 0.72 3.88 
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MGT_70-75 0.26 0.09 0.19 4.3 1.66 1.26 
MGT_75-80 0.12 0.41 0.24 0 1.67 0.15 
MGT_80-85 0 0.1 0 0 0.15 1.16 
MGT_85-90 0 0.16 0.19 0 0 1.18 
MGT_90-95 0 0 0 0 0 0 
MGT_95-100 0 0 0 0 0 0 

 
Table 17: MGT-Year-Curve Rail Lengths, Years 2011 to 2017 

 
 2011 2012 2013 2014 2015 2016 2017 
MGT_0-5 18.57 3.8 4.35 4.05 5.78 0.92 0.96 
MGT_5-10 15.58 37.05 21.86 8.85 11.5 7.62 10.13 
MGT_10-15 36.11 21.57 29.74 17.85 10.63 4.26 0.71 
MGT_15-20 46.59 37.88 23.04 15.25 15.57 13.22 0.65 
MGT_20-25 24.56 26.85 28.24 32.4 20.06 19.24 6.36 
MGT_25-30 24.72 31 21 25.97 32.87 27.46 19.61 
MGT_30-35 16.39 14.12 18.29 12.11 14.93 24.14 0.67 
MGT_35-40 26.23 14.83 13.66 19 20.98 47.26 5.49 
MGT_40-45 7.87 13.68 6.21 14.74 25.5 27.15 6.25 
MGT_45-50 21.14 15.93 14.66 36.81 23.92 41.63 0.66 
MGT_50-55 18.27 8.77 20.13 10.92 50.4 48.85 0 
MGT_55-60 11.98 7.23 1.18 20.97 33.18 9.45 0 
MGT_60-65 15.4 26.62 3.75 3.97 59.79 24.87 0 
MGT_65-70 8.64 4.63 0.96 0.46 10.92 12.49 0 
MGT_70-75 4.46 1.23 0.71 12.23 6.21 3.92 0 
MGT_75-80 0.18 0.19 0.09 0.18 0.5 0.05 0 
MGT_80-85 0.32 0 0 0 2.27 0 0 
MGT_85-90 0 0 0 0 0 0 0 
MGT_90-95 0 0 0 0 0 0 0 
MGT_95-100 0 0.3 0.41 0 0 0 0 

 
While some of these analyses provided results in the expected range, such as Figure 19, there were 
many which kept with the extreme values, such as Figure 20. For instance, if you look at the MGT 
0~5 value for 2011 in all the previous tables, they have a reasonable number of defects and track 
length, 60 defects over 18.6 miles, but result in an Alpha of 0.42 and a Beta of 1,056,827 Cum. 
MGT, highly unrealistic values. This tended to happen when rail length was short, and there were 
few defects, making each defect that did occur to have more of an impact on the Weibull than 
when many more defects were found. 
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Figure 19: Weibull plot showing early-life defects 
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Figure 20: Weibull plot showing minimum number of defects 
 

Following this analysis, the data itself was changed; instead of having the left and right track of a 
given segment be on the same line of data, they would be split into separate lines of data. Given 
that prior analyses did already account for the defects being on different sides of the track, this was 
primarily done to reduce the potential “no defect” track length, and hopefully bring the Weibull 
values more in line with the prior work ranges. 
 
This separation of the rails was done by duplicating the data, and then filling in the unused-side’s 
side-dependent data with a dummy value. Initially this value was chosen to be “9999”, as it would 
be easy to spot errors, but later analysis would change this to “0” in order to simplify calculations 
which took into account this missing data. While this did change things up a bit, the results were 
generally in line with the previous analyses, leading to the same issues with extreme Weibull 
values.  
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3.1.3 Failings of the First Weibull Analysis 
 
One of the biggest issues was the initial error with the Mean Ranking formula. While it was 
corrected before anything important had been done, it tainted the later results when they 
appeared in unexpected ranges. Instead of realizing that these values were actually indicative of 
the data, they tended to be looked at with skeptical views, and various alternative analyses were 
done to see if there was some missing step that was missing compared to previously done work 
by others. This resulted in significant delays in the research process. 
 
Other issues were comparatively minor; determining what location identifier(s) would be used to 
match data, issues with the data structure in R, and determining appropriate fitting methods in R. 
These minor issues are common to almost all technical work, and should be expected whenever 
such tasks are undertaken for the first time. 
 
3.1.4 Lessons learned from First Weibull Analysis 
 
Most of the lessons learned from the First Weibull Analysis are related to learning and becoming 
proficient in the R programming language. Shifting from “for” loops to indexing for parameter 
replacement, thinking about how a process could be parallelized from the start, allowing multiple 
iterations to be run concurrently, and developing better methods of graphing the data. 
 
3.1.5 Second Weibull Analysis 
 
The second Weibull analysis started upon the acquisition of more data from the Class 1 Railroad. 
This data, as covered in Chapter 3, Section 2, doubled the number of years of defect data, as well 
as provided a better baseline for the track network to be used. The process used in the first Weibull 
analysis was used for bringing in, cleaning, and checking the data, but was expanded to account 
for the additional datasets. Beyond this, the analyses were effectively the same; variations of the 
dataset were used in developing Weibull plots and values that were within reasonable ranges. 
However, these results were either too low in number while in the reasonable range, or were far 
out of the reasonable range 
 
Figure 21 and Figure 22 are representative of the plots developed before the analysis shifted to 
machine learning techniques in order to try and rectify the lack of reasonable results. 
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Figure 21: Weibull Analysis using Second set of data 
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Figure 22: Weibull Plot using Second set of data 
 
Following the acquisition of more data, it was decided to halt the previous analyses and restart 
from the beginning, as was done previously. This was more of a result of how the datasets were 
formed and put together, necessitating additions to be done at the beginning of the process. This 
was due to how the data was put together during the cleaning and merging process, which relied 
upon knowing as much about everything at that time. However, it should be possible to alter the 
methodology to account for new data without requiring the process to start from the beginning. 
 
One bonus from this reset was that the iterative IF/THEN/ELSE checks for different variables was 
able to be changed to a method which relied upon the datasets themselves to pick out the correct 
indices to be changed. As shown in the following diagrams, Figure 23 and Figure 24, the process 
shifted from checking each individual row, into one which checked the column of interest, pulled 
out the indices of interest, and then used those to direct the replacement of data. This greatly 
increased the speed of the data cleaning, allowing the new data to be processed in less time than it 
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took for the first analysis’ data; the tradeoff being that some debugging features, such as being 
able to quickly tell which row had bad data, and being able to process only a portion of the data at 
a time, are unable to be used. 
 

 
 
Figure 23: Representation of the Iterative Checking method; each row was analyzed 
individually 

 

 
Figure 24: Representation of Index Checking methodology; each column is checked in the 

entirety at once. 
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3.1.6 Third Weibull Analysis 
 
As before, there were attempts to perform the standard Weibull Analysis in order to develop a 
baseline for which future analyses could refer back to in order to determine accuracy. These graphs 
showed that, with the new data, the Weibull values fell more in line with the expected values, as 
well as occurring much more often; 1474 total graphs were produced with Weibull values within 
the expected range. 
 
Part of this difference compared to previous analyses is that the Cumulative MGT was calculated 
differently. Instead of relying upon a formula in order to estimate the value, the 15 years of know 
Annual MGT was used as a reference point in order to scale the reported average Annual MGT as 
published by AREMA (55). This was done by taking the known historical data and interpolating 
it for the years not reported, as well as estimating the value based on the location (east or west), as 
there was a noticeable difference between the two pairs of major railways. The MGT values were 
then calculated based on the miles of track, and total ton-miles of transportation, allowing a 
derivation of the Annual MGT to be determined (see Figures 25, 26, 27). 
 

 
 

Figure 25: Known and Interpolated Historical Miles of Track 

 -

 50,000

 100,000

 150,000

 200,000

 250,000

1950 1960 1970 1980 1990 2000 2010 2020

M
ile

s

Year

Historical Miles of Track

Known Values Interpolated Values



 44 

 
 

Figure 26: Known and Interpolated Historical Revenue Ton-Miles 

 

 
 

Figure 27: Known and Interpolated Historical Annual MGT 
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With these new Annual MGT values going back to 1955, the Cumulative MGT of track could be 
better estimated. Of course, there are several caveats to this method, such as assuming that the 
proportionality of traffic stays the same across the network. While this does not hold true in real 
life, due to changes in demands for certain products, the gain in reasonable values compared to the 
previous method of estimating Cumulative MGT deemed it to be of acceptable use. 

 
3.2 Bootstrapping Weibull Analysis 
 
As part of the previous KNN and Logistic Regression analyses, datapoints were over-represented 
by repeat picking of them in certain tests. This led to some of the issues observed in the results of 
the previous sections. A similar process, which is designed to be used, where there are limited data 
points is the overall process of Bootstrapping which develops a representation of the overall 
population of data, by randomly re-picking points.  
 
However, normal Bootstrapping uses the exact values picked, meaning that if “1.34” and “2.45” 
were the only two values, then only combinations of those two would be results. This would severe 
limit the analyses used here, given that many track segments have few defect data points. Given 
the nature of the data, continuous positive values, alternatives were sought in an effort to better 
represent the population data. This led to the use of Parametric Bootstrapping for the Weibull 
Analyses and prediction efforts. 
 
3.2.1 Parametric Bootstrapping Weibull Analysis 
 
Parametric Bootstrapping is different from normal bootstrapping in that the known values are used 
to develop distributions from which new values are picked from (56). This greatly increases the 
population from which “re-picked” data is chosen. Furthermore, this lets the values chosen exceed 
the known values by treating the value as a “mean” and allowing a distribution of points on either 
side of the mean. This in turn, can help give insight into what the population distribution is. 
 
To start, the analysis used the basic Weibull equation to come up with known Alpha and Beta 
values for each segment in the population segments selected. These segments were chosen at set 
intervals of 50 to 500 rows from the last chosen in order to ensure that limited duplication of 
analyses would result. In addition, the reduction from the initial population of approximately 
200,000 segments to a few thousand actually being calculated provided far more reasonable 
computation times. These Alpha and Beta values formed the core of the Bootstrapping parametric 
bootstrapping models and were examined at this point to see how they were distributed in order to 
get a better understanding of how the population of values may be distributed. Figure 28 shows 
the distribution of Alpha values, and Figure 29 shows the distribution of Beta values that were 
found. 
 
Initially, a Gamma distribution was used to fit a density function to the data, because the Gamma 
distribution had similarities with the overall distribution of the Alpha and Beta parameters. 
However, while working with the Gamma distribution, errors occurred due to the scaling of the 
Gamma’s scale parameter, which was very sensitive to the magnitude of the Weibull Beta value. 
Based on the types of errors, it was determined that since the Beta values had a far greater range, 
any distribution chosen would have to work with this range. After several tries with various 
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distributions, including Chi-Squared, Weibull, and Exponential distributions, it was determined 
that the Log-Normal distribution would work best overall. The resulting Log-Normal distributions 
are presented, superimposed on the Alpha and Beta distributions in Figure 28 and Figure 29.  

 

 
 

Figure 28: Overall Distribution of the Alpha Values 
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Figure 29: Overall Distribution of Beta Values 
 
The next process was to select the meaningful source data for each given track segment. In this 
manner, the population of segments is analyzed to identify those that can generate Weibull Alpha 
and Beta values Bootstrapping relies upon some form of prior known data in order to extrapolate 
the distribution for the object being looked at, which in this case required the more limited number 
of track segments that were able to compute a Weibull Alpha and Beta to be used as the source 
data. As using the entirety of the data would render any results meaningless, since it shows the 
entire population acting around the ‘average” the source data was pruned based on “similarity” to 
the track segment being looked at. Thus, the segments were grouped into “similar” segment 
groupings. In order to determine what track segments are considered “similar” enough to the 
segment in question, several parameters were used in pruning the dataset into the “similar” dataset. 
In determining what constituted a “similar” track segment, the decision was made to use user-
determined values, based on the sensitivity of the Weibull results to these values. This is instead 
of using other algorithms to select the “similar” segments; such algorithms including K-Nearest 
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Neighbors or Clustering. This allows for the bypass of the issues that cropped up in previous 
machine learning attempts, and also allowed for ease of change in variables and their distribution. 
The selected parameters are Annual MGT, within +/-10%, Track Length, within +/- 10%, and Laid 
Year, within +/-5 years. For the very first few attempts, this pruning was not done in order to see 
how the data acted without any bounds, but the results were not useful since the results tended to 
group around the “mean” or “average” values. Pruning was then applied for all following analyses, 
with more effective results. 
 
Once this source data was obtained, it was used to develop Alpha and Beta distributions, as shown 
in Figure 30 and Figure 31. These graphs formed the basis of the Parametric Bootstrapping, as 
they provided the distributions from which values could be obtained for the bootstrapping analysis.  

 

 
Figure 30: Histogram and Log-Normal fit of Alpha Values for Segment 1 The dotted line is 
the density fit scaled on the left axis, and the solid line is the Log-Normal distribution, scaled on 
the right axis 
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Figure 31: Histogram and Log-Normal fit of Beta values for Segment 1 

 
Given these two distributions, a list of pairs of Alpha and Beta values were created, as shown in a 
small sample in Table 21. These pairs were then used to develop a Weibull curve for every entry, 
which would then be used in the calculations to determine probability densities. Initially, these 
pairs were not restricted in value in any way, which led to issues where extreme values would 
occur, throwing off the Weibull plotting, as shown in Figure 32. This figure shows the combined 
output of the Parametric Bootstrapping Analysis, as plotted on a Weibull graph. The Blue vertical 
line is the Cumulative MGT of the last known defect, the Green line is the best-fit Weibull values 
for the known defects. The Dark Red line is the best fit median Weibull equation, the dashed red 
lines are +/- 40% of the median value, and the Purple lines are the minimum/maximum values. 
While not as clearly shown as in later figures, the gray lines represent each unique Weibull pair 
that was used in the bootstrapping analysis. 
 
In order to rectify the issues that resulted from the use of the extreme values, the Weibull 
parameters were limited to 0 to 10 for Alpha, and 500 to 10,000 for Beta, which represents a range 
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of realistic Weibull parameters based on literature review and analyses preformed previously. This 
restriction was done in two areas; first when the source data was being chosen, and again after the 
Alpha and Beta distributions were developed, and pairs were chosen. The pairs were checked for 
fitting within the boundaries, and if they were found to be outside, the pair was discarded and a 
new pair picked. In Table 21, Pairs #2 and #4 would be removed from the table, and then new 
values calculated as replacements. 
 

Table 18:Example of Weibull Alpha and Beta pairs 
 

ID Alpha Beta 
1 2.42 1486 
2 11.57 1843 
3 4.22 5047 
4 3.61 18762 
5 2.59 3425 
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Figure 32: Unrestricted/unpruned initial parameter Weibull Bootstrapping results 

 
Figure 32 shows this first Weibull Bootstrapping result. Since this segment had defects known 
prior to the bootstrapping attempt, they were included in the plotting of the graph to give a 
representation of what the estimated vs actual looked like. They are the small circles around the 
green line, which as noted is the best-fit Weibull values for the known defects.  
 
Figure 33 is a similar plot, where the extreme values are not used in the boot strapping and the 
range of alpha and beta values are confined to the realistic range noted above. Thus, Figure 33 
shows the distribution around the “median” Weibull values for a range of cumulative life 
(cumulative MGT) of 100 to 5000. Compared to Figure 32, the biggest difference is the loss of the 
Weibull plots in the lower right triangle area, due to Beta being restricted. There are also a few 
low Alpha Weibulls that were removed, as evident in the upper extreme boundary being lower 
than before. 
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Figure 33: Restricted Initial Parameter Bootstrapped Weibull 

 
Figure 34 shows a Bootstrapped Weibull with the source data plotted outside of the expected area. 
As can be seen, there is a large discrepancy between the median and best fit values, due to the 
existing data being discarded due to being outside the expected range of values. This is one 
consequence of the use of pruning measures to remove valid datapoints which are outside the 
expected limits of the data. In this case, the datapoint has a Beta value of over 16,000, 60% over 
the upper limit put in place for Beta values.  
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Figure 34: Weibull Bootstrapping results showing higher expected parameters vs known 

current 
 
While this showed that the process of bootstrapping was working with the code as written, there 
was still more to do in order to improve the results. First to be done was expanding the number of 
times values were chosen (“re-picked”) from the Alpha and Beta distributions, thus changing the 
number of Weibull lines plotted and used for calculations. Figure 35 (100 iterations) , Figure 36 
(200 iterations), Figure 37 (300 iterations), Figure 38 (400 iterations), Figure 39 (500 iterations), 
Figure 40 (600 iterations), Figure 41 (700 iterations), Figure 42 (800 iterations), Figure 43 (900 
iterations), and Figure 44 (1000 iterations), show the differences as the number of used Weibull 
Pairs increases. Of note is that there is a slight change in the expected median Weibull values, but 
a major difference in the smoothness of the resulting graphs. This smoothness helps interpretation 
of the results of the following applications to the data, while not impacting the values found. 
Examining the effect of the number of iterations to determine the relationship between smoothness 
and calculation time, the value of 1000 iterations was chosen as a value for all future Parametric 
Bootstrapped Weibull calculations.  
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Note, these figures represent a final iteration of the analysis process, where the process was applied 
correctly and reasonably. Prior attempts had various issues that were worked through and 
addressed, such as code errors that led to variables being the same for multiple runs, leading to the 
same segments being reused regardless of their applicability). Another such issue related to use of 
data without any boundary on the upper or lower values taken from the Alpha and Beta 
distributions, allowing a very wide range of predictions, as shown in Figure 35. 

 

 
Figure 35: 100 Bootstrapping Iterations Weibull Output 

 
Figure 35 presents the results after 100 iterations. Note, the results are rather jagged. This is due 
to both the limited number of iterations, as well as the wider spread of the lines; a narrower spread 
will tend to have smoother lines, as any differences in the lines are reduced as the spread decreases.  
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Figure 36: 200 Bootstrapping Iterations Weibull Output 

 
Figure 36 presents the results after 2200 iterations; note; the median line starts to smooth a bit. 
This results in a shift of +0.11 to Alpha, and -517 to Beta. 
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Figure 37: 300 Bootstrapping Iterations 

 
Figure 37 presents the results after3after 300 iterations, note the Alpha value has moved closer to 
the initial 100 iteration’s 2.11, while the Beta value stays near the 200 Iteration’s 2947. 
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Figure 38: 400 Bootstrapping Iterations 

 
Figure 38 presents the results after 400 iterations. At this point, it seems that the Alpha value is 
stabilizing around 2.13, most likely minor changes in the 3rd and beyond decimal places which are 
causing the Beta shifts. There is also the addition of a new higher extreme value compared to the 
previous iterations, removing the noticeable “bump” that was present. This “bump” was the result 
of two different “extreme” Weibull curves, one which dominated due to a moderate to low Alpha 
value and low Beta value, and then one with a high Alpha value and low Beta value, which allowed 
the second Weibull to exceed the first. In general, this is happening within the main body of the 
Weibull overlays, with slight differences in Alpha and Beta causing Weibull plots to cross each 
other at various points as well, but because it is happening with numerous plots at once, it is harder 
to see.  
 
Figure 39 through Figure 44 show increasing iterations, from 500 to 1000. Note, the increasing 
smoothness of the curves. This increase in smoothness is a result of having more sources from 
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which to develop the values for the curves, as well as having the same general trend for the values. 
In a few cases, you can see how the extreme value curves have large changes in direction as one 
Weibull overtakes another; since these outliers are fewer in number compared to the center range, 
they have less of an effect on changing the inner boundary curves.  
 

 
Figure 39: 500 Bootstrapping Iterations 
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Figure 40: 600 Bootstrapping Iterations 
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Figure 41: 700 Bootstrapping Iterations 
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Figure 42: 800 Bootstrapping Iterations 
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Figure 43: 900 Bootstrapping Iterations 
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Figure 44: 1000 Bootstrapping Iterations 

 
Accordingly, with the boundaries in place while selecting Weibull Alpha and Beta values, the 
distribution of values tended to shrink and close in when plotted, as shown in the comparison 
between Figure 43 and Figure 44, whereas the extreme values from the Iterations grow as rarer 
extreme values occur than the prior (Figure 35 through Figure 42) shown results. While known 
data was plotted when available7F

8, it sometimes did not match up with the bootstrapped data, an 
indication that the track segment itself was acting differently than what similar segments would be 
doing. Figure 45 shows how the initial 100 iterations do not include the known data’s curve, yet 
the 1000 iteration, Figure 46 , version does. In Figure 45, the green line represents the current 
“Best fit” 2-parameter Weibull applied to the defect data; note that between approximately 600 to 

 
 
8 Known data is plotted as “circles” in the Figures 
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1000 MGT the best-fit line crosses the “extreme value” line. Whereas in Figure 46, the green “Best 
Fit” line stays within the “extreme value” boundary the entire time.  
 

 
Figure 45: Initial 100 Iterations of Bootstrapping showing Known Data outside of Prediction 

space 
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Figure 46: 1000 Iterations of Bootstrapping showing Known Data within the Prediction space 

 
So far, all the Weibull bootstrapped plots shown have had the same general shape; this is not the 
case for all of the data. Several different types of shapes became apparent as the data was processed 
and inspected. These shapes depended upon the initial Alpha and Beta distributions; a narrow Beta 
distribution would result in a tighter clustering of the lines, while a tighter Alpha would result in 
more straight lines. Figure 47 shows a case of a narrow Beta distribution, and a wider Alpha 
distribution resulting in a funnel effect of the lines. 
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Figure 47: Bootstrapped Weibull results showing "funnel" behavior 

 
Figure 48 shows the effect when a narrow Alpha distribution is used, showcasing the relatively 
straight lines going across the graph. 
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Figure 48: Bootstrapped Weibull results showing behavior of low Alpha range 
 

These shapes come into play with the next part of the Weibull Bootstrapping analysis: prediction 
of future defect probabilities. From these layered Weibull graphs, it became possible to develop a 
distribution based on the frequency of Weibull lines crossing at certain points. In essence, the 
graph was “cut” vertically or horizontally, and the resulting distribution of the Weibull lines was 
used to develop future probability densities. Using Figure 47 as an example, a vertical cut was 
made at the Blue line, and at +50, +100, +150 MGT, giving four views of how increasing 
Cumulative MGT shifted the relative probabilities of the Probability of a Defect. Figure 49 shows 
these cuts using that data. Note, the shift to the right (increasing MGT) as expected,  
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Figure 49: Early result of Frequency Density cut from Bootstrapped Weibull output 

 
From this graph, it becomes apparent that as the Cumulative MGT increases, the frequency of 
having a low Probability of a Defect drops, while the frequency of having a moderate, in this case, 
Probability of a Defect rises. In the case of Figure 49, if we look at the relative frequencies at a 
Probability of a Defect value of 0.1, we can see that the 1850 MGT value (red curve) is higher than 
the others, indicating that it is more likely to happen. As we move to Probability of a Defect value 
0.2, the 1850 MGT values peak, then drop below the other values, indicating that past 
approximately 0.18 to 0.2, the other MGT values are more frequent compared to the 1850 MGT 
slice. In addition, the peak of each successive MGT line drops compared to the previous, while the 
endpoint also shifts to the right, indicating that as Cumulative MGT increases, the Probability of 
a Defect’s extreme value grows, making it more likely that previously unexpected values will 
become more frequent 
 
In order to better present these results a series of new graphical presentations were developed. 
Figure 50 and Figure 51 show the source data, and Inverse Cumulative Density Function 
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respectively, for a given track segment. The Cumulative Density Function (CDF) is a way to 
generate probabilities from a density function, as generated from the slices in the previous Figure 
50. As the area under a density curve is equal to 1, each point taken from the curve is related to 
the actual probability of occurrence, with the CDF being the cumulative sum of the densities along 
the x-axis. Since the Cumulative Density Function is essentially the probability that the value will 
be equal to or less than “x”, the Inverse CDF, or 1-CDF, is the probability that the value will be 
greater than “x”. The use of the Inverse CDF is intended to showcase how the Probability of a 
Defect was shifting towards higher values; since the lines can be thought of as “% make it to here”, 
having a line shift to the right indicates that a higher probability of a defect is more likely compared 
with a line to the left. While these functions provide additional information about the frequencies 
of the probabilities, they were found to be confusing and difficult to understand, especially the 
Inverse CDF. As a result, it was decided to use the density method to present these density “cuts” 
as presented in Figure 49, as they are easier to understand without requiring detailed explanation. 

 

 
Figure 50: Bootstrapped Weibull data source for Density Cut example 
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Figure 51: Inverse Cumulative Distribution of Density Cut data for Weibull Bootstrapping 

 
These density cuts also showed some unusual behaviors due to the way the Weibulls were plotted; 
due to the asymptote at 1/100%. This manifest itself as Weibull lines becoming horizontal, as 
shown at the top of Figure 52, as they reached this asymptote. This also resulted in producing a 
double-peak effect in the density cuts, as seen in Figure 53. This behavior in the density graph can 
be seen as a representation of the track segment in question reaching “failure” or time for 
replacement due to excessive number of defects, rather than strictly meaning that there is a 100% 
probability of a defect. 
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Figure 52: Source Weibull Bootstrap for Density Example; two-peak distribution 
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Figure 53: Weibull Density Cut showing Double Peak effect 

 
The Density Cuts were originally defined as cutting across a set Cumulative MGT interval on the 
Weibull plot, e.g. the red density cut in Figure 53 corresponds to the 1633 MGT vertical line in 
Figure 52. These cuts were initially made at intervals corresponding to a year’s worth of traffic; a 
year’s worth of MGT allows for a visualization of the annual progression of broken rail risk as 
seen in Figure 52. Alternately a default value for change in MGT can be chosen if the Annual 
MGT was considered low.  
 
Since railroads often define rail replacement criterion in in terms of such concepts as defect rate 
(defects/mile/year), this would change the way the Weibull results are presented. To achieve this, 
it is necessary to “cut” the Weibull curve at the Probability of a Defect, where the resulting density 
curves would be the relative frequency at which Cumulative MGT values reach that Probability of 
a Defect. Initially, the cuts were at set intervals as a proof-of-concept display, as shown in Figure 
54 and Figure 55, the source data and corresponding density cuts, respectively. These figures 
present the slices as a function of the probability of a defect, i.e. the red curve in Figure 55 
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corresponds to a 80% probability that the next defect will occur at the cumulative defined MGT 
level (horizontal axis).  

 

 
Figure 54: Source Data/Graph for Horizontal Density Cut 
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Figure 55: Density of Probability of a Defect 

 
Interpreting this graph, Figure 55, was found to be somewhat complex, since it introduced a new 
concept, that of the probability of the next rail defect at a specific cumulative MGT level. Each 
line is the Probability of a Defect in a given rail, for the track segment in question. Given a 
Cumulative MGT value, it can be seen how the relative frequencies change between the Probability 
intervals. For example, at 500 Cumulative MGT, the 75% Probability of a defect in a rail is almost 
twice that of the 95% Probability of a defect in a rail, indicating that the 75% Probability of a 
defect is more common at the lower Cumulative MGT. Looking at 5,000 Cumulative MGT, the 
frequencies are reversed, with 95% probability of a defect in a rail being more frequent. 
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Proceeding from this, the next set of graphs focused on “slicing” the Weibull plot based on the 
Defects per Mile per Year values, the criterion commonly used by railroads to replace rail8F

9. One 
major issue came about during this work; because the Weibull curve has an asymptote at 1/100%, 
any value which would correspond to a Cumulative MGT in that asymptote range would return a 
value of 1/100%. Figure 56 and Figure 57 display the normal behavior, while Figure 58 and Figure 
59 show the odd behavior when the asymptote comes into play. 

 

 
Figure 56: Source Data/Graph for Horizontal Density Cut Defects/Mile/Year 

 

 
 
9 Thus 5 defects/mile/year is a common rail replacement threshold for defect based replacement. 
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Figure 57: Density Graph of Defects/Miles/Year 
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Figure 58: Source Data/Graph for Figure 59 

 



 78 

 
Figure 59: Density Graph showing combined densities due to Def/Mi/Year to Probability 

conversion issues 
 
The next step of the process focused on combining individual segments together to develop a single 
probability density. The general idea is to provide a frequency prediction of the probability of a 
defect, or defect/mile/year, for a combined group of track segments, such a replacing a continuous 
3 to 5 mile stretch of track9F

10. Since each segment is slightly different than others, and thus pull 
different source data for the bootstrapping analysis, different Weibull sets are developed. 
Combining these Weibull plots was done by shifting the actual point values along the X axis such 
that all of the plots had their Current Cumulative MGT point at the same Cumulative MGT value 
on the X axis. This was done by determining the largest Current Cumulative MGT of the set of 
plots, and then shifting the plots with smaller Current Cumulative MGT to the right until they lined 

 
 
10 Which would correspond to a single rail train of rail.  
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up. Figure 60 shows the stacking and lining up of several Weibull plots, while Figure 61 shows 
the resulting density of the relative frequencies. 
 

 
Figure 60: Graph showing combination of Weibulls and offsets by Cumulative MGT 
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Figure 61: Weibull Combined Density with Weighted Expected Density 

 
With the combined density graph, it becomes possible to schedule maintenance efforts based on 
the likelihood of defect occurrence, along a contiguous segment of track. This aids maintenance 
planning efforts by allowing scheduling to be done based on the structure of the maintenance itself, 
which tends to focus on replacing miles of track as a single job, instead of multiple sub-mile lengths 
in different maintenance events for preventative work. 
 
3.3 Overall Results 
 
This research has developed a way to help forecast the probability of a defect in a single rail, to 
include rails with a well-defined defect history and adjacent rails with a less well-defined defect 
history by using parametric bootstrapping in conjunction with available defect data. This now 
allows for the determination of a probabilistic distribution of forecasts which in turn allows for the 
development of reasonable approximations as to the failure rate of these less well-defined rails. 
By extending the parametric bootstrapping Weibull analysis approach to those rail segments with 
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limited defect history, this approach opens up significantly increased amounts of data to be used 
in maintenance planning efforts. 
 
While the other machine learning methods discussed did not result in useful output, some 
information has been gleaned from them; the dominance of “no-defect” data, lack of unique 
identifiers on a rail-by-rail basis aside from milepost, and extensive time requirements for 
calculations. 
 
The “traditional” Weibull analysis has also been shown to be weak when applied to the data used, 
particularly due to the fact that often there was limited rail defect history data available for 
individual segments. Frequently the Weibull analysis would not work, due to a lack of defect data, 
but the reporting and structure of that data also caused issues in providing reasonable Weibull 
values. 
 
However, the introduction of the bootstrapping approach to the Weibull analysis allowed for the 
extension of the rail life forecasting model to virtually all segments on a railroad with a broad 
distribution of rail condition and defect history. 
 
As for concrete results, comparisons were done comparing the initial Weibull Analysis that 
resulted in some 10,000 usable track segments, and the results of the Parametric Bootstrapped 
Weibull analyses. Given that the original Weibull analysis resulted in Figure 62’s distribution 
across Alpha and Beta values, it was determined that the best way of comparing the effectiveness 
of the Parametric Bootstrapped Method would be to measure the distance, from the “ideal” Weibull 
parameters, specifically Alpha = 3, and Beta = 2000 MGT (Equation 15). This formula was chosen 
as taking the Logarithm of Beta would bring down the range of values for Beta into the same 
general range as Alpha, allowing the distance formula to be more sensitive to changes in both 
values. 
 

 ��(∆𝐴𝐴𝐶𝐶𝐴𝐴ℎ𝐸𝐸2) + Log(∆𝐵𝐵𝑒𝑒𝐸𝐸𝐸𝐸2)� Equation 12 

 
In addition, the boundary of the “reasonable range” of Alpha and Beta parameters was considered, 
with a range of Alpha 2 to 4 and Beta = 500 to 3000. A second boundary encompassed the Alpha 
= 0 to 6, Beta = 0 to 4000 condition. As shown in Figure 63 through Figure 68, these two 
boundaries are marked on the graphs by two vertical lines. 
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Figure 62: Distribution of Weibull parameters from Traditional analysis10F

11 

 
Figure 62 shows the results of the traditional Weibull analysis, where each entry is the count of 
Analyses which had parameters in that interval. The black bounding box covers the “realistic” 
Weibull parameter values, Alpha between 2 and 4, and Beta between 500 and 3000. One of the 
points taken from this visualization of the data is that the actual railway supplied data did not 
conform to the prior expectation the research group had; Weibull parameters were spread out and 
not concentrated around the “realistic” values that were expected. In addition, the ratios of 
Weibulls computed and Total Track Segments showed that for a common methodology, the 
Weibull could only be applied approximately 37% of the time, as well as only giving reasonable 
results about 10% of the time. This had the effect of changing the focus of the research from 
improving upon the Weibull analysis, to developing a method which could be applied to all track. 

 
 
11 Alpha increases going down, Beta increases going right, last values are catchalls for results exceeding 5 Alpha 
and 3750 Beta 
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Figure 63: Density graph of Basic Weibull and Bootstrapped Weibull parameter results, Log 

Beta distance formula 
 

One of the first things that is brought up by this graph is the spike in frequencies right outside the 
idealized Weibull parameters. The two biggest spikes are from the Bootstrapped data, working 
from the data that was limited to be within 1 to 10 for Alpha, and 500 to 10,000 for Beta. By Rails 
indicates source data that was split into individual rails, essentially doubling the number of track 
entries, while keeping the same number of defects. The Large Group indicator stands for the use 
of 100-mile long segments of track instead of the individual segments. 



 84 

 
Figure 64: Density graph of Basic Weibull and Bootstrapped Weibull parameter results with 0’s 

counted, Log Beta distance formula 
 
Compared to the “No Zero” graph preceding this, the major spike in density has shifted to the outer 
boundary mark. As the only change is the inclusion of “0,0” entries, this showcases how skewed 
the data is to this category of non-data. 
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Figure 65: Density graph of Basic Weibull and Bootstrapped Weibull parameter results, Reduced 

Beta Scale distance formula 
 
The main difference between the following images is that the way the X axis is calculated has been 
rescaled. From the start, it was apparent that using the plain Beta value would skew the X axis, 
causing any change in Alpha to be inconsequential compared to the magnitude of Beta. Figure 73 
and Figure 74 use the standard distance formula, but takes the Log of the Beta difference first in 
order to rescale it closer to the Alpha parameter. In Figure 75 and Figure 76, the difference from 
the Ideal Beta is divided by 1,000, a basic linear scale of the Beta parameter. Figure 77 and Figure 
78 alter the whole equation to use the absolute value of the difference, instead of the square root 
of the square of the difference, but keeps the square root function on the Beta parameter. 
 
Comparing all of these alternative scales for the X axis, the same general trends exist: that 
including 0 parameter entries showcases how skewed the data is; and that the Parametric 
Bootstrapping Weibulls result in median Weibull fit parameters closer to the “ideal” parameters, 
but not strictly within the bounds. 
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Figure 66: Density graph of Basic Weibull and Bootstrapped Weibull parameter results with 0’s 
included, Reduced Beta distance formula 
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Figure 67: Density graph of Basic Weibull and Bootstrapped Weibull parameter results, 
Absolute Log Beta distance formula 
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Figure 68: Density graph of Basic Weibull and Bootstrapped Weibull parameter results with 0’s 

included, Absolute Log Distance formula 
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CHAPTER 4 DEVELOPMENT OF PREDICTIVE MAINTENANCE PLANNING 
METHODOLOGY 

 
4.1 Basic Weibull vs Parametric Bootstrapped Weibull Analysis 
 
One of the biggest differences between the normal Weibull method and the Bootstrapped method 
is that the bootstrapped method provides reasonable estimates of the rate of defects for track 
segments that do not have any significant prior defect data. This allows far more track segments 
to be analyzed, and to be accounted for in maintenance planning efforts. Adding to this, there is a 
range of values to use in the prediction, instead of a single value; it now becomes possible to 
estimate a “best case” and “worst case” scenario. 
 
4.2 Outline of Parametric Bootstrapping Weibull Analysis 
 
From start to finish, a step-by-step outline of the Parametric Bootstrapping Weibull Analysis 
approach is provided in the following: 
 

1. Acquire Data, including but not limited to Rail, Defect, and MGT data. 
2. Clean and Format the data for analysis 
3. Divide the rail data into homogeneous segments 

i. Divide rail data into one-mile segments.  
4. Perform a Weibull analysis and calculate 2-Parameter Weibull values (Alpha and 

Beta) for all track segments with sufficient data 
5. Start the Parametric Bootstrapping Analysis 

i. For each rail segment in the data, find all similar track within designated 
parameter bounds, such as +/-10% of Rail Weight, that have 2-Parameter 
Weibull values 

ii. Fit a distribution to the Alpha and Beta frequency distributions of the similar 
track  

iii. Randomly generate pairs of Weibull values from the fit distribution 
iv. Calculate the Median and designated boundary values, such as every 10%. 
v. Plot these generated Weibull value pairs, overlaid on each other (Use a low 

alpha channel value when plotting so that overlaid lines show up, while 
individual lines are not so obvious) 

vi. Take “slices” of the Weibull plot data, such as all the Weibull lines points 
passing through a designated Cumulative MGT or Probability of a Defect 

vii. Plot these Slices as a density graph 
6. Depending on selected “slices” (Horizontal or Vertical), graphs can be used to 

predict when certain thresholds will be reached. 
7. By taking the area under the density curve, user can calculate the probability of 

reaching a certain threshold, as the density curve area is equal to 1. 
 

4.3 Example of Parametric Bootstrapping Weibull Analysis 
 



 90 

This example will start from the point after the data has been cleaned and combined into suitable 
datasets. The processes involved were written based on the datafiles detailed in Chapter 3, but can 
be changed to suit whatever dataset the user has.  
 
Now, given that the datasets have been cleaned and combined, it is now possible to calculate the 
Weibull parameters for some of the data. The process will go through an example of track data, 
collect the corresponding defect data, and then calculate the Weibull fit.  
 
For this example, the Bootstrapped Weibull output of an example track segment will be used to 
give recommendations on maintenance planning. The source data is shown in the following two 
figures, Figure 69 and Figure 70, which display the original data, the bars, and the parametric fit, 
the dotted line, from which the Parametric Bootstrapping will pull values from. 
 

 
Figure 69: Example Problem Alpha Distribution Source 
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Figure 70: Example Problem Beta Distribution Source 

 
This data is then used to generate the Bootstrapped Weibull plot, Figure 71, by pulling, at random, 
1000 values from the Alpha and Beta distributions. If these values fall outside of the expected 
range, 1 to 6 for Alpha, and 500 to 5000 for Beta, new values are pulled at random from the 
distributions to replace them; on the rare event the replacement is also outside the boundary, the 
process is repeated. Figure 82 shows the horizontal density cuts taken at a range of defect rates 
(defects/mile/year) for this example. Note the shift to the right, with the maximum frequency going 
from around 300 Cumulative MGT for 1 defects/mile/year, to 600 Cum. MGT for 2 d/mi/yr, 900 
Cum. MGT for 3 d/mi/yr, 1000 Cum. MGT for 4 d/mi/yr, and finally 1100 Cum. MGT for 5 
d/mi/yr. These points of maximum frequency are directly linked to the median Weibull fit as shown 
by the red line in Figure 71. By taking the area of each cut between two Cum. MGT values, or 
more specifically 0 and the Cum. MGT of interest, it is possible to report the likelihood that the 
rail has reached that threshold of defects per mile per year. 
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Figure 71: Bootstrapped Weibull overlay for Example 

 
Where: 

 The Vertical Blue Lines are the Cum. MGT of interest 
 The Dark Red Line is the Median Weibull Fit 
 The Dashed Red Lines are the +/-40% boundaries 
 The Purple Lines are the extreme value lines 
 The Red Marks are indicating the intersections of interest between the Cum. MGT lines, 
and the probability intervals 
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Figure 72: Density Cut of Bootstrapped Weibull  Example 

 
For the purpose of this example, let us assume that the track is currently at 200 Cumulative MGT, 
and the user wants to forecast what is the likely defect rate at 500 Cumulative MGT. From Figure 
81, going up from the 200 Cum. MGT mark, it intercepts the 90% mark, the lower dashed red line, 
first at approximately 0.0001, or 0.001% probability of a defect in a rail. Next, it “hits” the Median 
(50%) mark, the solid red line, around 0.002, or 0.2% probability of a defect in a rail. Going further, 
it then intercepts the 10% mark, the upper dashed red line around 0.02, or 2% probability of a 
defect in a rail. These three probabilities give the user the High, Median, and Low expected defect 
occurrence values; given the Bootstrapped distribution. Thus, it can be assumed that 90% of all 
similar track segments will have a probability of a defect in a rail that exceeds 0.001%, that 50% 
of all similar track segments will have a probability of a defect in a rail that exceeds 0.2%, and that 
10% of all similar track segments will have a probability of a defect in a rail that exceeds 2%. 
Now, looking at the 500 Cum. MGT probabilities, the 90% value is at 0.005, or 0.5%, the 50% 
value at 0.02, or 2%, and the 10% value at 0.5, or 50%. 
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Once these probabilities have been determined, it is possible to combine them with maintenance 
cost to help make maintenance decisions. For the purpose of this example, assume that the 
expected cost of a defect that results in a derailment is $1,000,000, and that maintenance efforts 
will cost 20,000 dollars if applied right now, and would effectively prevent any defect from 
occurring for the rest of the time period. From the difference in probabilities over time, it can be 
seen that there is a strong probability of a defect in the 10% case, specifically a 48% chance of a 
defect in a rail, while the 90% case is relatively low, 0.5%, and the median case shows a 1.8% 
chance of a defect in the given time period. Applying the defect and maintenance costs, as 
illustrated in Table 22, shows that at the higher probability range; it is worth repairing the defect. 
  

Table 19: Data used for the Example Problem 
 

Cost of a Defect $1,000,000   
Cost of Maintenance $20,000   
    
 90% 50% 10% 
Initial Chance of Defect 0.0001 0.002 0.02 
Ending Chance of Defect 0.005 0.02 0.5 
Probability of a defect over 
the period 0.0049 or 0.5% 0.018 or 1.8% 0.48 or 48% 

Estimated Cost given No 
Maintenance- obtained by 
multiplying probability of a 
defect occurring by the 
defect cost 

$4,900 $18,000 $480,000 

Should it be Repaired now? No No Yes 
 
This repair/wait method depends on the user defining which case should be used as the decision 
factor. Bypassing this choice, it is possible to develop an “expected value” that takes into account 
all of the possibilities, resulting in an expected cost if no maintenance happens. Table 23 continues 
from Table 22, adding in the Weighted Probability of Occurrence, which comes from the Low, 
Median, and High expected occurrence rates. Assuming the Low and High occurrence rates have 
a 20% likelihood (based on +/-10% around their 10% from the extremes definition), and the 
Median is 60% likely, the Probability of a Defect multiplied by this likelihood results in the 
Weighted Probability of a Defect over the period.  

 
Table 20: Expected cost based on expected probabilities 

 
Probability of a defect over 
the period 0.0049 or 0.5% 0.018 or 1.8% 0.48 or 48% 

Weigh of occurrence 20% 60% 20% 
Weighted Probability 
(Previous two rows 
multiplied) 

0.00098 0.0108 0.096 

Weighted Cost $980 $10,800 $96,000 
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Expected Cost (Sum of 
Weighted Cost)  $107,780  

Cost of Maintenance  $20,000  
Decision  Repair Now  

 
Of course, a more accurate result can be obtained by splitting the data into more breaks, but this 
takes more computational time, nor is suitable for an example in this paper. However, such 
expansion is relatively straightforward and follows the approach shown here.  
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CHAPTER 5 CONCLUSION AND RECOMMENDATIONS 
 
5.1 Review of Results 
 
As discussed in this report, the Parametric Bootstrapping approach was developed to alleviate 
many of the problems identified with the traditional Weibull analysis approach. This included 
calculation of unrealistic Weibull parameters for a very large number of segments. The Parametric 
Bootstrapping methodology was able to address these shortcomings and create realistic output 
forecasts for virtually all the 200,000 segments analyzed. This was accomplished using the data 
from a “core” group of approximately 8000 segments which generated ‘reasonable” output 
parameters and realistic forecast results.  
 
From the 8,000 “traditional” Weibull plots, it became possible to create Parametric Bootstrapped 
Densities for all track. i.e. all 200,000 segments, with minor exceptions11F

12. From these densities, 
the model is then able to generate meaningful and useful outputs, such as estimation of when track 
will reach a certain threshold, such as a rail replacement threshold defined in terms of 
defects/mile/year. Similarly, the risk or probability of a defect appearing “next year” based on the 
rail’s median Cumulative MGT can be calculated. These can also be used when track segments 
are grouped together, providing an estimation of the entire track group’s properties, which can 
then be used by maintenance programs to prioritize areas that will exceed designated thresholds 
and require maintenance actions. 
 
This analysis approach was then applied to a large subsegment of the 200,000 segments available, 
however because of the sheer size of the railroads, not all segments were so analyzed.  
 
5.2 Review of New Methodology 
 
The Parametric Bootstrapping method expanded upon and went beyond the traditional Weibull 
analysis by allowing confidence interval-based estimations of when defects will occur. This now 
allows more flexibility, such as deciding on a “minimize risk” approach instead of using the 
median value, as well as warning, such as showing that other similar track have quicker generation 
of defects, in track maintenance planning. It also shows how multiple Weibull plots can be 
combined to produce a weighted resulting plot, further expanding the use of the methodology into 
large scale analysis. 
 
The Parametric Bootstrapping method, and the resulting density results and corresponding defect 
prediction analyses, e.g. prediction of Cumulative MGT when certain defect thresholds will be 
reached, represents a new set of tools that will assist railroads in their maintenance efforts. By 
expanding the traditional Weibull plot into a more comprehensive defect probability density 
“map”, projections of rail replacement points are more accurate and extensive. These projections 
tie into the already used metrics such as defects per mile per year, which are currently used by the 
railroads in maintenance planning efforts. By doing so, it is expected that the methodology is more 

 
 
12 Exceptions include track which is so unique as to not have any other track be similar in any category, usually as a 
result of odd data inputs, or to have the “similarity” so narrow that no other track can be matched. 
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readily accepted by maintenance planners, as it directly corresponds to metrics they have already 
used, thus avoiding a stumbling block of many new methods which require extensive retraining or 
drastic changes to operational behavior. By using the densities, predictions can be made as to when 
the track in question will reach a certain maintenance threshold, both for individual segments or 
in combined segments thus giving maintenance planners additional flexibility in their local, 
regional and system maintenance plans. 
 
5.3 Review of Lessons Learned 
 
The first lesson learned from the research is that while railroads have been using the traditional 
Weibull method for decades, they have been using it only on a “spot” basis, since the traditional 
Weibull method fails to find solutions for a large percentage of railroad track. This means that 
maintenance planning efforts are being extrapolated based upon those tracks that do have Weibull 
results. This often results in generalized time (or MGT) based “rules” for the railroad to use in 
their replacement decision12F

13. 
 
The second is that the railroads need a unified system of reporting defects and where in the track 
is the defects are located. While the current system works well for rail defects, a there are still 
shortcomings such as due to missing historical data or incomplete current data entry values. This 
can cause problems in the computational phase, which is what occurred with traditional Weibull 
analysis. Methodologies such as the Bootstrapping approach allows for the corrections of this class 
of missing data using an accurate data subset to develop parameters that can be used in a more 
extended system analysis.  
 
As the data is used for more extensive computational work than ever before, it becomes important 
that said data is written down in a uniform accurate and comprehensive way, in order to make sure 
any unique entry is not discarded because it is not known how to translate it into an already 
established category. This is of major importance if railroads start hiring people to do the analyses 
which are not aware of railroad terminology, and thus determine similar things to be different 
because of how they are recorded. 

 
5.4 Recommendations for Future Research 
 
One potential avenue for future research is revisiting machine learning. Now that each piece of 
track can have a Weibull plot developed, they could be used as input into a methodology, such as 
image processing and prediction. Instead of depending on something like the Weibull function, an 
algorithm could be developed to “complete” the right half of a Weibull plot from a given left half. 
The algorithm wouldn’t be given the Weibull function, but instead trained on complete images, 
then told to “solve” for the missing parts. Another possibility would be something like a Markov 
Chain Monte Carlo simulation, using nodes representing the probability of a defect, the probability 
of finding it or having an in-service fault, corresponding costs associated with repair or derailment 

 
 
13 For example: replacing track every 5 years, or every 500 MGT regardless of how worn out it 
is. 
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cleanup, etc. By using this, variations on the impact a minor change to one variable, such as the 
probability of a defect, can be expressed as actual dollar value savings (or costs).  

 
5.5 Recommendations for Data Collection 
 
While the processes shown here were applied to existing datasets to ease their introduction into 
industry at a quicker pace, having more details and complete data can help develop more 
theoretical applications which then can be reduced into applicable industry standards. Mainly, the 
acquisition of rail history needs to be improved; as it is now, there are questions as to the actual 
cumulative MGT of the rail, when the rail was laid, history of the rail if it was a re-laid rail. By 
treating each rail like a locomotive or wagon, and keeping a detailed list of where it is, when it 
was last maintained, the particulars of defects found in it, etc. it becomes possible to build a 
detailed history of the rail which aids in any predictions based on the rail. In addition, more 
frequent scanning of the rails, to eliminate the “defect cliffs” where sometimes dozens of defects 
are detected at once, will be needed. 
 
5.6 Conclusion 
 
This research started with an extensive data set from a large class 1 railroad with approximately 
30,000 miles of track, and an undefined goal of improving on the Weibull methodology. Through 
multiple analyses, it was shown that the traditional Weibull method does not work as well as 
desired when given the wide variety of data present on a railroad. Instead of “improving” Weibull, 
by increasing its accuracy or explanatory variables as originally conceived, the focus shifted to 
broadening the analysis approach to deal with track segments with limited or inadequate data and 
thus expanding the application of Weibull to more track segments. This was accomplished through 
the use of Parametric Bootstrapping in order to take a limited subset of “good traditional” Weibull 
results and creating density parameters for track that allowed for the extension of the analysis 
approach. This changed the balance of information; now all track had some probabilistic level of 
Weibull parameter values and allowed for the calculation of the rail defect failure rate on a 
probabilistic basis, using these initially assumed values. This also opened up new avenues for 
establishing metrics to be used by railroads in their maintenance efforts; such as by using the 
density graphs to obtain estimations as to when the track would reach certain thresholds of defects 
per mile per year. Converting these estimations into metrics railroads are already familiar with, 
acceptance of the new methodology by railroad personnel will be easier than the case where 
entirely new metrics are used which are not familiar to those in charge of maintenance planning. 
Finally, this approach allows for the combining of several track segments together instead of just 
focusing on one track segment at a time. This allows maintenance planning for multiple levels of 
a large railroad to include individual segments, combined territories, or the entire railway system 
so as to permit more efficient use of resources, allowing a for greater reduction in risk for the same 
cost. 
  



 99 

REFERENCES 
 
1. United States Department of Transportation, Bureau of Transportation Statistics, 

https://www.bts.gov/content/us-ton-miles-freight Last Accessed on 02-14-2019. 
2. National Railroad Passenger Corporation (AMTRAK)http://media.amtrak.com/wp-

content/uploads/2015/10/Amtrak-FY16-Ridership-and-Revenue-Fact-Sheet-4_17_17-mm-
edits.pdf Last Accessed on 02-14-2019 

3. P. M. Besuner, D. H. Stone, M. A. DeHerrera, K. W. Schoeneberg, R-302 Statistical Analysis 
of Rail Defect Data (Rail Analysis – Volume 3), Association of American Railroads Track-
Train Dynamics, June 1978 

4. Zarembski, A.M., Palese, J.W., “Characterization of Broken Rail Risk for Freight and 
Passenger Railway Operations”, 2005 AREMA Annual Conference, Chicago, IL, September 
25-28, 2005 

5. AAR Annual Spending 2016, update 7-15-16: 
https://www.aar.org/_layouts/15/download.aspx?SourceUrl=/Fact%20Sheets/Safety/AAR%2
0Annual%20Spending_2016%20Update_7.15.16.pdf 

6. Zarembski, A. M., “Forecasting of Track Component Lives and its Use in Track Maintenance 
Planning”, International Heavy Haul Association/Transportation Research Board Workshop, 
Vancouver, B.C., June 1991 

7. Zarembski, A. M., “Development and Implementation of Integrated Maintenance Planning 
Systems”, Transportation Research Board Annual Meeting, Washington, DC, January, 1998 

8. Armstrong, Wells, Stone, & Zarembski, “Impact of Car Loads on Rail Defect Occurrences”, 
Second International Heavy Haul Railway Conference, Colorado Springs, CO, September 
1982 

9. Waloddi Weibull, “A Statistical Distribution Function of Wide Applicability”, ASME Journal 
of Applied Mechanics, Transactions of the American Society of Mechanical Engineers, 
September 1951 

10. Fréchet, Maurice, “Sur la loi de probabilité de l’écart maximum”, Annales de la Société de 
Mathematique, Cracovie 6, pg 93~116, 1927 

11. Rosin, P., Rammler, E., “The Laws Governing the Fineness of Powdered Coal”, Journal of the 
Institude of Fuel, Volume 7, pg 29~36, 1933 

12. Stone, D.H., Comparison of Rail Behavior with 125-Ton and 100-Ton Cars, Association of 
American Railroads Report Number R-405, Chicago, Illinois, (1980)  

13. Zarembski, A. M., Rail Life Analysis and its Use in Planning Track Maintenance, Railway 
Technology International, (1993) 

14. Jeong, D.Y., Analytical Modelling of Rail Defects and Its Applications to Rail Defect 
Management, Volpe National Transportation Systems Center, Cambridge, MA, in support of 
the UIC World Executive Council Joint Research Project on Rail Defect Management, (2003) 

15. Palese J.W., Wright T.W., “Application of a Risk Based Ultrasonic Test Frequency Scheduling 
System on Burlington Northern Santa Fe”. AREMA Proceedings of the 2000 Annual 
Conference, (2000) 

16. Zarembski, A. M., Palese, J. W., & Martens, J. H., The Effect of Improved Rail Manufacturing 
Process on Rail Fatigue Life, American Railway Engineering Association, Bulletin 733, 
Volume 92, (1991) 

17. Fredy Castellares, Artur J. Lemonte, “A new generalized Weibull Distribution generated by 
gamma random variables”, Journal of the Egyptian Mathematical Society (2015) 23, 382-390 



 100 

18. Eisa Mahmoudi, Afsaneh Sepahdar, “Exponentiated Weibull-Poisson Distribution: Model, 
properties and applications”, Mathematics and Computers in Simulation 92 (2013) 76-97 

19. Jalmar M.F. Carrasco, Edwin M.M. Ortega, Gauss M. Cordeiro, “A generalized modified 
Weibull Distribution for lifetime modeling”, Computational Statistics and Data Analysis 53 
(2008) 450-462 

20. Saralees Nadarajah, Gauss M. Cordeiro, “The Exponentiated Weibull Distribution: A survey”, 
DOI 10.1007/s00362-012-0466-x 

21. Gauss M. Cordeiro, Artur J. Lemonte, “On the Marshall-Olkin Extended Weibull 
Distribution”, DOI 10.1007/s00362-012-0431-8 

22. Alice Lemos Morais, Wagner Barreto-Souza, “A compound class of Weibull and power series 
distributions”, Computational Statistics and Data Analysis vol 55, (2011) 

23. Giovana O. Silva, Edwin M. M. Ortega, Gauss M. Cordeiro, “The Beta Modified Weibull 
Distribution”, DOI 10.1007/s10985-010-9161-1 

24. Jingshu Wu, Stephen McHenry, Jeffrey Quandt, “An Application of Weibull Analysis to 
Determine Failure Rates in Automotive Components”, National Highway Traffic Safety 
Administration, United States Department of Transportation, Paper No. 13-0027 

25. J.Z. Yi, P.D. Lee, T.C. Lindley, T. Fukui, “Statistical modeling of microstructure and defect 
population effects on the fatigue performance of cast A356-T6 automotive components”, 
Materials Science and Engineering A 432 (2006) 59-68 

26. V N A Nalkan, S Kapur, “Reliability Modelling and Analysis of Automobile Engine Oil”, 
Reliability Engineering Centre, IIT Kharagpur, West Bengal, India 

27. Junling Wang et al 2019 J. Phys.: Conf. Ser.1213 022010 
28. Ahmed Z. Al-Garni et al, “Reliability Analysis of Aeroplane Brakes”, Qual. Reliab. Engng. 

Int.15: 143–150 (1999) 
29. R. Danzer, P. Supancic, J. Pascual, T. Lube, “Fracture Statistics of Ceramics – Weibull 

Statistics and deviations from Weibull Statistics”, Engineering Fracture Mechanics 74 (2007) 
2919-2932 

30. W. A. Curtin, “Tensile Strength of Fiber-Reinforced Composites: III. Beyond the Traditional 
Weibull Model for Fiber Strengths”, Journal of Composite Materials vol 34, (2000) 

31. Andrew Flor, Nicholas Pinter, Jonathan W.F. Remo, “Evaluating levee failure susceptibility 
on the Mississippi River using logistic regression analysis”, Engineering Geology, (2010) 

32. Miriam Anderejiova, Anna Grincova, Daniela Marasova, Failure Analysis of rubber 
composites under dynamic impact loading by logistic regression”, Engineering Failure 
Analysis, (2018) 

33. Dalia M. Atallah, et al, Predicting kidney transplantation outcome based on hybrid feature 
selection and KNN classifier, Multimedia Tools and Applications, (2019) 

34. Bashir Mohammed, et al, Failure prediction using machine learning in a virtualized HPC 
system and application”, Cluster Computing, (2019) 

35. Antonio Altavilla, Laura Garbellini, Risk Assessment in the aerospace industry, Safety Science 
vol 40 pg. 271-298, (2002) 

36. Mehmet Firat, Recep Kozan, Murat Ozsoy, O. Hamdi Mete, Numerical modeling and 
simulation of wheel radial fatigue tests”, Engineering Failure Analysis 16 (2009) 1533-1541 

37. Dick Veldkamp, “A Probabilistic Evaluation of Wind Turbine Fatigue Design Rules”, Wind 
Energy vol 11, (2008) 

38. John Quigley, et al, “Estimating rate of occurrence of rare events with empirical bayes: a 
railway application”, Reliability Engineering and Systems Safety vol 92, (2007) 



 101 

39. J. Oliver, et al, “A probabilistic Risk Modelling Chain for Analysis of Regional Flood Events”, 
Stochastic Environmental Research and Risk Assessment, (2019) 

40. Nagaraja Iyyer, et al, “Aircraft life management using crack initiation and crack growth models 
– P-3C Aircraft experience”, International Journal of Fatigue, vol 29, (2007) 

41. Zhen Hu, et al, “Fatigue reliability analysis for structures with known loading trend”, Struct 
Multidisc Optim (2014) 

42. S. R. Ignatovich, “Probabilistic model of multiple-site fatigue damage of riveting in airframes”, 
Strength of Materials, vol 46, no. 3, (May 2014) 

43. J. Curley, et al, “Predicting the service-life of adhesively-bonded joints”, International Journal 
of Fracture, vol 103, (2000) 

44. Simon P. Wilson, “Hierarchical modelling of orthopaedic hip replacement damage 
accumulation and reliability”, Journal of the Royal Statistical Society, Series C, Vol. 54, (2005) 

45. Jianguang Fang, et al, “Multiobjective robust design optimization of fatigue life for a truck 
cab”, Reliability Engineering and System Safety vol 135, (2015) 

46. S. Greuling, “Approaches for Fatigue assessment of welded joins in automotive industry”, DOI 
10.1002/mawe.200800350 

47. Zarembski, A. M., Attoh-Okine, N, Einbinder, D.  “Using Multiple Adaptive Regression to 
Address the Impact of Track Geometry on Development of Rail Defects”, Journal of 
Construction and Building Materials, Volume 127 pp 546-555, (2016) 

48. Zarembski, A. M., Attoh-Okine, N, Einbinder, D., Thompson, H., Sussman, T. “How Track 
Geometry Defects Affect the Development of Rail Defects”, American Railway Engineering 
Association Annual Conference, Orlando, FL, (2016)  

49. Zarembski, A. M., Yurlov, D., Palese J. W., Attoh-Okine N, and Thompson, H, “Relationship 
between Track Geometry Degradation and Subsurface Condition as Measured by GPR”, 
American Railway Engineering Association Annual Conference, Chicago, IL, (2018) 

50. Yurlov, D, Zarembski, A. M., Attoh-Okine, N, and Palese, J. W., “Probabilistic Approach for 
Development of Track Geometry Defects as a Function of Ground Penetrating Radar 
Measurements” Journal of Transportation Infrastructure Geotechnology, 6(1), 1-20, (2019), 
DOI .1007/s40515-018-0066-x 

51. Zarembski, A. M., Yurlov, D,  Palese, J. W. and Attoh-Okine, N.,  Determination of 
Probability of a Track Geometry Defect based on GPR Measured Subsurface Conditions Using 
Data Analytics, 2019 World Congress of Railway Research, (2019), Tokyo, Japan    

52. Zarembski, A. M., “Big Data in Railroad Engineering”, IEEE Big Data Conference, 
Washington DC, (2014) 

53. Efron, B., Tibshirani, R., “An Introduction to the Bootstrap”, Boca Raton, FL, Chapman & 
Hall/CRC, ISBN 0-412-04231-2, 2012 

54. R Core Team (2016). R: A language and environment for statistical computing. R Foundation 
for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/ 

55. Policy and Economics Department, Association of American Railroads, “Railroad Facts 2017 
Edition”, September 2017 

56. Aaron S. Hess, John R. Hess, “Logistic Regression”, Transfusion, (2019) 



 102 

  



 103 

 
The authors wish to thank and acknowledge the US Department of Transportation, University 
Transportation Center Program (RailTEAM UTC) for funding support for this research.  
 
 

ACKNOWLEDGEMENTS 



 104 

 
John J. Cronin, PhD 
 
John Cronin was a graduate research assistant for his Ph.D. degree when he worked on this 
project.  
 
Dr. Allan M. Zarembski, P.E., Hon. Mbr. AREMA, FASME 
 
Dr. Zarembski is an internationally recognized authority in the fields of track and vehicle/track 
system analysis, railway component failure analysis, track strength, and maintenance planning. 
Dr. Zarembski is currently Professor of Practice and Director of the Railroad Engineering and 
Safety Program at the University of Delaware’s Department of Civil and Environmental 
Engineering, where he has been since 2012. Prior to that he was President of ZETA-TECH, 
Associates, Inc. a railway technical consulting and applied technology company, he established 
in 1984. He also served as Director of R&D for Pandrol Inc., Director of R&D for Speno Rail 
Services Co. and Manager, Track Research for the Association of American Railroads. He has 
been active in the railroad industry for over 40 years. 
 
Dr. Zarembski has PhD (1975) and M.A (1974) in Civil Engineering from Princeton University, 
an M.S. in Engineering Mechanics (1973) and a B.S. in Aeronautics and Astronautics from New 
York University (1971). He is a registered Professional Engineer in five states. Dr. Zarembski is 
an Honorary Member of American Railway Engineering and Maintenance of way Association 
(AREMA), a Fellow of American Society of Mechanical Engineers (ASME) , and a Life 
Member of American Society of Civil Engineers (ASCE). He served as Deputy Director of the 
Track Train Dynamics Program and was the recipient of the American Society of Mechanical 
Engineer's Rail Transportation Award in 1992 and the US Federal Railroad Administration’s 
Special Act Award in 2001. He was awarded The Fumio Tatsuoka Best Paper Award in 2017 by 
the Journal of Transportation Infrastructure Geotechnology  
 
He is the organizer and initiator of the Big Data in Railroad Maintenance Planning 
Conference held annually at the University of Delaware. He has authored or co-authored over 
200 technical papers, over 120 technical articles, two book chapters and two books.  
 

ABOUT THE AUTHORS 


	TABLE OF CONTENTS
	Figure 1: Track Cross-section showing Ballast, Sub-ballast, and Subgrade
	Figure 2: Cross section of the Rail on a Tie
	Figure 3: Original example of Weibull plot used in (3)
	Figure 4: Representative Graph of Varying Alpha values of the Weibull equation
	Figure 5: Representative Graph of varying Beta values of the Weibull equation
	Figure 6: Representation of varying Alpha values on the Weibull Rate function
	Figure 7: Representation of varying Beta values on the Weibull Rate function
	Figure 8: Relationships of the BMW sub models; adapted from (22)
	Table 1: Summary of File Acquisitions
	Table 2:INPUT.MGT file data ranges
	Table 3: INPUT.DEFECT file data ranges
	Table 4: INPUT.RAIL file data ranges
	Figure 9: Age vs Estimated Cumulative MGT per Previous Equation
	Figure 10: Early Analysis Weibull Plot; Green is the 2-parameter fit, Red is the 3-paramter fit
	Figure 11: 2 and 3 Parameter Weibull with duplicate Cum. MGT
	Figure 12: 2 and 3 Parameter Weibull without duplicate Cum. MGT
	Figure 13: 2 and 3 Parameter Weibull plot using Full History

	Table 5: Fatigue Defect Frequencies
	Figure 14: 2- and 3- Parameter Weibull fits for Horizontal Split Head defects in a designated rail
	Figure 15: 2- and 3- Parameter Weibull fits for Shelly Spot defects in a designated rail
	Figure 16: 2- and 3- Parameter Weibull fits for Detail Fracture defects in a designated rail
	Figure 17: 2- and 3- Parameter Weibull fits for Vertical Split Head defects in a designated rail
	Figure 18: Overlaid 2-Parameter Weibull plots of all defect types on the same rail section

	Table 6: MGT-Year-Curve-Defect Count, Years 1999 to 2004
	Table 7:MGT-Year-Curve-Defect Count, Years 2005 to 2010
	Table 8: MGT-Year-Curve-Defect Count, Years 2011 to 2017
	Table 9: MGT-Year-Curve Weibull Alpha Values, Years 1999 to 2004
	Table 10: MGT-Year-Curve Weibull Alpha Values, Years 2005 to 2010
	Table 11: MGT-Year-Curve Weibull Alpha Values, Years 2011 to 2017
	Table 12: MGT-Year-Curve Weibull Beta Values, Years 1999 to 2004
	Table 13: MGT-Year-Curve Weibull Beta Values, Years 2005 to 2010
	Table 14: MGT-Year-Curve Weibull Beta Values, Years 2011 to 2017
	Table 15: MGT-Year-Curve Rail Lengths, Years 1999 to 2004
	Table 16: MGT-Year-Curve Rail Lengths, Years 2005 to 2010
	Table 17: MGT-Year-Curve Rail Lengths, Years 2011 to 2017
	Figure 19: Weibull plot showing early-life defects
	Figure 20: Weibull plot showing minimum number of defects
	Figure 21: Weibull Analysis using Second set of data
	Figure 22: Weibull Plot using Second set of data
	Figure 23: Representation of the Iterative Checking method; each row was analyzed individually
	Figure 24: Representation of Index Checking methodology; each column is checked in the entirety at once.
	Figure 25: Known and Interpolated Historical Miles of Track
	Figure 26: Known and Interpolated Historical Revenue Ton-Miles
	Figure 27: Known and Interpolated Historical Annual MGT
	Figure 28: Overall Distribution of the Alpha Values
	Figure 29: Overall Distribution of Beta Values
	Figure 30: Histogram and Log-Normal fit of Alpha Values for Segment 1 The dotted line is the density fit scaled on the left axis, and the solid line is the Log-Normal distribution, scaled on the right axis
	Figure 31: Histogram and Log-Normal fit of Beta values for Segment 1

	Table 18:Example of Weibull Alpha and Beta pairs
	Figure 32: Unrestricted/unpruned initial parameter Weibull Bootstrapping results
	Figure 33: Restricted Initial Parameter Bootstrapped Weibull
	Figure 34: Weibull Bootstrapping results showing higher expected parameters vs known current
	Figure 35: 100 Bootstrapping Iterations Weibull Output
	Figure 36: 200 Bootstrapping Iterations Weibull Output
	Figure 37: 300 Bootstrapping Iterations
	Figure 38: 400 Bootstrapping Iterations
	Figure 39: 500 Bootstrapping Iterations
	Figure 40: 600 Bootstrapping Iterations
	Figure 41: 700 Bootstrapping Iterations
	Figure 42: 800 Bootstrapping Iterations
	Figure 43: 900 Bootstrapping Iterations
	Figure 44: 1000 Bootstrapping Iterations
	Figure 45: Initial 100 Iterations of Bootstrapping showing Known Data outside of Prediction space
	Figure 46: 1000 Iterations of Bootstrapping showing Known Data within the Prediction space
	Figure 47: Bootstrapped Weibull results showing "funnel" behavior
	Figure 48: Bootstrapped Weibull results showing behavior of low Alpha range
	Figure 49: Early result of Frequency Density cut from Bootstrapped Weibull output
	Figure 50: Bootstrapped Weibull data source for Density Cut example
	Figure 51: Inverse Cumulative Distribution of Density Cut data for Weibull Bootstrapping
	Figure 52: Source Weibull Bootstrap for Density Example; two-peak distribution
	Figure 53: Weibull Density Cut showing Double Peak effect
	Figure 54: Source Data/Graph for Horizontal Density Cut
	Figure 55: Density of Probability of a Defect
	Figure 56: Source Data/Graph for Horizontal Density Cut Defects/Mile/Year
	Figure 57: Density Graph of Defects/Miles/Year
	Figure 58: Source Data/Graph for Figure 59
	Figure 59: Density Graph showing combined densities due to Def/Mi/Year to Probability conversion issues
	Figure 60: Graph showing combination of Weibulls and offsets by Cumulative MGT
	Figure 61: Weibull Combined Density with Weighted Expected Density
	Figure 62: Distribution of Weibull parameters from Traditional analysis10F
	Figure 63: Density graph of Basic Weibull and Bootstrapped Weibull parameter results, Log Beta distance formula
	Figure 64: Density graph of Basic Weibull and Bootstrapped Weibull parameter results with 0’s counted, Log Beta distance formula
	Figure 65: Density graph of Basic Weibull and Bootstrapped Weibull parameter results, Reduced Beta Scale distance formula
	Figure 66: Density graph of Basic Weibull and Bootstrapped Weibull parameter results with 0’s included, Reduced Beta distance formula
	Figure 67: Density graph of Basic Weibull and Bootstrapped Weibull parameter results, Absolute Log Beta distance formula
	Figure 68: Density graph of Basic Weibull and Bootstrapped Weibull parameter results with 0’s included, Absolute Log Distance formula
	Figure 69: Example Problem Alpha Distribution Source
	Figure 70: Example Problem Beta Distribution Source
	Figure 71: Bootstrapped Weibull overlay for Example
	Figure 72: Density Cut of Bootstrapped Weibull  Example

	Table 19: Data used for the Example Problem
	Table 20: Expected cost based on expected probabilities

	ACKNOWLEDGEMENTS
	ABOUT THE AUTHORS

