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ABSTRACT 
 

Track geometry data exhibits classical big data attributes: value, volume, velocity, veracity and 
variety. Track Quality Indices-TQI are used to obtain average-based assessment of track segments 
and schedule track maintenance. TQI is expressed in terms of track parameters like gage, cross 
level, etc. Though each of these parameters is objectively important but understanding what they 
collectively convey for a given track segment often becomes challenging. Several railways 
including passenger and freight have developed single indices that combines different track 
parameters to assess overall track quality. Some of these railways have selected certain parameters 
whilst dropping others. Using track geometry data from a sample mile track, we demonstrate how 
to combine track geometry parameters into a low dimensional form (TQI) that simplifies the track 
properties without losing much variability in the data. This led us to principal components. To 
validate the use of principal components as TQI, we employed a two-phase approach. First phase 
was to identify a classic machine learning technique that works well with track geometry data. The 
second step was to train the identified machine learning technique on the sample mile-track data 
using combined TQIs and principal components as defect predictors. The performance of the 
predictors was compared using true and false positive rates. The results show that three principal 
components were better at predicting defects and revealing salient characteristics in track geometry 
data than combined TQIs even though there were some correlations that are potentially useful for 
track maintenance. 
 
Keywords: Rail Infrastructure, Machine Learning, Track Quality Index, Data Science, Safety  
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EXECUTIVE SUMMARY 
 
This study examines the potential of machine learning applications in railway track engineering. 
In this report, we investigate the possibility of reducing multivariate track geometry indices into a 
low-dimensional form without losing much information. Similar to the Pavement Condition Index 
in highways wherein weights are assigned to each parameter and then summed up (Karim et al. 
2016). 
 
However, author’s proposed approach takes cognizance of the fact the observed multidimensional 
data often lies in an unknown subspace of two to three dimensions (Hastie et al. 2009). Hence, 
detecting this subspace in track geometry data can significantly enable authors to eliminate 
redundant information. This will make it possible to visualize multidimensional track geometry 
data in two or three dimensions which was hitherto impossible with the raw parameters obtained 
from track geometry cars. The second section of this report focuses on introducing track geometry 
parameters, data collection and track quality indices. The third section considers selected machine 
learning methods that are used to train, test and validate the use of single and combined track 
quality indices including the proposed principal components. Low-dimensional representation of 
multivariate track geometry parameters in terms of principal components was validated and 
compared to existing TQIs in the penultimate section. The last section of this report highlights key 
findings with concluding remarks. 
 
This report formally described the work on principal components and track quality indices. To 
summarize heterogeneous track geometry data, some railways assign weights to selected track 
geometry parameter. This assignment is followed by the sum of all the products of the weights and 
the parameters to arrive at a value that is used as a measure of overall track quality. While the 
assigned weights are often subjective, the parameters selected vary from one railway to the other. 
Also, relevant information is lost through neglected parameters and subjective weight assignment. 
In order to prevent this, the use of principal components as combined TQIs was proposed in this 
work. This made it possible to simplify track geometry data in a way that most of the variance in 
the data is captured.  
 

Table 3:Summary of Principal Components per Section 150ft and 500ft 

 

 

 
 

1ST PC 1ST & 2ND PCs 1ST, 2ND  & 3RD 
PCs 

1ST, 2ND, 
3RD  &  4TH 

PCs 

1ST, 2ND, 3RD, 
4TH & 5TH 
PCs 

Sections(150ft) 
 

4, 5, 8, 15, 
24, 25, 33 

6, 9, 10, 11, 12, 13, 14, 17, 
18, 26, 29, 30, 32, 35 

1, 2, 7, 19, 20, 22, 
23, 27, 28, 34 

3, 16, 31 21 

%(Count) 20(7) 40(14) 28.57(10) 8.57(3) 2.86(1) 

Sections(500ft) 
 

2, 4, 8, 10 3, 9, 11 1, 5, 6, 7 NA NA 

%(Count) 36.36(4) 27.27(3) 36.36(4) 0(0) 0(0) 
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Figure 1:  Correlogram of Single, Artificial Indices and Principal Components 

The use of principal components as TQIs was tested using classical machine learning algorithms 
and the following conclusions are highlighted: (1) With a sample mile track, ⩾ 90% variance in 
the geometry data was explained by 1st 3 components in 100% of 500ft sections and 88% of 150ft 
sections. The first principal component captured track variations in the vertical plane, the second 
principal component in the longitudinal plane and the third correlated well with transverse 
irregularities. This information can be used to plan maintenance activities such as tamping or 
stone-blowing (1st PC and 2nd PC) as well as gage correction (3rd PC). (2) Support Vector 
Machine (SVM) was the most effective learning tool for classifying track sections with geometry 
defects among other selected machine learning tools; and (3) Using principal components and 
other combined TQIs from different railways, SVM predicted track defects better with 3 principal 
components and Canadian TQI than any other TQIs considered in this study. The prediction 
performance was measured using TPR (True Positive Rate) and FPR (False Positive Rate) since 
the defect data is highly unbalanced. This approach will help railways and track engineers assess 
track geometry monitoring from a different perspective as a novel method of combined/artificial 
TQI for maintenance scheduling. This work is a first step in incorporating dimension reduction in 
track geometry data analysis using classical techniques. Future work will consider the development 
of thresholds for principal components through correlation studies with vertical or lateral 
accelerations on train; and the use of classifier fusion to obtain better predictions. 
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Because dimension reduction/feature extraction with machine learning have not been widely 
adopted in track geometry data and analysis, there is great potential for optimized maintenance 
scheduling under this approach. 
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INTRODUCTION 
 
Track geometry is a description of the track in terms of its longitudinal (alignment), transverse 
(gage) and vertical properties (surface/profile and cross level). Other track parameters combine 
these track irregularities in two-dimensions or more, e.g. vertical and longitudinal (warp/twist). 
Track quality index on the other hand is a quantitative representation of ride quality in an attempt 
to distinguish a good track from a ‘bad’ one. At this point, it is important to distinguish between 
track index, defects, irregularities and how they contribute to derailments. Firstly, tracks are laid 
to meet very stringent construction standards. Wear and tear as a result of track usage and tonnage 
results in deviations from construction standards. These deviations are often found in rails, track 
geometry, structure, etc. Since track parameters are often defined by a nominal value which is the 
characteristic of an ideal track.  
 
Deviations from these nominal values develop into track irregularities (Ciobanu 2016). These 
irregularities grow gradually until it reaches an unacceptable limit (maintenance threshold) that 
requires intervention. Nominal values for a parameter beyond this limit defines a defect as seen in 
Fig. 1. Track geometry defects left to propagate is likely to lead to derailments as discussed in 
Section 1. To evaluate, assess and make decisions based on each parameter per unit length of track 
is almost practically impossible because it results in tremendous data-points and hypersensitivities 
in variations. Therefore, TQI is employed as an aggregate measure of a given track geometry 
parameter over a specific length of track. Standard deviation, mean, power spectral density (PSD), 
etc. are among the common average-based measures used as TQIs. Next, we discuss crucial track 
parameters and track quality indices expressed in terms of individual parameters. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Track quality indices, tolerances and defects (Ciobanu 2016) 

 
DATA PREPROCESSING 
 
The dataset collected from a Class 7 track initially existed in a matrix format for each track 
parameter (e.g. Gage, Cross level, Alignment, Surface and Profile) in form of section lengths. We 
will be considering two section lengths only, 150ft and 500ft length. Other section length could be 
62ft, 124ft, 200ft or even a 1000ft. The total length of track is about 5270ft which is equivalent to 
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about a mile. Therefore, the 150ft and 500ft section lengths are equivalent to 35 and 11 sections 
respectively.  For a 500ft section, the Gage parameter matrix for instance is an 11 by 28 matrix 
where 11 stands for the number of sections and 28 represents number of inspection dates. Below 
Table 1 is an example of a typical parameter matrix represented as TQIs (standard deviation values) 
using the 150ft length. 
 

Figure 3: A sample parameter matrix with 35 sections (150ft) and 28 inspection data. 

 

 
 

There are about 20 parameters collection from the field, 11 of these parameters have been selected 
relevant for this study. These parameters include: 1. Gage, 2. Cross level, 3. Surface Right (62ft), 
4. Surface Right (124ft), 5. Surface Left (62ft), 6. Surface Left (124ft), 7. Alignment Right (62ft), 
8. Alignment Right (124ft), 9. Alignment Left (62ft), 10. Alignment Left (124ft), and 11. Warp 
(62ft). Figure 4 shows the definition of these parameters. 
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Figure 4: Track geometry parameters 

 
EXPLORATORY DATA  
 
Below Figure 5 is a sample of the processed data for the first section of the 500ft section length 
and scatter plot. 
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Figure 5a Processed data for 500ft section with row = inspection dates, column = 
parameters 

 

 
 

Figure 5b: Pairwise scatter plot of Section 1 with 500ft section length. 
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PRINCIPAL COMPONENTS FOR 150FT AND 500FT SECTIONS WITH SCREE 
PLOTS 
 
Below is a list summary of the principal components that effectively summarize over 90% of the 
variation within parameters for each class of section length. Red inks denote sections summarized 
by only one principal component. Parameters are not scaled since they already exist as standard 
deviation with a general unit expressed in inches. 
 

Table 4: Summary of Principal Components for each Section 

 

 
PERCENTAGE AND CUMMULATIVE PERCENTAGE VARIANCE EXPLAINED 
 
From the above, it is obvious that the first two principal components summarize at least 85% of 
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the data at any given section. Rather than express track geometry parameters as a function of 11 
or more parameters, they could be effectively expressed as a bivariate data as has been shown 
above.  A scree plot sample for sections in both 150 and 500ft section length also gives elbows at 
two principal components as shown below. 
 

 
Figure 6: Variance (LHS) and Cumulative Variance (RHS) explained by Principal 

Components for Sample Sections in 150ft (above) and 500ft (below) lengths 

 
Defects and Defective Sections 
 
FRA safety standards: Below is a summarized table for the safety thresholds specified by the 
Federal Railroad Administration (FRA) for certain track geometry parameters relevant to this 
study. These thresholds are as follows: 
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Table 5: FRA Safety Standards for Track Geometry Parameters 

 
Section # Parameters for Class 7 Track Safety Limits(inches) 

1.0. Gage 56’’≤ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ≤ 57.25” 
2.0. Alinement 62ft ≤ 0.5” 
3.0. Alinement 124ft ≤ 1.25” 
4.0. Cross level -0.5’’≤ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ≤ 7” 
5.0. Surface 62ft ≤ 1.0” 
6.0. Surface 124ft ≤ 1.5” 
7.0. Warp 62ft ≤ 1.5” 

 
Sections with Defects 
 
Firstly, a section with defect here is defined as the any point (in feet) within a section that violates 
at least one of the above thresholds as specified by FRA. This check was conducted for all sections 
across all inspection dates. Below is a summary of the sections with defects and their counts. Dates 
have not been included because this study is not concerned about degradation rate. 

 
Table 6: Defect Sections and Counts 

 
S/No Parameters for 

Class 7 Track 
Sections with 

Defects (500ft) 
Location in 

Feet(s) 
Count(s) Total 

1.0. Gage Section 6 2967 to 2971 5 5 

2.0. Alinement 62ft No Defects No Defects 0  

3.0. Alinement 124ft No Defects No Defects 0  

4.0. 

Cross level 

Section 5 
Section 5 
Section 11 
Section 11 
Section 11 

2056 to 2057 
2108 to 2109 
5194 to 5263 
5233 to 5234 
5232 to 5234 

2 
2 
61 
2 
3 

70 

5.0. Surface 62ft No Defects No Defects 0  

6.0. Surface 124ft No Defects No Defects 0  

7.0. Warp 62ft No Defects No Defects 0  

TOTAL 75 

 
CLASSIFICATION MODELS AND ERROR RATES 
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The classification methods applied are three, two of which are parametric (Linear Discriminant 
Analysis and Support Vector Machine) and the other Non-parametric (Random Forest). All the 
defective sections were combined and these models were trained on them. Table 5 below shows 
the test/cross validation results for each of the models. 
 

Table 7: Error Rates for Different Training Models 

S/No Learning Tool/Model Training Error (%) Test/CV Error (%) 
1.  Linear Discriminant Analysis (LDA) 10.714 CV Error = 14.285 
2.  Support Vector Machine (SVM) 8 Test Error = 5.8824 
3.  Random Forest 0 Test Error = 5.88 

 
Based on the above, it is interesting to see that the test error is actually lower than the training error 
rate with the SVM which is quite unusual and mostly the reverse often times. The test error on the 
Random Forest and SVM are however similar while the LDA is performing the least. The SVM 
will therefore be selected since it’s parametric a bit more conservative to avoid overfitting. 
 
CLASSIFICATION OF DEFECTIVE SECTIONS USING BEST MODEL AND 4-CLASS 
OF PREDICTORS INCLUDING 1ST 3 PRINCIPAL COMPONENTS 

 
Table 8: Error Rates Using Different Training Parameters 

S/No Sections All Parameters J-Synthetic Coefficient  Indian TGI 1st 3 PCs 
1.0. Section 5 8.33% 8.33% 8.33% 0 
2.0. Section 11 10.714% 10.714% 10.714% 0 
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Biplots for A Sample Defective and Non-Defective Sections 
 

 
Figure 7 The principal component scores and the loading vectors in a single biplot display 

The figures represent both the principal component scores and the loading vectors in a single 
biplot display. The axes with PC1 and PC2 are scores while the other two are the loadings for 
each component. 

 
Figure 8 1st Two/Three Principal Components Plots for Both Defective and Non-Defective 

Sections 

• Defects 
• No Defects 

• Defects 
• No Defects 
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Figure 9 SVM Classification on Two Principal Components Using a Radial Kernel 

 
CONCLUSIONS 
 
This paper formally described the work on principal components and track quality indices. To 
summarize heterogeneous track geometry data, some railways assign weights to selected track 
geometry parameter. This assignment is followed by the sum of all the products of the weights and 
the parameters to arrive at a value that is used as a measure of overall track quality. While the 
assigned weights are often subjective, the parameters selected vary from one railway to the other. 
Also, relevant information is lost through neglected parameters and subjective weight assignment. 
In order to prevent this, the use of principal components as combined TQIs was proposed in this 
work. This made it possible to simplify track geometry data in a way that most of the variance in 
the data is captured. 
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