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ABSTRACT 
 

This research studies the development of lateral thermal expansion forces0F

1 on a curved railway 
track in general and specifically when the curved track is located on a railway bridge. Geometric 
alignment of railways often requires railway tracks to be curved for alignment of the right of way 
as well as safety and ride quality. This curvature is usually defined either by a radius of curvature 
or by a corresponding degree of curvature. Curved tracks constitute a higher level of complexity 
in the track’s analysis and design process. Particularly, presence of curvature on the track 
introduces multiple sources of force in the lateral (radial) direction, including, but not limited to, 
lateral thermal expansion, centrifugal action, lateral components of vertical loads, hunting and 
nosing effects of locomotives, and vehicle curving dynamics. When a curved railway track is 
constructed on the ground like most curved tracks are, these forces are absorbed by the ballast 
shoulder and tie-ballast friction or interlocking. However, when a curved track is carried by a 
curved railway bridge, these forces will be transferred to the bridge in the lateral direction. While 
some of these forces are well known and defined, such as centrifugal forces, others are not as well 
known or analyzed. This is particularly true in the case of lateral forces generated by constrained 
thermal expansion on curves. To bridge this gap, this research studies the development of track-
induced lateral thermal expansion forces on a curved railway bridge. In this research, the curved 
track is assumed to be an arbitrary arc section of a circular track and is modeled as an equivalent 
idealized circular ring for analysis. Owing to its importance, three analytical methods are used 
such as 1) Timoshenko thermoelastic stress analysis in cylindrical coordinate system, 2) 
Application of the mechanics of thin wall cylinders and 3) adaptation of a variational calculus 
formulation method from a previous comparable study. A fourth analysis, consisting of a finite 
element model using a commercially available finite element software package was also performed 
and used to compare and validate the results from these three methods. The results show good 
agreement between the four analytical approaches with respect to the generated lateral forces.   
 

  

 
1 The thermal forces referred to here-in are due to constrained thermal expansion of the rail, i.e. when the rail is welded 
in track and is unable to expand and contract to relive the building of thermal forces in the rail.  
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INTRODUCTION 
 
Introduction to Curved Railway Track  
 
A section of a railway track that has a radius of curvature is referred to as a curved track. The 
curvature of the track can be defined either by its radius of curvature or, as commonly used in 
North American railway systems, by its degree of curvature which is the measure of a central angle 
to the ends of a chord with a predetermined length in a circular section. In North America, for 
railroad geometric design purposes, this chord length is conventionally taken as 100 ft (Figure 1) 
with the resulting relationship between degree of curvature and radius of curvature given by the 
equation: 
 
 D = 5730/R 

Where, 
D is the degree of curvature (in degrees) 
R is the radius of curvature in feet. 

 

 
 

Figure 1: A representation of a typical curved track 
 
Likewise, a railway bridge carrying a curved track is referred to as a curved railway bridge. 
Sometimes, a curved railway bridge is made up of straight girders, curved in overall profile (Figure 
2).  
 
Geometric alignment requirements for railway right of way often requires railway tracks and 
bridges to be curved by a certain degree of curvature. Unlike straight bridges, their curved 
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counterparts experience a combined action of forces that introduce further levels of complexity in 
their analysis and design process (Deng et al. 2015, Unsworth 2010, Nakai, and Yoo 1988, Heins 
and Firmage 1979, Shanmugam et al. 2003, Practical Guide to Railway Engineering 2003). 
Additionally, when a curved bridge carries a curved railway track (or tracks), it will be required to 
withstand further load complexities that are induced by the curved track itself. Particularly, 
presence of curvature on the track introduces multiple sources of force in the lateral (radial) 
direction, including, but not limited to the following: 
 

1. Lateral forces due to constrained thermal expansion  
2. Vehicle centrifugal action  
3. Lateral components of vertical vehicle dynamic loads  
4. Hunting and nosing effects of locomotives, and  
5. Vehicle curving dynamics.  

 
This study will be limited to the first of these, lateral forces due to constrained thermal expansion. 
When a curved railway track is constructed on the ground like most curved tracks are, these forces 
are absorbed by the track lateral resistance mechanism such as ballast shoulder and tie-ballast 
friction and interlocking. However, when a curved track is carried by a curved railway bridge, 
these forces will be transferred (partially or fully) to the bridge in the lateral direction through 
track-bridge connection and are considered in the bridge design process. While some of these 
forces are well known and defined, such as centrifugal forces, others are not as well known or 
analyzed. This is particularly true in the case of lateral forces generated by constrained thermal 
expansion on curves. To bridge this gap, this research studies the development of track-induced 
lateral thermal expansion forces on a curved railway bridge since current bridge design relies on 
approximated lateral loads (Unsworth 2010) based on engineering experience, finite-element-
based modeling and simulations and where applicable. While railway bridge designers attempt to 
avoid curvature on bridges or try to introduce large radii of curvature as an attempt to minimize 
the development of lateral forces due to curvature effects, circumstances sometimes require the 
presence of a significant degree of curvature. This in turn can result in the generation of significant 
levels of lateral force.   
 
In this research, the curved track is assumed to be an arbitrary arc section of a circular track and is 
modeled as an equivalent idealized circular ring for analysis. Owing to its importance, three 
analytical methods are used such as 1) Timoshenko thermoelastic stress analysis in cylindrical 
coordinate system, 2) Application of mechanics of thin wall cylinders and 3) adaptation of a 
variational formulation method from a previous comparable study. A fourth analysis, consisting 
of a finite element model using a commercially available finite element software package was also 
performed and used to compare and validate the results from these three methods. It should be 
noted that although a curved track usually consists of a circular section with constant radius and 
two transition sections on each end of the curved section which transition into the tangent (straight) 
track sections, the methodology used in this study is only applied to the circular section of the 
curve.  
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Research Objectives  
 
The primary objective of this research is to determine the track-induced lateral thermal expansion 
forces on a curved railway bridge. This is done by using three different analytical approaches and 
is then compared with and validated to a finite element model through a parametric study.  
 
Research Scope 
 
The scope of this research is limited only to the determination of lateral forces due to thermal 
expansion of a curved track. These forces are of particular interest in the design of curved railway 
bridges. Additionally, defining the dynamic impact factor for the calculated lateral load, load 
transfer path from the track to the bridge and load transfer mechanism are also within the scope of 
this research.  
 
Introduction to Curved Railway Bridge 
 
Generally, curved railway bridges are girder bridges (steel or concrete) with common cross 
sections such as box, I and T. As curved bridges also experience large torsional loads (Unsworth 
2010) box girders are often preferred and typically are constructed as segmental prestressed 
concrete box girder bridges. Curved bridges are made up of either curved girders or straight 
girders, curved in plan (Figure 2). There is also precedence for curved cable stayed railway bridges, 
however, for the purpose of this study, it is assumed that the track is carried by a curved girder 
bridge.  
 

 
 

Figure 2: Plan of a curved track (bold line) carried by straight girder bridge curved in plan 
(Unsworth 2010). 

 
Bridge-Track Connection 
 
Load transfer from a track to the bridge is affected by how the track is connected to the bridge 
which is typically done by various methods. Commonly practiced methods are listed below 
(Practical Guide to Railway Engineering, 2003). It should be noted, however, that regardless of 
the connection method, the forces will still develop on the track and transferred to the bridge. The 
lateral load transfer path and transfer mechanism will depend on types of bridge–track connection 
systems. For the purpose of this research, it is assumed that the track is connected to the bridge 
slab with direct fixation and the developed load is fully transferred to the bridge.  
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Open Deck Bridge  
 
In an open deck railway bridge, the track is connected directly to the bridge girders. Open deck 
bridges provide free drainage and better short to medium term economics (Practical Guide to 
Railway Engineering 2003) and hence may be construed as an attractive design option for certain 
projects. Should this be the case, it should be noted that in such bridges, the lateral thermal loads 
(and other lateral loads that are not considered in this study) are directly and fully transferred to 
the girder and therefore the girder design should incorporate provision to resist the total of lateral 
loads developed in this study. 
 

 
 

Figure 3: Open deck bridge [6] 
 
Slab Track with Direct Fixation 
 
Slab track with direct fixation is another option that is used in railway bridges. In this type of 
bridges, the loads are transferred to the slab through the fastening system and subsequently to the 
girder. The slab may be designed so to resist some of the loads and transfer the remaining to the 
next medium, in this case, girder.  
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Figure 4: Slab track with direct fixation [6] 
 
Ballasted Track  
 
Regular ballasted tracks are also used on railway bridges. A “ballast plate” is placed or constructed 
on the bridge deck and the track sits on the ballast similar to a regular ballasted track. Likewise, 
resistance to the lateral movement of the track is provided by the ballast shoulder and ballast-tie 
friction. In this type, the track is “discretely connected” with the bridge. 
   

 
 

Figure 5: Ballasted track [6] 
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METHODOLOGY  
 
Problem Formulation 
 
The overarching methodology used to conduct this research is categorized into five general steps 
as shown in Figure 6 below. Initially, the circular track problem is formulated based on other 
mechanical principles (ring analogy and thin walled cylinder). Subsequently, simplifications such 
as taking constant cross section, defining height and width of the ring are made. Then, the 
developed models are compared with previous comparable literature and eventually verified with 
the finite element model also developed in this activity.  

 
 

Figure 6: The research overall approach 
 
Idealized Circular Track 
 
As mentioned above, a curved track consists of a circular section, a transition (a.k.a. spiral or 
clothoid) and a tangent section. The methods and equations used in this study are applied only to 
the circular section of the curve. To formulate the problem, the circular section of the curve is 
assumed to be an arbitrary arc section of a circular track (Figure 7) with a constant cross section 
and radius subjected to a temperature difference. This can be modeled as an equivalent idealized 
circular ring, and therefore, analyzed for lateral forces (radial direction), axial forces (hoop or 
circumferential direction) and as well as vertical forces (vertical direction) due to thermal 
expansion. The thermal forces in the vertical and circumferential directions are not covered in this 
study. The methods presented in the following sections are used to determine forces for lateral 
direction. 
 

Formulation 
through 

mechanics 
principles 

Simplifying 
and making 
assumptions 

Comparing to 
literature 

Creating 
FEM model 

Verifying 
with FEM
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Figure 7: The curved track is taken as an arbitrary arc section of a circular track 
 
For each of the aforementioned methods, the governing equation is initially derived for free lateral 
thermal expansion as a function of force in the radial direction, assuming that the idealized ring is 
initially allowed to expand freely as it is subjected to a temperature difference. Subsequently, the 
radial expansion is set to zero to simulate a condition whereby a continuous resisting medium is 
confining the idealized ring from radial expansion along the circumference. This agrees with the 
way the fastening system is restraining or confining the rail from lateral displacement or the way 
ballast resistance is restraining the track against lateral displacement.  
 
Confining the idealized ring from radial expansion results in the development of pressure between 
the idealized ring and the resisting medium. Since the height of the idealized ring could be defined 
(e.g. taken as the height of the base of the rail for the parametric study under this research), the 
developed pressure could be converted into force per unit length (a.k.a. ring load), uniformly 
distributed along the idealized ring as shown in Figure 8a and 8b. For an actual track, since the 
resisting medium is not continuous but discrete (e.g. fastening system), the calculated force per 
unit length may be multiplied by the fasters longitudinal spacing (sleeper spacing) to obtain the 
lateral force on each of the fasteners. 
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(a)  (b) 

 
Figure 8: (a) Lateral forces shown as FTL, and (b) lateral resistance shown as reaction 

 
It should be noted that, this may be construed as a conservative approach because when a curved 
railway bridge is subjected to a temperature difference, the rails are not the only part of the 
structure that will experience thermal expansion. Other members that the rails are connected to, 
such as fastening system and bridge deck, will also experience thermal expansion and hence the 
actual magnitude of the developed pressure between the idealized ring and the resisting medium 
could be smaller as they will expand relative to one another.   
 
Analytical Methods 
 
In this study, three analytical methods are used to calculate the lateral forces due to thermal 
expansion of curved railway tracks. The results from these methods are compared against one 
another through a wide range of parametric studies and are then verified by their equivalent finite 
element model using a commercially available finite element software package. The methods are 
listed below.  
 

1. Timoshenko thermoelastic stress analysis in cylindrical coordinate system (developed for 
this research) 

2. Applying the concept of mechanics of thin wall cylinders, and  
3. Adaptation of a variational formulation method from a previous comparable study on the 

thermal buckling of a curved railway track which also includes a section for analysis of 
lateral thermal expansion before buckling. This section of the study is used to back 
calculate the distribution of lateral thermal forces per unit length (as in ballast resistance) 
assuming that thermal expansion is confined in the lateral direction    

 
These are then compared with a finite element model that is also developed as part of this activity. 
 



9 
 

Timoshenko Thermoelastic Stress Analysis  
 
In this section, the idealized ring is analyzed using Timoshenko thermoelastic stress analysis in a 
cylindrical coordinate system (r, θ, z) as shown in Figure 9a. A small element from the idealized 
ring is considered and the stresses on the element is shown for the analysis (Figure 9b). 
Subsequently, the governing equations that are presented under this section are developed based 
on the assumptions, principles and relationships presented in (Timoshenko and Goodier, 1951, 
Boresi et al. 2011, Barron and Barron 2013, Eslami et al. 2018, Blosser 1988, Fukui and Fukui 
1969). It should be noted that these referenced sources here do not include a direct or detailed 
analysis and hence the derivation of the governing equations is the result of a comprehensive study 
and correlation of the methods presented in these sources.  
 
Using Timoshenko stress analysis, initially the equations are developed based on a single idealized 
circular ring. Subsequently, to simulate fastener or ballast resistance (Figure 10), a double ring 
approach is used where an outer idealized ring is confining an inner idealized ring from expansion. 
This approach creates lateral stresses at the contact surface of both rings and this stress can be 
converted to force per unit length or force per fastening system in the lateral direction.  
 

  
(a)  (b)  

 
Figure 9: (a) An idealized ring shown in a cylindrical coordinate, and (b) a small element 

considered in the idealized ring for the stress analysis (Shear stresses and body forces are not 
shown in the figure) 

 
Considering the small element in the idealized ring in Figure 8, the force equilibrium equations for 
radial, circumferential, and vertical directions can be written as follows:  
 

� Fr = 0 
∂σrr
∂r

+
1
r
∂σθr
∂θ

+
∂σrz
∂z

+
σrr − σθθ

r
+ Fr = 0 

 

(1) 

� F𝑧𝑧 = 0 
∂σrz
∂r

+
1
r
∂σθz
∂θ

+
∂σzz
∂z

+
σrz

r
+ Fz = 0 

 

(2) 

� Fθ = 0 
∂σrθ
∂r

+
1
r
∂σθθ
∂θ

+
∂σθz
∂z

+ 2
σrθ

r
+ Fθ = 0 

(3) 
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For a railway track however, the stresses in the vertical direction are of no consequence here and 
can be ignored. This will significantly simplify the problem and a polar coordinate system (r and 
θ) can be used to analyze the radial and tangential stresses. In a polar coordinate system, the vertical 
components of Equation (1) and (3) and the entire Equation (2) will be omitted which will result 
in Equations (4) and (5).  
 

∂σrr
∂r

+
1
r
∂σθr
∂θ

+
σrr − σθθ

r
+ Fr = 0 

 
(4) 

∂σrθ
∂r

+
1
r
∂σθθ
∂θ

+ 2
σrθ

r
+ Fθ = 0 

 
(5) 

Furthermore, since the focus of this study is to analyze lateral stresses (radial direction), only 
Equation (4) will be used. Equating the body force Fr to zero as there are no body forces present, 
the following relationships (Airy Stress Functions) satisfy Equation (4).  
 

σrr =
1
r
∂φ
∂r

+
1
r2
∂2φ
∂θ2

 
 

(6) 

σθθ =
∂2φ
∂r2

 
 

(7) 

σθr =
1
r2
∂φ
∂θ

−
1
r
∂2φ
∂r ∂θ

= −
∂
∂r
�

1
r
∂φ
∂θ
� 

 
(8) 

Using Timoshenko approach, to yield a possible solution or a stress function, the function must 
satisfy the conditions of compatibility. In the next steps, the general condition of compatibility 
from a Cartesian coordinate system is transformed to a polar coordinate system following 
Timoshenko approach. Hence,  
 

∂4φ
∂x4

+ 2
∂4φ

∂x2 ∂y2
+
∂4φ
∂y4

= 0 

 
(9) 

r2 = x2 + y2 
 (10) 

θ = arctan �
y
x
� 

 
(11) 

∂r
∂x

=
x
r

= cosθ,     
∂r
∂y

=
y
r

= sinθ   

 
(12) 

∂θ
∂x

= −
y
r2

= −
sinθ

r
,     

∂θ
∂y

=
x
r2

=
cosθ

r
   

 
(13) 
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∂φ
∂x

=
∂φ
∂r

∂r
∂x

+
∂φ
∂θ

∂θ
∂x

=  
∂φ
∂r

cosθ −
1
r
∂φ
∂θ

sinθ 
 

(14) 

∂2φ
∂x2

= �
∂
∂r

cosθ −
1
r

sinθ
∂
∂θ
�  �

∂φ
∂r

cosθ −
1
r
∂φ
∂θ

sinθ�

=  
∂2φ
∂r2

cos2θ − 2
∂2φ
∂θ ∂r

sinθ cosθ
r

+
∂φ
∂r

sin2θ
r

+ 2
∂φ
∂θ

sinθ cosθ
r2

+
∂2φ
∂θ2

sin2θ
r2

 
 

(15) 

∂2φ
∂y2

=  
∂2φ
∂r2

sin2θ + 2
∂2φ
∂θ ∂r

sinθ cosθ
r

+
∂φ
∂r

cos2θ
r

− 2
∂φ
∂θ

sinθ cosθ
r2

+
∂2φ
∂θ2

sin2θ
r2

 

 
(16) 

Adding together Equations (15) and (16), the following equation is obtained.  
 

∂2φ
∂x2

+
∂2φ
∂y2

=  
∂2φ
∂r2

+
1
r
∂φ
∂r

+
1
r2
∂2φ
∂θ2

 

 
(17) 

On the other hand, using the identity Equation (17), the compatibility equation for Cartesian 
coordinate system which is given as Equation (9) will be reduced to that of a polar coordinate 
system, given below as Equation (18).  
 

∂4φ
∂x4

+ 2
∂4φ

∂x2 ∂y2
+
∂4φ
∂y4

= �
∂2

∂x2
+
∂2

∂y2
� �

∂2φ
∂x2

+
∂2φ
∂y2

� 

 
(18) 

�
∂2

∂r2
+

1
r
∂
∂r

+
1
r2

∂2

∂θ2
��

∂2φ
∂r2

+
1
r
∂φ
∂r

+
1
r2
∂2φ
∂θ2

 � = 0 

 
(19) 

When evaluating the stresses in the radial direction only, the stress function will only depend on r 
and hence the compatibility equation becomes 
 

�
d2

dr2
+

1
r

d
dr
��

d2φ
dr2

+
1
r

dφ
dr

 � = 0 

∂4φ
∂r4

+
2
r
∂3φ
∂r3

−
1
r2
∂2φ
∂r2

+
1
r3
∂φ
∂r

= 0 
 

(20) 

Equation (20) which is now an ordinary differential equation has a solution in the form of Equation 
(21) that, depending on the boundary condition, maybe used to approximate the radial stresses and 
displacement for a given problem in polar coordinate system.  
 

φ =  rn 
 (21) 

After substituting Equation (21) into Equation (20), the following general solution is obtained.  
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φ =  A ln(r)  +  B r2 ln(r)  + C r2  +  D 
 (22) 

Substituting Equation (22) into Equations (6), (7) and (8) will result in the following equations: 
  

σrr =
1
r
∂
∂r

[A ln(r)  +  B r2 ln(r)  + C r2  +  D]

+
1
r2

∂2

∂θ2
[A ln(r)  +  B r2 ln(r)  + C r2  +  D]  

=
A
r2

+ 2B ln(r) + B + 2C 

(23) 

σθθ =
∂2

∂r2
[A ln(r)  +  B r2 ln(r)  + C r2  +  D] = −

A
r2

+ 2B ln(r) + 3B + 2C 
 

(24) 

σrθ = −
∂
∂r
�

1
r
∂
∂θ

[A ln(r)  +  B r2 ln(r)  + C r2  +  D]� = 0 
 

(25) 

Now, strain in polar coordinate system, Equation (26) through Equation (28) can be used for the 
calculations of displacement.  
 

𝜀𝜀rr =
∂𝑢𝑢𝑟𝑟𝑟𝑟
∂r

 
 

(26) 

𝜀𝜀𝜃𝜃𝜃𝜃 =
𝑢𝑢𝑟𝑟𝑟𝑟

r
+

1
𝑟𝑟
∂𝑢𝑢𝜃𝜃𝜃𝜃
∂θ

 
 

(27) 

𝜀𝜀𝑟𝑟𝜃𝜃 =
1
2
�
∂𝑢𝑢𝜃𝜃𝜃𝜃
∂r

−
𝑢𝑢𝜃𝜃𝜃𝜃
𝑟𝑟

+
1
𝑟𝑟
∂𝑢𝑢𝑟𝑟𝑟𝑟
∂θ

� 
 

(28) 

Taking advantage of the stress – strain relationship for an isotropic material and Hooke’s Law, 
Equations (26) – (28) can also be written as below.  
 

𝜀𝜀rr =
1
𝐸𝐸

(σrr − 𝜈𝜈 σθθ) 
 

(29) 

𝜀𝜀𝜃𝜃𝜃𝜃 =
1
𝐸𝐸

(σθθ − 𝜈𝜈 σrr) 
 

(30) 

𝜀𝜀𝑟𝑟𝜃𝜃 =
1 + 𝜈𝜈
𝐸𝐸

σrθ 
 

(31) 

By equating Equations (26) and (27) with Equations (29) and (30) respectively and solving the 
resulting equations subsequently, equations for calculation of displacement in radial direction can 
be determined as shown below. 
 

𝜀𝜀𝑟𝑟𝑟𝑟 =
𝜕𝜕𝑢𝑢𝑟𝑟𝑟𝑟
𝜕𝜕𝑟𝑟

=
1
𝐸𝐸
�
𝐴𝐴 (1 + 𝜈𝜈)

𝑟𝑟2
+ 2 𝐶𝐶 (1 − 𝜈𝜈) + 𝐵𝐵(1 − 𝜈𝜈)[2 𝑙𝑙𝑙𝑙(𝑟𝑟) + 1] − 2 𝜈𝜈 𝐵𝐵� (32) 



13 
 

 

𝜀𝜀𝜃𝜃𝜃𝜃 =
𝑢𝑢𝑟𝑟𝑟𝑟
𝑟𝑟

=
1
𝐸𝐸
�−

𝐴𝐴 (1 + 𝜈𝜈)
𝑟𝑟2

+ 2 𝐶𝐶 (1 − 𝜈𝜈) + 𝐵𝐵(1 − 𝜈𝜈)[2 𝑙𝑙𝑙𝑙(𝑟𝑟) + 1] − 2  𝐵𝐵� 
 

(33) 

And the two expressions for the radial displacement produced by Equations (32) and Equation (33) 
are given as follows:  
 

𝑢𝑢𝑟𝑟𝑟𝑟1 =
1
𝐸𝐸
�−

𝐴𝐴 (1 + 𝜈𝜈)
𝑟𝑟

+ 2 𝐶𝐶 (1 − 𝜈𝜈) 𝑟𝑟 + 𝐵𝐵(1 − 𝜈𝜈)[2 𝑟𝑟 𝑙𝑙𝑙𝑙(𝑟𝑟) − 𝑟𝑟] − 2 𝜈𝜈 𝐵𝐵 𝑟𝑟 � 
 

(34) 

𝑢𝑢𝑟𝑟𝑟𝑟2 =
1
𝐸𝐸
�−

𝐴𝐴 (1 + 𝜈𝜈)
𝑟𝑟

+ 2 𝐶𝐶 (1 − 𝜈𝜈) 𝑟𝑟 + 𝐵𝐵(1 − 𝜈𝜈)[2 𝑟𝑟 𝑙𝑙𝑙𝑙(𝑟𝑟) + 𝑟𝑟] + 2  𝐵𝐵 𝑟𝑟 � 
 

(35) 

To be applied for a problem with a hole in the origin (e.g. the idealized ring), Equation (34) and 
(35) must be consistent and for them to be so, the constant B in the equation must be zero. Equating 
B to zero, the expression for stresses given in Equations (23) and Equation (24) will be reduced to 
the following: 
 

𝜎𝜎𝑟𝑟𝑟𝑟 =
𝐴𝐴
𝑟𝑟2

+ 2𝐶𝐶 
 

(36) 

𝜎𝜎𝜃𝜃𝜃𝜃 = −
𝐴𝐴
𝑟𝑟2

+ 2𝐶𝐶 
 

(37) 

Now, Equations (34) and (35) can be used to write the expression for the radial displacement as 
follows:  
 

𝑢𝑢𝑟𝑟𝑟𝑟 =
1
𝐸𝐸
�−

𝐴𝐴 (1 + 𝜈𝜈)
𝑟𝑟

+ 2 𝐶𝐶 (1 − 𝜈𝜈) 𝑟𝑟 � 
 

(38) 

On the other hand, the thermal displacement is proportional to the radial position and hence by 
superposition (Blosser 1988)  the thermal expansion term is added to the equation above to produce 
the following equation for total thermal displacement.  
 

𝑢𝑢𝑟𝑟𝑟𝑟 =
1
𝐸𝐸
�−

𝐴𝐴 (1 + 𝜈𝜈)
𝑟𝑟

+ 2 𝐶𝐶 (1 − 𝜈𝜈) 𝑟𝑟 � + 𝑟𝑟𝑟𝑟∆𝑇𝑇 
 

(39) 

 
Now, this equation could be used to analyze a double ring approach where an outer idealized ring 
is confining an inner idealized ring to simulate fastener or ballast resistance (Figure 10). While 
using this approach for the parametric study, the thermal properties and the dimensions of the outer 
ring will be modified such that it does not allow thermal expansion.  
 
This will make sure that the inner ring is fully confined and hence the desired radial stress is 
developed at the contact surface as the inner ring tries to expand under a temperature difference 
but it is restricted against such expansion. Accordingly, the radial stress in the inner radius of inner 
idealized ring is equal to zero and the radial stress at the interaction surface of the two rings (outer 
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radius of the inner ring and inner radius of the outer ring) is equal to the contact pressure, P between 
the two rings.  
 

 
 

Figure 10: Idealized double rings to simulate the fastener/ballast resistance 
 
Likewise, since the height of the idealized ring could easily be defined, the contact pressure 
between the rings could be converted into a ring load or force per unit length. Now, assuming that 
the inner radius of the inner ring is denoted with R’ and the outer radius of the inner ring (also 
equal to inner radius of the outer ring) is denoted with R and the outer radius of the outer ring is 
denoted with Rf, the following boundary conditions apply. 
 

𝑎𝑎𝑎𝑎 𝑟𝑟 =  𝑅𝑅′, 𝜎𝜎𝑟𝑟𝑟𝑟(𝑅𝑅′) = 0 
𝑎𝑎𝑎𝑎 𝑟𝑟 =  𝑅𝑅, 𝜎𝜎𝑟𝑟𝑟𝑟(𝑅𝑅) = −𝑃𝑃 

 
(40) 

Applying these boundary conditions into Equations (36) and (37), the constant A and C are found 
to be 
 

0 =
𝐴𝐴
𝑅𝑅′2

+ 2𝐶𝐶 
 

(41) 

−𝑃𝑃 =
𝐴𝐴
𝑅𝑅2

+ 2𝐶𝐶 
 

(42) 

Equating Equations (41) and (42) and solving for A and C, the following expressions are obtained 
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𝐴𝐴 =
𝑃𝑃 𝑅𝑅2 𝑅𝑅′2

𝑅𝑅2 − 𝑅𝑅′2
 

 
(43) 

𝐶𝐶 = �−
𝑃𝑃 𝑅𝑅2 

2 (𝑅𝑅2 − 𝑅𝑅′2)
� 

 
(44) 

Substituting the constant A and C into Equation (39), the resulting equation can be used to calculate 
for the radial displacement for the idealized ring.  
 

𝑢𝑢𝑟𝑟𝑟𝑟 =
1
𝐸𝐸
�−

�𝑃𝑃 𝑅𝑅2 𝑅𝑅′2
𝑅𝑅2 − 𝑅𝑅′2�  (1 + 𝜈𝜈)

𝑟𝑟
+ 2 �−

𝑃𝑃 𝑅𝑅2 
2 ∗ (𝑅𝑅2 − 𝑅𝑅′2)

�  (1 − 𝜈𝜈) 𝑟𝑟 � + 𝑟𝑟𝑟𝑟∆𝑇𝑇 

 

(45) 

To differentiate between the inner and the outer ring, a subscript OR is used for the outer ring in 
Equation (47) where applicable.  
 

𝑢𝑢𝑟𝑟𝑟𝑟(𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑟𝑟) =
1
𝐸𝐸𝑂𝑂𝑂𝑂

⎝

⎜
⎛
−
�
𝑃𝑃 𝑅𝑅2 𝑅𝑅𝑓𝑓2

𝑅𝑅2 − 𝑅𝑅𝑓𝑓2
�  (1 + 𝜈𝜈𝑂𝑂𝑂𝑂)

𝑟𝑟
+ 2 �−

𝑃𝑃 𝑅𝑅2 
2 ∗ (𝑅𝑅2 − 𝑅𝑅𝑓𝑓2)

�  (1 − 𝜈𝜈𝑂𝑂𝑂𝑂) 𝑟𝑟 

⎠

⎟
⎞

+ 𝑟𝑟𝑟𝑟𝑂𝑂𝑂𝑂∆𝑇𝑇 
 

(46) 

Now, based on the concept of displacement compatibility between the two idealized rings, 
Equations (46) and (47) can be equated to solve for the interface pressure, P which is given below.  
 

1
𝐸𝐸
�−

�𝑃𝑃 𝑅𝑅2 𝑅𝑅′2
𝑅𝑅2 − 𝑅𝑅′2�  (1 + 𝜈𝜈)

𝑟𝑟
+ 2 �−

𝑃𝑃 𝑅𝑅2 
2 ∗ (𝑅𝑅2 − 𝑅𝑅′2)

�  (1 − 𝜈𝜈) 𝑟𝑟 � + 𝑟𝑟𝑟𝑟∆𝑇𝑇

=
1
𝐸𝐸𝑂𝑂𝑂𝑂

⎝

⎜
⎛
−
�
𝑃𝑃 𝑅𝑅2 𝑅𝑅𝑓𝑓2

𝑅𝑅2 − 𝑅𝑅𝑓𝑓2
�  (1 + 𝜈𝜈𝑂𝑂𝑂𝑂)

𝑟𝑟
+ 2 �−

𝑃𝑃 𝑅𝑅2 
2 ∗ (𝑅𝑅2 − 𝑅𝑅𝑓𝑓2)

�  (1 − 𝜈𝜈𝑂𝑂𝑂𝑂) 𝑟𝑟 

⎠

⎟
⎞

+ 𝑟𝑟𝑟𝑟𝑂𝑂𝑂𝑂∆𝑇𝑇 

 

(47) 

𝑃𝑃 =  
𝐸𝐸𝑂𝑂𝑂𝑂 ��

𝑅𝑅𝑓𝑓
𝑅𝑅 �

2
− 1� (𝑟𝑟 − 𝑟𝑟𝑂𝑂𝑂𝑂)(∆𝑇𝑇)

�
𝑅𝑅𝑓𝑓
𝑅𝑅 �

2
(1 + 𝜈𝜈𝑂𝑂𝑂𝑂) + (1 − 𝜈𝜈𝑂𝑂𝑂𝑂) + 𝐸𝐸𝑂𝑂𝑂𝑂

𝐸𝐸 �
𝑅𝑅𝑓𝑓2 − 𝑅𝑅2
𝑅𝑅′2 − 𝑅𝑅2���

𝑅𝑅′
𝑅𝑅�

2
(1 − 𝜈𝜈) − (1 − 𝜈𝜈)�

 (48) 

 
 
Equation (48) will be substituted for the interface pressure, P in Equation (46) to solve for the 
radial thermal displacement. Likewise, if the mentioned displacement is set to zero and the 
properties of the outer ring is adjusted such that it does not expands under thermal action, the 
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maximum interface pressure, P that can be developed between the two rings can be obtained. As 
previously stated, since the height of the idealized ring can easily be defined, the interface pressure, 
P can be converted into force per unit length and subsequently to force on a given fastener.  
 
Mechanics of Thin Wall Cylinders  
 
In order to derive the equations using this method, it is assumed that the idealized ring, which was 
discussed in previous section, is a cut section from an open ended, thin–walled cylinder with an 
assumed internal pressure as shown in Figure 11 below. This internal pressure causes stresses in 
circumferential direction of the idealized ring. To calculate this stress, assume that an arbitrary 
section is cut through the idealized ring such that the cross-sectional area of the thickness, t is 
exposed.  
 

  
(a)  (b)  

 
Figure 11: (a) A thin–walled cylinder, and (b) a cut idealized ring with hoop stresses 

 
The circumferential stress (𝜎𝜎𝜃𝜃 ) acts perpendicular on this area (𝑎𝑎 ∙ 𝑑𝑑𝑑𝑑). Similarly, the internal 
pressure (𝑃𝑃) acts on an area (2𝑟𝑟 ∙ 𝑑𝑑𝑑𝑑) along the internal diameter in the opposite direction (Blosser 
1988, Hibbeler 2011, Sinclair and Helms 2015, Campos and Hall 2019). Now, summing up forces 
in the direction perpendicular to (𝑎𝑎 ∙ 𝑑𝑑𝑑𝑑), the follow equation of equilibrium is obtained. which can 
be solved for stresses in the circumferential direction (hoop stresses) presented in Equation (50). 
 

2[𝜎𝜎𝜃𝜃(𝑎𝑎 ∙ 𝑑𝑑𝑑𝑑)] − 𝑃𝑃(2𝑟𝑟 ∙ 𝑑𝑑𝑑𝑑) = 0 (49) 
 

𝜎𝜎𝜃𝜃 =  
𝑃𝑃 ∙ 𝑟𝑟
𝑎𝑎

 
 

(50) 

The stresses in the circumferential direction (𝜎𝜎𝜃𝜃) are then related to the strain in the mentioned 
direction using Hooke’s Law which can be written as:  
 

𝜖𝜖𝜃𝜃 =
𝜎𝜎𝜃𝜃
𝐸𝐸

=
𝑃𝑃𝑟𝑟
𝐸𝐸𝑎𝑎

 
 

(51) 
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Subsequently, since strain in the circumferential direction is change in circumference, this is 
related to change in radius to derive an equation for the idealized ring’s radial expansion under the 
given internal pressure, Equation (54).  
 

∆𝐶𝐶= 𝐶𝐶 ∙ 𝜖𝜖𝜃𝜃 = 2𝜋𝜋𝑟𝑟 ∗
𝑃𝑃𝑟𝑟
𝐸𝐸𝑎𝑎

 (52) 

 

∆𝑟𝑟=
∆𝐶𝐶
2𝜋𝜋

 (53) 

 

∆𝑟𝑟=
𝑃𝑃𝑟𝑟2

𝐸𝐸𝑎𝑎
 

 

(54) 

Likewise, by the principles of linear superposition (Blosser 1988), a thermal expansion term for 
the assumed ring is added to Equation (54) to obtain: 
 

∆𝑟𝑟=
𝑃𝑃𝑟𝑟2

𝐸𝐸𝑎𝑎
+ 𝑟𝑟𝑟𝑟𝑇𝑇 

 
(55) 

Where,  
∆𝑟𝑟 =  Thermal expansion in the radial direction 
P =  Idealized internal pressure 
r =  Radius of curvature of the idealized ring 
E =  Modulus of elasticity of rail 
t =  Wall thickness of the idealized ring 
α =  Coefficient of thermal expansion of rail steel 
T =  Change in temperature  
 
Similar to previous method, the radial expansion can then be set to zero to solve for the pressure. 
Again, since the height of the section of the cylinder under consideration can be defined, the 
developed pressure can then be converted into force per unit length or force per fastener if so 
desired.  
 
Variational Formulation Method 
 
In the study of Thermal Buckling of Curved Railway Tracks, Donley and Kerr (1987) developed a 
model using a variational calculus formulation approach. Unlike previous studies on thermal 
buckling of curved railway tracks, these equations can be used to calculate pre-buckling thermal 
expansion of a curved railway track for different temperature, radii and track properties.  In 
derivation of the equation, the authors have assumed that before the buckling takes place, the radial 
displacement is uniform along the length of the arc for the circular section of the curve (excluding 
the transition and tangent tracks), and based on this assumption, the authors have derived the 
governing equation, assuming that the track is a circular ring, embedded in a ballast layer.  
 
Since the current research is studying the development of lateral forces on a curved railway track 
before buckling, their equation is adopted to cross check the models developed in this study for 
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the lateral forces due to thermal expansion. A summarized version of the equation’s derivation is 
given in Donley and Kerr (1987) while the complete and step by step derivation is presented in 
Donley (1981). Although, they use a mathematically comprehensive approach, their final equation 
for radial expansion of the idealized ring is eventually the same as that of the thin wall cylinder 
method discussed in previous section.   
 
Using their equation for this study, the pre-buckling lateral thermal displacement is set to zero and 
the equation is solved for ballast resistance, rho which is also equivalent to the total lateral force 
due to thermal expansion in the ring, uniformly distributed along the curve as shown in Figure 8 
above.  
  

 𝑢𝑢 =  
𝐸𝐸𝐴𝐴𝑟𝑟𝑇𝑇 −  𝑅𝑅𝑅𝑅

𝐸𝐸𝐴𝐴
𝑅𝑅

 

 
(56) 

Where,  
u =  Pre-buckling thermal lateral displacement (in / mm)  
E =  Modulus of elasticity of rail (psi / MPa)  
A =  Cross sectional area of rail (in2 / mm2)  
α =  Coefficient of thermal expansion of rail steel (/F or /C) 
T =  Change in temperature  
R =  Radius of curvature of the curved track (ft / m)  
ρ =  Ballast resistance (lb/ft or N/m)  
 
Setting the pre-buckling thermal lateral displacement to zero and solving for ballast resistance 
(force per unit length), gives the following equation: 
 

0 =  
𝐸𝐸𝐴𝐴𝑟𝑟𝑇𝑇 −  𝑅𝑅𝑅𝑅

𝐸𝐸𝐴𝐴
𝑅𝑅

 (58) 

 

𝑅𝑅 =  
𝐸𝐸𝐴𝐴𝑟𝑟𝑇𝑇  
𝑅𝑅

 (59) 

 
Finite Element Models      
 
To verify the models analyzed in the parametric study, a finite element model was also created 
using a commercially available finite element analysis software package1F

2. Before comparing the 
FEM results with the analytical models, the development of the FEM model and the associated 
inputs, assumptions and outputs are presented. The model was developed as shown in Figure 12. 
Since multiple curvatures were analyzed, with the corresponding need for different numbers of 
meshes along the circumference of the rail, a mesh size of 1.0 which represents 1.0 ft was adopted. 
This allowed for consistency between the different circumferential versions of the FEM models, 
For the purpose of consistency between the FEM models, a mesh size of 1.0 which represents 1.0 
ft is adopted. Given that the height (base of the rail) and width (length of gage) of all of the models 

 
2  The ABAQUS Finite Element package was used. 
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in the parametric study are the same, a 1.0 ft mesh will create five elements across the width, one 
element along the height and since the radii of the models are not the same, a variable number of 
elements along the circumference.  
 

 

 

(a)  (b) 
Figure 12: (a) Diagram of the finite element model, (b) an arbitrary arc section of the finite 

element model with the sideview 
 
The finite element models are restrained (confined) against lateral expansion at the surface of the 
outer radius using boundary conditions as they are subjected to a temperature difference. This 
ensures that a stress is generated at the surface of the outer radius.  
 
To compare this stress with the results from the analytical models, it can either be compared with 
forces that are generated directly on the nodes (nodal forces) at the surface of the outer radius or 
with the forces that are calculated based on the element area and stress on any given element along 
the surface of the outer radius.  
 
If comparison is to be made with nodal forces, it should be noted that the total force on the element 
face is shared by all nodes in that particular face and hence only the magnitude can be compared 
with the analytical models. On the other hand, the forces that are calculated based on the element 
area and stress can be directly compared with analytical models. 
 
Theoretically, whether the forces are obtained from the element nodes or from the product of 
element stress and area, should be the same. However, for this study, it was initially noticed that 
the nodal forces were slightly different from their equivalent forces calculated from element stress 
and area. This was also true in comparison with the results from the analytical models.  
 
Therefore, the model was reevaluated, and it was found that this effect was caused by the use of 
linear elements to represent a curved section. In order to overcome this issue, a finer mesh was 
used. As the mesh gets finer, it reduces the curvature effect and make the element area more 
precise. Consequently, the results converge and the previous differences become negligible.  
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This was tested on 100 ft and a 1000 ft radius curves by changing the mesh size from 1.00 ft to 
0.50 ft and eventually to 0.25 ft. Graphical results and accompanying explanations for the 100 ft 
model are presented below. The results for the 1000 ft model are similar, however a limit in the 
number of allowable elements was encountered so that the lowest mesh size that could be used in 
this particular finite element software for the 1000 ft model was 0.28 ft.  
 
In the comparisons that follow, the 100 ft curve model is first analyzed using a 1.00 ft mesh size. 
As it can be noticed from Figure 13, the nodal forces and stresses in the radial direction using a 
cylindrical coordinate system are shown on a zoomed arc section of the idealized ring. The figure 
is from the analysis of the 100 ft radius curve with a 1.00 ft mesh size subjected to a 100 F 
temperature difference. The unit for the forces (indicated as RF, FR1 (CSYS-1) in the figure) is 
pounds and that of stresses (indicated as S, S11 (CSYS-1) in the figure) is pounds per square foot. 
Surface area of each element in the outer radius for this particular model is 0.0370 square feet. As 
shown in the figure, the maximum force on each node of the outer radius is 2506 lbs. while it is 
equivalent calculated from stress on the element face and area of element is 2197 lbs. As it can be 
seen in Figure 14, the values get closer as the mesh size get finer and similarly their percentage 
differences diverges from as high as about 14% for a mesh size of 1.00 to as low as 3% for a mesh 
size of 0.25 ft (Figure 15).        
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Figure 13:  A zoomed arc section of the ideal ring from the finite element software with nodal forces and radial stress. Screenshots for 
the rest of FEM models are reported in the Appendix section 
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Figure 14: Comparison of forces calculated from stress and area and their equivalent generated 

directly on the element nodes (100 ft curve) 

 
Figure 15: Percentage difference between forces calculated from stress and area and their 

equivalent generated directly on the element nodes (100 ft curve) 
 
Similarly, while comparing the finite element results with the analytical models, the percentage 
differences reduces significantly as the mesh gets finer (Figure 16).  
 
\The abbreviations in Figure 16 and the subsequent figures are TM = Timoshenko method, CM = 
Cylinder mechanics, VM = Variational method and FEM = Finite Element Method.  
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Figure 16: Comparing the results from the FEM methods with the analytical models for a 100 ft 

radius curve, subjected to a 100 F temperature difference (100 ft curve) 
 
Likewise, the behavior of the 1000 ft radius curve is similar as the mesh size gets smaller. The 
results are graphically presented in Figure 17 and 18. As it can be observed, the figures are identical 
to that of 100 ft radius curve, however, with different values.  
 
Furthermore, even if the model with 1.00 ft mesh size is considered, the average percentage 
difference between the radial stresses from the finite element model and that of analytical models 
are still about 10%  
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Figure 17: Percentage difference between forces calculated from stress and area and their 
equivalent generated directly on the element nodes (1000 ft curve) 

 

 
Figure 18: Comparing the results from the FEM methods with the analytical models for a 1000 ft 

radius curve, subjected to a 100 F temperature difference (1000 ft curve) 
 
 
PARAMETRIC STUDY  
 
In order to examine lateral forces generated in a curved track, and to validate the different models, 
a parametric study was performed over a broad range of curvature (radii), temperature changes, 
and other key inputs. Thus, for each of the key input variables, the following input value or range 
of values was used.  

• Range of temperature changes, T = 0, 20, 40, 60, 80, and 100 degrees Fahrenheit  
• Range of radius of curvature, R, or r = 100, 250, 500, 750, 1000, 1500, 2000, 2500 and 

3000 ft radii curves 
• Elastic modulus, E = 4,320,000,000 lb/ft^2 (30m psi),  
• Thermal expansion coefficient, α = 0.0000065 /F  
• Poisson ratio = 0.30 
• Model height is taken as height of the base of a typical rail = 0.0365 ft (0.438 inches) 
• Model thickness is taken as length of a standard gage = 4.7083 ft (56.5 inches) 
• Forces are calculated per unit length  
• Tie spacing (fastener’s longitudinal spacing) is considered as to 2 ft  
• Since axle loading and train speed is not involved in the derivation of radial thermal 

expansion forces, the dynamic impact factor for the thermal expansion is approximated as 
1.00 
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RESULTS AND DISCUSSION 
 
The results obtained from the parametric study under this research are presented graphically from 
Figure 19 to Figure 31 in the following section. For the first analytical method (Timoshenko stress 
analysis), Equations (45) and (48) are used to calculate the values in the figures. As stated above, 
to use these equations, the thermal properties and the dimensions of the outer ring will be modified 
such that it does not allow thermal radial expansion. This will ensure that the inner ring is fully 
confined and hence the desired radial stress is developed at the contact surface. This can be 
obtained through trial and error by either changing the coefficient of thermal expansion or 
increasing the outer radius of the outer ring. This a computationally exhaustive process as 
Equations (45) and (48) are quite involved.  
 
The second and third analytical methods are essentially the same. The difference is that the second 
method is derived using the classic mechanics technique of thin walled cylinders while the third 
method uses a mathematically advanced and comprehensive approach based on a variational 
calculus formulation.   
 
The results of the parametric study for the research are graphically presented below.  
 

 
 

Figure 19: Force per unit length vs temperature difference for different methods (100 ft) 
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Figure 20: Force per unit length vs temperature difference for different methods (250 ft) 
 

 
 

Figure 21: Force per unit length vs temperature difference for different methods (500 ft) 
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Figure 22: Force per unit length vs temperature difference for different methods (750 ft) 
 

 
 

Figure 23: Force per unit length vs temperature difference for different methods (1000 ft) 
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Figure 24: Force per unit length vs temperature difference for different methods (1500 ft) 
 

 
 

Figure 25: Force per unit length vs temperature difference for different methods (2000 ft) 
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Figure 26: Force per unit length vs temperature difference for different methods (2500 ft) 
 

 
 

Figure 27: Force per unit length vs temperature difference for different methods (3000 ft) 
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Figure 28: Lateral force per unit length vs radius of curvature for TM vs FEM 
 

 
 

Figure 29: Lateral force per unit length vs radius of curvature for TM vs FEM (larger radii only)  
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Figure 30: Lateral force per unit length vs radius of curvature for CM/VM vs FEM 
 

 
 

Figure 31: Lateral force per unit length vs radius of curvature for CM/VM vs FEM (larger radii 
only) 

Analyzing A Quarter Ring Model   
 
In addition to analyzing a full idealized ring, an arc section of the ring is also analyzed using the 
finite element software. Its results are compared with that of analytical models (Figure 32). As it 
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can be observed from the figure, apart from the end sections (boundaries), the results for the arcs 
are the similar to that of a full idealized ring. The reason the solution degrades at the boundaries 
for the arc section is because when a stable system (e.g. a circular ring) is cut, unless a purpose-
designed boundary (some sort of adaptive elastic support) is used to simulate the exact behavior 
of the system, the available supports (fixed, pin, free, hinge, etc.) in the software do not represent 
the correct behavior, resulting in a concentration of unrealistic stresses at the boundaries. Since the 
values at the boundaries of the arc section are not valid, a certain length from the boundaries 
towards the internal region of the arc should be established where high concentrated stresses can 
be ignored. When the regions of high stresses are ignored, the behavior for the rest of the arc is 
similar to its full ring equivalent.  
 

 
 

Figure 32: Uniformly distributed lateral forces per unit length for the quarter curve compared 
with analytical and FEM models 

 
Figure 32 compares uniformly distributed lateral forces per unit length for the quarter curve with 
analytical and FEM models. For this specific example, the radius of curvature is 100 ft, the 
temperature difference is 100 degrees F and the data for about 7 ft from each boundary of the arc 
(about 10% of the total arc length) is ignored to get rid of unrealistic stress concentration. 
 
CONCLUDING REMARKS  
 
In this research activity, three analytical and one finite element models were developed to 
determine track-induced lateral thermal expansion forces on a curved bridge. The models are tested 
through a parametric study, the result of which are presented graphically in the results and 
discussion of this report. The range for the temperature difference is taken between 0 to 100 
degrees Fahrenheit while the range for radius of curvature is considered from 100 ft to 3000 ft. As 
can be observed from Figure 19 to Figure 27, the relationship between the uniformly distributed 
lateral thermal expansion forces is directly proportional to the increase in temperature. Based on 
the presented results, for a 100 ft radius curve for instance, a temperature of 100-degree Fahrenheit 
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could generate up to 5000 lb/ft of uniformly distributed lateral thermal expansion force and if a 2 
ft tie spacing for a typical track is assumed, this will translate to about 10,000 lbs. of lateral force, 
acting on a single fastener.  
 
It should be noted that if a single rail is considered, the roughly 10,000 lbs. of force will be divided 
by the two fasteners, however since the analysis conducted for this study considers the track, as a 
unit, the 10,000 lb force should be taken per fastener. In comparison, the same force for a 3000 ft 
curve track drastically drops to only about 350 lbs. per sleeper in the lateral direction.  
  
Likewise, the relationship between the uniformly distributed lateral thermal expansion force and 
the radius of curvature are presented from Figure 28 to Figure 31. As it can be seen from these 
figures, the uniformly distributed lateral force due to thermal expansion is inversely proportional 
to the radius of curvature, again confirming the fact that as the radius increases, the curvature 
effects are reduced and there is a corresponding decrease in the lateral force.   
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APPENDIX A 
 

 
 

Figure A - 1: FEM Ring Model for R = 100 ft and T = 20 F 
 

 
 

Figure A - 2: FEM Ring Model for R = 100 ft and T = 40 F 
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Figure A - 3: FEM Ring Model for R = 100 ft and T = 60 F 
 

 
 

Figure A - 4: FEM Ring Model for R = 100 ft and T = 80 F 
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Figure A - 5: FEM Ring Model for R = 100 ft and T = 100 F 
 

 
 

Figure A - 6: FEM Ring Model for R = 250 ft and T = 20 F 
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Figure A - 7: FEM Ring Model for R = 250 ft and T = 40 F 
 

 
 

Figure A - 8: FEM Ring Model for R = 250 ft and T = 60 F 
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Figure A - 9: FEM Ring Model for R = 250 ft and T = 80 F 
 

 
 

Figure A - 10: FEM Ring Model for R = 250 ft and T = 100 F 
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Figure A - 11: FEM Ring Model for R = 500 ft and T = 20 F 
 

 
 

Figure A - 12: FEM Ring Model for R = 500 ft and T = 40 F 
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Figure A - 13: FEM Ring Model for R = 500 ft and T = 60 F 
 

 
 

Figure A - 14: FEM Ring Model for R = 500 ft and T = 80 F 
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Figure A - 15: FEM Ring Model for R = 500 ft and T = 100 F 
 

 
 

Figure A - 16: FEM Ring Model for R = 750 ft and T = 20 F 
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Figure A - 17: FEM Ring Model for R = 750 ft and T = 40 F 
 

 
F 

igure A - 18: FEM Ring Model for R = 750 ft and T = 60 F 
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Figure A - 19: FEM Ring Model for R = 750 ft and T = 80 F 
 

 
 

Figure A - 20: FEM Ring Model for R = 750 ft and T = 100 F 
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Figure A - 21: FEM Ring Model for R = 1000 ft and T = 20 F  
 

 
 

Figure A - 22: FEM Ring Model for R = 1000 ft and T = 40 F  
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Figure A - 23: FEM Ring Model for R = 1000 ft and T = 60 F  
 

 
 

Figure A - 24: FEM Ring Model for R = 1000 ft and T = 80 F  
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Figure A - 25: FEM Ring Model for R = 1000 ft and T = 100 F  
 

 
 

Figure A - 26: FEM Ring Model for R = 1500 ft and T = 20 F  
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Figure A - 27: FEM Ring Model for R = 1500 ft and T = 40 F  
 

 
 

Figure A - 28: FEM Ring Model for R = 1500 ft and T = 60 F  
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Figure A - 29: FEM Ring Model for R = 1500 ft and T = 80 F  
 

 
 

Figure A - 30: FEM Ring Model for R = 1500 ft and T = 100 F  
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Figure A - 31: FEM Ring Model for R = 2000 ft and T = 20 F  
 

 
 

Figure A - 32: FEM Ring Model for R = 2000 ft and T = 40 F  
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Figure A - 33: FEM Ring Model for R = 2000 ft and T = 60 F  
 

 
 

Figure A - 34: FEM Ring Model for R = 2000 ft and T = 60 F  
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Figure A - 35: FEM Ring Model for R = 2000 ft and T = 80 F  
 

 
 

Figure A - 36: FEM Ring Model for R = 2000 ft and T = 100 F  
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Figure A - 37: FEM Ring Model for R = 2500 ft and T = 20 F  
 

 
 

Figure A - 38: FEM Ring Model for R = 2500 ft and T = 40 F  
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Figure A - 39: FEM Ring Model for R = 2500 ft and T = 60 F  
 

 
 

Figure A - 40: FEM Ring Model for R = 2500 ft and T = 80 F  
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Figure A - 41: FEM Ring Model for R = 2500 ft and T = 100 F  
 

 
 

Figure A - 42: FEM Ring Model for R = 3000 ft and T = 20 F  
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Figure A - 43: FEM Ring Model for R = 3000 ft and T = 40 F  
 

 
 

Figure A - 44: FEM Ring Model for R = 3000 ft and T = 60 F  
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Figure A - 45: FEM Ring Model for R = 3000 ft and T = 80 F  
 

 
 

Figure A - 46: FEM Ring Model for R = 3000 ft and T = 100 F  
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APPENDIX B 
 
Table B -  1: Data from Timoshenko Stress Analysis Method 
 

Radius (ft) TM-T0 TM-T20 TM-T40 TM-T60 TM-80 TM-T100 
100 0 942 1885 2827 3769 4711 
250 0 382 765 1147 1530 1912 
500 0 192 384 576 768 961 
750 0 128 257 385 513 641 
1000 0 96 193 289 385 481 
1500 0 64 128 193 257 321 
2000 0 48 96 145 193 241 
2500 0 39 77 116 154 193 
3000 0 32 64 96 129 161 

 
 
Table B -  2: Data from Thin Walled Cylinder Method 
 

Radius (ft) CM-T0 CM-T20 CM-T40 CM-T60 CM-80 CM-T100 
100 0 965 1930 2895 3860 4825 
250 0 386 772 1158 1544 1930 
500 0 193 386 579 772 965 
750 0 129 257 386 515 643 
1000 0 97 193 290 386 483 
1500 0 64 129 193 257 322 
2000 0 48 97 145 193 241 
2500 0 39 77 116 154 193 
3000 0 32 64 97 129 161 
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Table B -  3: Data from Variational Formulation Method 
 

Radius (ft) VM-T0 VM-T20 VM-T40 VM-T60 VM-80 VM-T100 
100 0 965 1930 2895 3860 4825 
250 0 386 772 1158 1544 1930 
500 0 193 386 579 772 965 
750 0 129 257 386 515 643 
1000 0 97 193 290 386 483 
1500 0 64 129 193 257 322 
2000 0 48 97 145 193 241 
2500 0 39 77 116 154 193 
3000 0 32 64 97 129 161 

 
 
Table B -  4: Data from Finite Element Analysis Method 
 

Radius (ft) FEM-T0 FEM-T20 FEM-T40 FEM-T60 FEM-T80 FEM-T100 
100 0 1001 2002 3006 4008 5012 
250 0 392 783 1175 1568 1960 
500 0 195 390 585 780 976 
750 0 130 260 390 521 651 
1000 0 98 195 293 390 488 
1500 0 66 131 197 263 328 
2000 0 49 98 149 198 248 
2500 0 41 81 122 163 204 
3000 0 34 68 102 137 171 
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