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EXECUTIVE SUMMARY 
 

Railroad cross-ties (sleepers) are a key component of the track structure and play an important role 

in the distribution of train loading through the track. Automated cross-tie inspections, which are 

becoming increasingly significant in the inspection of the cross-ties, are important in planning and 

optimizing tie replacement. Furthermore, the data these inspections provide on tie condition enable 

maintenance engineers to better understand the behavior of the ties and their associated life.  By 

using inspection data taken from the same track in different years, it is possible to develop 

improved tie life models that take into account local conditions. Using these different tie 

conditions, and the corresponding different periods in the lifespan of a tie, it is possible to 

determine average tie life using mathematical modeling techniques, such as piecewise 

reconstruction. It is also possible to develop a model that shows how the probability of tie failure 

grows over time and changes depending on the loss of adjacent support. 

 

The dataset used consists of tie inspection data for inspections carried out on the same track during 

the period 2016 to 2019. Ties are grouped based on their adjacent tie condition. This report 

provides different methods to predict and model tie life based on support condition, as defined by 

the condition of adjacent cross-ties. The analysis approaches are based on the use of tie condition 

data from two different inspections performed over a span of 3 years. 

 

A piecewise reconstruction of the average tie life was performed and used to compare the tie 

degradations rates with respect to loss of adjacent tie support. The first method used to reconstruct 

an average tie life was using regression. Regression functions were developed based on the 

distributions of the different tie score transitions from 2016 to 2019 in different support groups. 

These functions were then used recursively to predict the tie score change over time. Dijkstra’s 

algorithm was then applied to model each group’s average tie life. In a third analysis approach, 

Markov chains were used for the determination of the probability of tie failure as a function of loss 

of support. 

 

The results show different average tie lives for different support conditions and confirms the fact 

that loss of support contributes significantly to premature tie failure. A life reduction formula was 

then generated based on the three analysis approaches. 
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1. Introduction and Overview 
 

Railroad cross-ties (sleepers1) are a key component of the track structure and play an important 

role in the distribution of train loading through the track. Tie inspections, which identify the 

condition of individual cross-ties, represent a major input into track maintenance operations in the 

railroad industry. These inspections provide engineers and technicians with critical data allowing 

them to develop an appropriate and efficient tie maintenance and replacement plan, to include key 

maintenance actions such as spot tie replacement and large-scale tie replacement using mechanized 

production gangs [1, 2, 3]. For instance, as a safety measure, tie replacement should be performed 

before ties fail, i.e., are defined to be defective by the Federal Railroad Administration [4, 5].  One 

of the most important phases of track maintenance is the inspection phase, which for cross-ties 

involves identifying the ties to be replaced. Ineffective tie replacement is not only expensive, but 

can also be dangerous in the long-term [1] while an effective tie replacement strategy, based on 

advanced inspection, can save tens of millions of dollars annually [7]. The new generation of 

automated cross-tie inspections, which are playing an increasingly important role in the inspection 

of the cross-ties, is becoming more and more important in planning and optimizing tie 

replacements and corresponding maintenance. Furthermore, the data they provide on tie condition 

enable maintenance engineers to better understand the behavior of the ties and their associated life.  

 

Although automated track and tie inspections are crucial, their frequency depends on many 

conditions, to include failure rate, economics, available budgets and, of course, track safety 

considerations [8]. Because the inspections are not always performed annually, drawing 

conclusions from the limited number of data to make predictions and planning decisions can be 

challenging. One way to overcome this problem is to use inspection data to predict a tie’s life, and 

to use that predicted tie life to optimize the maintenance processes. One such study suggests that 

the condition of the ties adjacent to the study tie impacts its life directly with different adjacent tie 

support conditions resulting in different tie lives [9]. 

 

The intent of this research is to: 

 

• Model a tie’s life based on the adjacent tie condition, 

• Predict the probability of a tie changing condition within a time period based on its support 

condition, 

• Help forecast a tie’s remaining life as a function of loss of adjacent ties support, 

• Help make better decisions on tie replacement and tie gang prioritization, 

• Contribute to the improvement of railroad infrastructure Reliability, Availability, 

Maintainability, and Safety (RAMS)  

 

I.1. Factors Influencing Tie Failure and Tie Life  
 

Average tie life has been modelled in different ways to include statistical forecasting models, 

empirical models, and mechanistic models [10, 11]. Two major modelling approaches were 

suggested in previous studies: A statistical tie life approach that predicts the actual number of 

failed ties each year and an “Average” tie life modelling approach [10, 11]. Various analyses of 

                                                             
1 Railroad cross-ties are often referred to as sleepers. 
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average wood cross-tie lifespan show a range of wood tie life of the order of 25 to 40 years 

depending on climate, treatment, track and traffic conditions [12, 13, 14].  Tie failure mechanisms 

can include environmental decay, mechanical deterioration and damage (burnt, broken) [6]. 

Further subdividing tie failure mechanisms shows that tie life is affected by track and operating 

factors (curvature, traffic density, axle load, grade  etc.[15]), climate factors (temperature, water, 

moisture), biological factors (fungi), incompatibility factors (physical and chemical degradation), 

use factors (traffic, maintenance, track geometry, and accidents), stress factors (abrasion and 

compression due to ballast, and load factors (impact compression and impact bending due to 

vertical loads, and spike loading due to lateral loads), [11].  

 

 One key factor that has been discussed as affecting tie life is support condition, often defined as 

track support condition or track modulus [1, 16]. While the effect of support condition on tie life 

has been difficult to quantify, a recent study attempted to examine the effect of the support 

condition defined by the condition of adjacent cross-ties, using Beam on Elastic Foundation theory 

[9].  This study  showed that the support conditions associated with the condition of the adjacent 

cross-ties do in-fact contribute to premature tie failure [2]. The work presented in this paper builds 

upon this earlier research to extend its results, allowing for the calculation of actual tie life, as well 

as allowing for a more effective analysis approach using more advanced data analytics. 

 

I.2. Support Condition 
 

As noted, support condition, and in particular the condition of adjacent ties can and do affect the 

life of a cross-tie. This is because in normal track, the dynamic wheel load of a passing train is 

supported not just by the tie immediately under the wheel but also by the ties adjacent to that center 

tie under the wheel. This is illustrated in Figure 1, which shows the distribution of wheel load on 

the tie under the wheel (in red) and two ties on either side of the center tie. This distribution, which 

is determined using Beam On Elastic Foundation (BOEF) theory [16], is based on a track modulus 

of 28 MPa [4,000 lb/in/in] as presented in Reference 9.  

 

 
 

Figure 1: Percent of load carried by each adjacent tie [9] 

 

Thus, support condition can be affected by the loss of support of an adjacent tie if that tie has failed 

and no longer can carry its share of the vertical wheel load. This, in turn, results in additional load 

on the tie under the wheel.  This is discussed in further detail in Reference 9, which showed that 

the presence of failed adjacent ties, and the associated loss of support, results in a more rapid 

degradation of the cross-tie and a corresponding shorted tie life.  This behavior was defined by 

Equation 1 below [9]: 

 

Life Reduction coefficient = 1.444 LS2 - 1.322 LS + 0.9931   Equation 1 [9] 
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Where the Life Reduction Coefficient is the reduced life of the center tie and LS is the loss of 

support associated with the failed adjacent ties.  The higher the loss of support, the shorter the tie 

life. 

 

Examination of this equation suggests a rather severe effect of loss of support on tie life. The 

analysis approach also did not provide a mechanism for calculating average tie life, but rather 

relies on external data for that life value. This research project will build upon the research 

presented in Reference 9, which used simple regression modeling, and develop a more accurate 

degradation equation as well as address the issue of projected tie life itself. 

 

I.3. Approach 
 

The analyses presented here-in consists of several different analysis approaches that used not just 

the simple 1 to 4 tie condition score presented in Reference 9, but rather made us of decimal scores, 

which provided more detailed tie condition information, and allowed for the use of more detailed 

and granular modeling process.  

 

The approach presented in this report consists of the following steps: 

 

• Data identification and preparation, 

• Analysis of decimal tie scores,  

• Development of a model that predicts the reduction in life of a tie as a function of adjacent 

tie support condition using Dijkstra’s Algorithm, 

• Development of a model that predicts the change of failure probability over time as a 

function of adjacent tie support condition using Markov Chains, 

• Comparison of different life reduction models, 

 

This will be discussed in detail in this report.  
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2. Data Sources, Description, and Pre-Processing 
 

The primary data used in this analysis was tie condition data provided by GREX2 . This tie 

condition data included data from both the Aurora tie surface inspection system and the Aurora Xi 

which also included internal tie condition data from backscatter X-Ray. The provided data also 

included detailed location of each individual tie, and tie characteristic data. The specific elements 

of data are discussed below 

Three years of inspection data were provided as follows: 

 

• 2016: 10 text files  

• 2017: 8 text files 

• 2019:8 text files 
 

The dataset consists of tie condition data collected in years 2016, 2017 and 2019 from the same 

track segment with an overall length of 65 miles. All railroad location and customer information 

were removed to ensure the data remained anonymous. Table 1 below summarizes the number of 

observations in each file: 

 

Table 1: Number of observations in each file 
 

 File1 File2 File3 File4 File5 File6 File7 File8 File9 File10 

Total 

number of 

ties 

2016 37534 20953 31956 18126 4548 5279 26784 24309 33408 6605 209502 

2017 19792 33014 24656 29970 32050 31311 32231 6105 - - 209129 

2019 13000 32495 31859 32052 6014 26252 32193 35527 - - 209392 

 

A screen shot of a file can be seen in Figure 2: 

                                                             
2 Georgetown Railway Equipment Company a subsidiary of Loram, Inc. 
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Figure 2: Screenshot of a file 
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For each individual tie observation, there are 36 descriptive variables unique to that tie as follows: 

 

• Tie Num or Tie Number which represents the individual tie number, in sequence, i.e., a tie 

counter which resets for every file 

• Tie Start/End Slice: which is the location on the Aurora viewer of the start or end of a tie. 

In other words, when the data is collected on the field, a 2D height profile of the tie is 

collected, also known as a slice. When all these slices are put together, they make a 3D 

representation which is then used to define the condition of the tie as can be seen in Figure 

3 below: 

 

 
 

Figure 3: 3D Representation on the Aurora Viewer 

  

The delta between the two columns represent the total number of slices that make up the specific 

tie. 

 

• Mile Post: which is the mile post location according to customer GPS/MP lapping file 

• Crossing: Whether the tie is located in a grade crossing 

o 2: tie is part of a crossing 

o 1: tie is 1 tie from crossing on either direction 

o 0: tie in not in a crossing 

• Switch: Whether the tie is located in a turnout.  

o 2: tie is part of a switch,  

o 1: tie is 1 tie from switch on either direction, 

o 0: tie in not in a switch 

• Bridge: Whether the tie is located on a bridge.  

o 2:  tie is part of a bridge,  

o 1: tie is 1 tie from bridge on either direction, 

o 0: tie in not in a bridge  

• Guard Rail: Whether the tie is supporting a guard rail 

o 1: tie is supporting guard rail 

o 0: tie is not supporting guard rail 

• Is Tie Concrete or Wood:  

o 1: tie was identified as concrete 

o 0: tie was identified as wood  

• Tie to Tie Distance: The distance from tie center to tie center in inches 

• Cumulative Distance: The total distance from the start of a collection covered during a 

collection in feet. It resets for every file. 
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• Plate Cut LL Max (in): plate cut value for left field side of tie 

• Plate Cut LR Max (in): plate cut value for left gage side of tie 

• Plate Cut RL Max (in): plate cut value for right field side of tie 

• Plate Cut RR Max (in): plate cut value for right gage side of tie 

• LRail Diff Plate Cut: plate cut differential for left rail in inches. 

• RRail Diff Plate Cut: plate cut differential for right rail in inches 

• Joint Bar Tie  

o 1: tie is under a joint bar 

o 0: tie is not under a joint bar 

• Left Plate Type: plate type on left rail - Right Plate Type: plate type on right rail, 

o 0: unknown 

o 1: spike plate 

o 2: e-clip  

o 3: Pandrol fast clip  

o 4: spike plate 18 in 

o 5: spike plate 10 in 

o 6: victor plate 

• Width Left Side: tie width on left rail side in pixels 

• Width Right Side: tie width on right rail side in pixels 

• Tie Length Feet: length of a tie is feet 

• Skew Angle Degrees: tie skew angle in degrees 

• Left Field Adze Depth Inches: depth of adzing on left field side 

• Left Gage Adze Depth Inches: depth of adzing on left gage side  

• Right Gage Adze Depth Inches: depth of adzing on right gage side 

• Right Field Adze Depth Inches: depth of adzing on right field side 

• Tie Score: it is an integer that represents the Aurora surface score of ties with a scale of 1 

to 4, 1 being the best and 4 being the worst. (-1) is for the ungraded ties 

• TQI Weighted Tie Score: it is a decimal score that represents the surface score of ties with 

a scale of 1 to 4, 1 being the best and 4 being the worst. (-1) is for the ungraded ties 

• Ballast Coverage: represents the percent of tie that is covered by ballast 

• GPS QoS: quality of GPS signal, scale 1-5, 5 is best, 1 is worst 

• Curvature (deg): curvature of track in degrees 

• Ungraded Reason: the reason why a tie was not graded 

o 0: no obstruction 

o 1: diamond crossing 

o 2: grease mat 

o 3: plates on ties 

o 4: ballast covered 

o 5:  mud 

o 6: vegetation 

o 7: other 

o 9: slab track  

• Internal Tie Score: it is a decimal score that represents the x-ray score of a tie with a scale 

of 1 to 4, 1 being the best and 4 being the worst. (-1) is for the ungraded ties 
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• Aurora Xi Score: it represents the combination of surface and x-ray score (decimal), scale 

1-4, 1 is best, 4 is worst, (-1) ungraded tie  

• Tie State: value assigned to each tie when subdivisions of files have been merged together: 

o 0: tie is repeated in a different file 

o 1: tie is unique throughout collections 

o -1: tie was not collected, and a place marker was added after collections 

o -9: beginning or ending of section 

The overall condition of the tie was given by the Tie Scores as noted above. Both integer and 

decimal values were assigned to each tie. 
 
2.1 Data Preprocessing  

 
The data was preprocessed as follows:  

 

First, the ties were sorted in ascending order according to the milepost. Afterwards, as a part of the 

cleaning data process, any duplicated ties were removed and summarized with the final number of 

ties shown in Table 2. The dataset contained some missing values in the form of -1 for tie scores 

or -99 for other variables. Ties with such missing values were not deleted in order to be able to 

perform an accurate tie alignment.  

 

Table 2: Summary of the number of ties 2016-2019 

 
Year 2016 2017 2019 

Number of ties 209175 209152 209177 

 

The following is a year-by-year summary of the tie data. 

 

2.1.1 Year 2016 

 

To have a general idea of the descriptive variables in 2016, a statistical summary is presented in 

Figure 4. It is performed using R and it shows: the mean, standard deviation (sd), median, trimmed 

mean, median absolute deviation (mad), minimum value, maximum value, range, and skewness 

for each variable. 

 

The Tie Number, Tie Start Slice, Tie End Slice and Cumulative distance were not included as they 

reset for each file. 
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Figure 4: Summary of ties data in 2016 

 

Table 3 shows the number of ties that are one tie from a crossing, a switch, or a bridge, (1) as well 

as the number of ties that are part of a crossing, a switch, or a bridge (2) in 2016. The number of 

ties supporting a guard rail, under a joint bar, or that are concrete is also shown below: 

 

Table 3:  Number of ties that are part of (or one tie from) a crossing, a switch, or a bridge in 2016 
 

 Crossing Switch Bridge Guard Rail Is Concrete Joint Bar Tie 

1 162 37 16 0 62 612 

2 1469 1217 1265 - - - 

 

Table 4 describes the plate types for ties inspected in 2016 (left and right). 0 represents an unknown 

plate type while the other numbers represent different types as follow: 

 

1: spike plate 

2: Pandrol e-clip,  

3: Pandrol fast clip 

4: spike plate 18 in 

5: spike plate 10 in 

6: Victor plate 
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Table 4: Plate types for ties inspected in 2016 
  

0 1 2 3 4 5 6 

Left Plate type 2585 191529 4855 0 7083 3123 0 

Right Plate type 2595 193747 5013 0 2478 5342 0 

 

2.1.2 Year 2017 
 

To have a general idea of the descriptive variables in 2017, a statistics summary is presented in 

Figure 5. It is performed using R and it shows: the mean, standard deviation (sd), median, trimmed 

mean, median absolute deviation (mad), minimum value, maximum value, range, and skewness 

for each variable. 

 

The Tie Number, Tie Start Slice, Tie End Slice and Cumulative distance were not included as they 

reset for each file.  

 

 
 

Figure 5: Summary of ties data in 2017 

 

Table 5 shows the number of ties that are one tie from a crossing, a switch, or a bridge, (1) as well 

as the number of ties that are part of a crossing, a switch, or a bridge (2) in 2017. The number of 

ties supporting a guard rail, under a joint bar, or that are concrete is also shown in the table. 
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Table 5: Number of ties that are part of (or one tie from) a crossing, a switch, or a bridge in 2017 
 

 Crossing Switch Bridge Guard Rail Is Concrete Joint Bar Tie 

1 164 35 10 0 58 880 

2 1480 1240 773 - - - 

 

Table 6 describes the plate types for ties inspected in 2017 (left and right). 0 represents an unknown 

plate type while the other numbers represent different types as follow: 

 

1: spike plate,  

2: Pandrol e-clip,  

3: Pandrol fast clip,   

4: spike plate 18 in,  

5: spike plate 10 in 

6: Victor plate 

 

Table 6: Plate types for ties inspected in 2017 
  

0 1 2 3 4 5 6 

Left plate type 2594 196356 3906 0 4020 2161 60 

Right Plate type 2529 194235 5141 1 4589 2534 68 

 

2.1. 3 Year 2019 

 

To have a general idea of the descriptive variables in 2019, a statistics summary is presented in 

Figure 6. It is performed using R and it shows: the mean, standard deviation (sd), median, trimmed 

mean, median absolute deviation (mad), minimum value, maximum value, range, and skewness 

for each variable. 

 

The Tie Number, Tie Start Slice, Tie End Slice and Cumulative distance were not included as they 

reset for each file. 
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Figure 6: Summary of ties data in 2019 

 

Table 7 shows the number of ties that are one tie from a crossing, a switch, or a bridge, (1) as well 

as the number of ties that are part of a crossing, a switch, or a bridge (2) in 2019. The number of 

ties supporting a guard rail, under a joint bar, or that are concrete is also shown in Table 7. 

 

Table 7: Number of ties that are part of (or one tie from) a crossing, a switch, or a bridge in 2019 
 

 Crossing Switch Bridge Guard Rail Is Concrete Joint Bar Tie 

1 159 33 10 0 75 711 

2 0 1177 666 - - - 

 

Table 8 describes the plate types for ties inspected in 2019 (left and right). 0 represents an unknown 

plate type while the other numbers represent different types as follow: 

 

1: spike plate 

2: Pandrol e-clip,  

3: Pandrol fast clip 

4: spike plate 18 in 

5: spike plate 10 in 

6: Victor plate 

 

Table 8: Plate types for ties inspected in 2019 
 

  0 1 2 3 4 5 6 
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left plate type 4260 186590 4074 0 7204 6942 106 

Right Plate type 3865 185279 5318 0 6356 8260 98 

 

3. Data Processing 

 

Once the tie data was properly cleaned and identified, the files were divided into individual miles, 

as defined by the data ID. Thus, each mile had a variable number of ties, depending on the defined 

start-stop location.  

 

The mile-by-mile summary, to include number of ties in each tie condition category (1 through 4) 

is presented in Table 9 below. A summary of the tie data is presented in Table 10.  

 

The data set represents 67 miles of tie condition data, mileposts started at 205 and ended at 272. 

 

Table 9: Mile by mile summary 
 

 2016 2017 2019 

Milepost 
Number 

of Ties 

Tie Score Number 

of Ties 

Tie Score 
Number 

of Ties 
Tie Score 

-1 1 2 3 4 -1 1 2 3 4  -1 1 2 3 4 
205 206 768 66 592 92 15 3 857 106 635 92 18 6 198 32 138 23 4 1 

206 207 2807 7 1793 848 149 10 2808 3 1712 846 211 36 3178 161 1759 953 253 52 

207 208 3433 43 2193 1012 163 22 3433 45 1926 1121 289 52 3230 31 1486 1333 337 43 

208 209 3037 11 2030 876 111 9 3037 12 1761 1006 242 16 3248 40 1397 1425 367 19 

209 210 2998 14 2167 730 79 8 2998 23 2071 732 162 10 3136 21 2750 319 38 8 

210 211 3275 15 2267 886 97 10 3275 60 2125 897 173 20 3259 60 2854 287 55 3 

211 212 3379 23 2214 928 198 16 3368 22 2081 821 401 43 3286 31 1492 1184 512 67 

212 213 3149 22 2146 801 160 20 3157 14 1977 854 278 34 3267 85 1474 1261 402 45 

213 214 3196 39 2362 711 77 7 3194 47 2193 754 180 20 3243 44 1773 1139 255 32 

214 215 3184 59 2077 858 166 24 3185 62 2084 646 343 50 3240 103 1765 920 408 44 

215 216 3278 29 2205 890 133 21 3277 29 2110 908 197 33 3230 43 1553 1335 281 18 

216 217 2612 23 1603 766 195 25 2610 12 1650 757 167 24 3249 37 1965 1031 197 19 

217 218 3786 122 2852 689 111 12 3778 131 2987 577 68 15 3231 145 2487 532 56 11 

218 219 3380 14 2708 549 96 13 3381 15 2696 549 102 19 3206 34 2328 713 116 15 

219 220 3243 79 2368 653 128 15 3243 53 2560 512 98 20 3211 126 2282 649 143 11 

220 221 3118 16 2375 583 121 23 3122 18 2310 632 119 43 3196 32 2212 733 182 37 

221 222 3246 15 2112 955 138 26 3248 19 1952 1065 175 37 3246 31 2072 957 159 27 

222 223 3263 138 2061 875 163 26 3262 109 2044 875 195 39 3223 160 2468 508 79 8 

223 224 3097 28 1867 987 196 19 3103 35 1768 1043 217 40 3182 54 1623 1188 294 23 

224 225 3206 83 2537 468 101 17 3203 82 2597 404 92 28 3157 90 2297 626 120 24 

225 226 3184 65 2644 305 140 30 3184 20 2644 339 133 48 3107 28 2363 499 157 60 

226 227 2961 4 2493 311 113 40 2964 4 2466 336 112 46 3105 8 2274 624 144 55 

227 228 3294 3 2361 757 158 15 3292 2 2414 661 189 26 3168 8 1831 1056 250 23 

228 229 3364 60 1563 1373 336 32 3330 29 1712 1135 384 70 3247 35 1305 1417 455 35 

229 230 3126 3 937 1757 394 35 3133 2 1627 1055 393 56 3227 14 1254 1436 489 34 

230 231 3271 196 487 1810 740 38 3271 1 1454 1090 566 160 3248 5 1039 1404 722 78 

231 232 3222 52 1151 1576 415 28 3221 65 1722 1030 348 56 3215 55 1075 1552 493 40 

232 233 3244 7 1246 1469 481 41 3246 5 1780 996 365 100 3248 12 829 1744 590 73 

233 234 3579 110 1354 1764 339 12 3572 92 2615 715 134 16 3247 107 1629 1231 263 17 

234 235 3156 93 701 1765 586 11 3154 79 2009 774 242 50 3179 94 1744 974 338 29 

235 236 2993 33 1522 1060 338 40 2993 34 1853 730 282 94 3182 57 1583 1080 409 53 

236 237 3230 133 1338 1368 372 19 3228 120 1954 862 254 38 3174 146 1637 1020 330 41 

237 238 3099 24 1745 991 308 31 3102 19 1751 877 364 91 3178 26 1418 1195 465 74 

238 239 3182 132 1627 1048 325 50 3178 47 1761 949 325 96 3194 93 1451 1095 473 82 

239 240 3220 443 1919 684 147 27 3214 489 2080 505 109 31 3156 494 1910 610 107 35 

240 241 3150 233 1741 921 223 32 3157 205 2457 359 107 29 3183 287 2278 464 116 38 

241 242 3288 150 1928 989 204 17 3286 176 2638 380 73 19 3210 171 2155 744 125 15 

242 243 2927 119 1671 860 258 19 3008 137 2298 437 123 13 3225 118 2130 768 182 27 

243 244 3313 16 2568 657 70 2 3310 21 2740 481 66 2 3218 32 2194 904 88 0 

244 245 3283 19 2088 1010 160 6 3278 18 1861 1168 204 27 3211 37 1870 1054 223 27 

245 246 3204 14 2137 937 113 3 3203 13 1959 995 221 15 3239 36 1508 1290 391 14 

246 247 3400 30 1887 1316 162 5 3402 25 1728 1318 309 22 3247 33 1000 1709 475 30 

247 248 3114 15 1737 1137 216 9 3111 16 1541 1224 293 37 3236 48 883 1674 585 46 

248 249 3502 30 2350 920 189 13 3506 27 2325 894 230 30 3232 224 1451 1288 258 11 

249 250 2905 37 1687 1068 111 2 2897 28 1541 1098 219 11 3203 75 1051 1656 406 15 

250 251 3268 32 1569 1302 348 17 3269 16 1431 1393 390 39 3185 50 1084 1565 461 25 

251 252 3210 13 1614 1166 388 29 3208 1 1559 1160 421 67 3222 29 1037 1496 596 64 

252 253 3367 178 2232 679 261 17 3275 43 2362 696 156 18 3223 15 2276 690 221 21 

253 254 3362 14 2361 728 244 15 3361 29 2210 846 240 36 3210 36 1735 1089 314 36 

254 255 2956 26 1832 750 331 17 2954 24 1576 890 391 73 3190 40 1178 1303 587 82 

255 256 3241 73 1796 1037 302 33 3240 103 1667 1011 372 87 3172 109 1031 1355 566 111 
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256 257 3183 16 1931 1080 154 2 3186 20 1842 1017 276 31 3190 67 1166 1462 453 42 

257 258 3264 20 2062 979 198 5 3258 22 2018 936 259 23 3181 47 1235 1459 399 41 

258 259 3289 330 1848 860 244 7 3296 255 1787 961 266 27 3240 319 1599 995 307 20 

259 260 3078 105 1553 1072 333 15 3079 92 1541 1063 351 32 3200 131 1065 1384 559 61 

260 261 3326 69 2255 905 96 1 3327 1 2197 1012 111 6 3306 191 1379 1460 270 6 

261 262 3073 21 2246 697 107 2 3074 14 2287 646 120 7 3127 41 1796 1089 193 8 

262 263 3211 26 2385 720 78 2 3211 24 2413 669 94 11 3175 33 1803 1157 171 11 

263 264 3302 43 2558 621 77 3 3292 22 2395 774 94 7 3321 65 1762 1278 201 15 

264 265 3196 31 2391 719 51 4 3194 36 2368 691 92 7 3205 51 1740 1213 185 16 

265 266 3447 26 2143 1151 121 6 3444 30 2000 1170 222 22 3270 39 1230 1550 417 34 

266 267 3352 50 2130 1077 92 3 3358 47 1990 1042 261 18 3294 52 1240 1479 482 41 

267 268 3095 27 2216 741 100 11 3088 28 2236 693 126 5 3210 71 1487 1369 264 19 

268 269 3164 115 2377 629 43 0 3161 118 2299 650 90 4 3209 127 1702 1196 174 10 

269 270 3153 3 2599 534 17 0 3154 3 2578 514 56 3 3157 6 2103 950 97 1 

270 271 2957 229 2328 337 53 10 2944 218 2210 435 65 16 3180 309 2288 531 44 8 

271 272 15 0 8 6 1 0 0 0 0 0 0 0 215 131 73 10 1 0 

 

Table 10 below shows the total number of ties and their condition score for each year: 

 

Table 10: total number of ties and their condition score for each year 
 

2016 2017 2019 

Total 

Numb

er of 

Ties 

Tie Score 
Total 

Numb

er of 

Ties 

Tie Score 
Total 

Numb

er of 

Ties 

Tie Score 

-1 1 2 3 4 -1 1 2 3 4 -1 1 2 3 4 

20917

5 

43

14 

1298

45 

6080

0 

1313

4 

108

2 

20915

2 

371

7 

1351

35 

5376

8 

1422

5 

230

7 

20917

7 

556

2 

1100

46 

7168

4 

1975

4 

213

1 

 

Figure 7 below summarizes the ties with scores 1, 2, 3 or 4 for the 3 years: 2016, 2017, 2019 

 

  

3.1 Average Tie Score Per Mile 
 

To better understand the behavior of the track’s ties on an “overview” or macro level basis, the 

average tie condition per mile was computed in order to evaluate the rate of tie degradation. 

The arithmetic average for each mile was calculated using the following equation: 

 

𝐴𝑣𝑔 =
∑ 𝑋𝑖𝑖=𝑛

𝑖=1

𝑛
 

where: 

129845
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Figure 7: ties with scores 1, 2, 3 or 4 for years: 2016, 2017, 2019 
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 Xi is the tie score for tie-i  

 n is the total number of ties per mile.  

 

Note: ties with a score of -1 were not considered as they represented a tie where Aurora was unable 

to get a good condition value. 

 

In order to evaluate the effect of tie conditions, several different sets of analyses were performed 

comparing average tie condition (per mile) with various other parameters. 

 

Figure 8 presents the average tie condition on a mile-by-mile basis for each year data is available: 

The degradation with time is clearly evident. In addition, those miles where significant tie 

replacement, such as with a tie gang, has been performed are also evident by the fact that the 

average tie condition improves with time, corresponding to the introduction of new replacement 

ties in that mile. Thus, it appears that a tie gang was run between MP 5 and 7 in 2018, and another 

tie gang run between MP 35 and 39 between 2016 and 2017. Other MP suggest some spot tie 

replacement to eliminate failed ties (“4s”) as well.  

 

 
 

Figure 8: Average tie condition on a mile by mile basis for each year 

 

From Figure 8, it is possible to classify the individual miles into several different categories based 

on suspected tie replacement activity, as follows:  

 

• The miles where no tie gang appears to have worked are the miles with a clear tie score 

average increase as observed throughout the three years: 

o 1 : Average tie score 2019> Average tie score 2017 > Average tie score 2016 

 

• The miles where a tie gang appears to have worked between 2016 and 2017 (defined in sub 

bullet 3 below) or where there was a significant number of spot tie replacements during 

that period (defined in sub bullet 2 below) as suggested by a sudden improvement 

(decrease) of the tie score and described as follows:  
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o 2 : Average tie score 2019> Average tie score 2016 > Average tie score 2017 

o 3 : Average tie score 2016> Average tie score 2019 > Average tie score 2017 

 

• The miles where a tie gang happened between 2017 and 2019 (defined in sub bullet 4 

below) or where there was a significant number of spot tie replacements during that period 

(defined in sub bullet 5 below) as suggested by a sudden improvement (decrease) of the tie 

score and described as follows:  

o 4 : Average tie score 2017 >Average tie score 2016 > Average tie score 2019 

o 5 : Average tie score 2017 >Average tie score 2019 > Average tie score 2016 

 

The classification of the mile into the corresponding class (defined as 1-5 above) is important 

because it allows for a better understanding of the ties’ behavior, and helps identify those sections 

of the track where no tie gang or significant tie replacement activity occurred. 

The classification is summarized in Table 11: 

 

Table 11: Summary of Miles Classification 
 

 Classes 

Miles 1 2 3 4 5 

1 X         

2 X         

3 X         

4 X         

5       X   

6       X   

7 X         

8 X         

9 X         

10 X         

11 X         

12     X     

13     X     

14 X         

15   X       

16 X         

17         X 

18       X   

19 X         

20   X       

21 X         

22 X         

23   X       

24   X       

25     X     

26     X     

27   X       

28   X       

29     X     

30     X     

31   X       

32     X     

33 X     

34   X       

 Classes 

Miles 1 2 3 4 5 

35     X     

36     X     

37     X     

38     X     

39   X       

40         X 

41 X         

42 X         

43 X         

44 X         

45 X         

46 X         

47 X         

48     X     

49 X         

50 X         

51 X         

52 X         

53 X         

54 X         

55 X         
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56 X         

57   X       

58 X         

59 X         

60 X         

61 X         

62 X         

63   X       

64 X         

      

65 X         

66        X 

67     X     

 

The total number of miles belonging to each category is summarized in Table 12 below:  

 

Table 12: Total number of miles in each category 

 

Category 1 2 3 4 5 

Total number of miles 37 11 13 3 3 

 

As can be seen from the tables above, there are 37 miles that belong to category 1, which represents 

about 55 % of the studied track, while the remaining 30 miles belong to the other categories. The 

analysis will focus on the portion of the track that belong to category 1 where no tie gang or 

significant number of spot tie replacement occurred. Thus, the focus of this analysis will be on the 

37 miles of track where no major tie replacement occurred. 

 

4. Tie Alignment 
 

In order to perform a detailed, tie-by-tie analysis, it is necessary to accurately align the ties, so that 

each individual tie can be followed comparatively over the three-year time period. This section 

presents the results of this tie alignment process.  

 

The goal of tie alignment is to be able to identify and “follow” individual ties through the three-

years of data. Although milepost information was provided, it is not accurate to the individual tie 

level so that more accurate alignment is necessary. 

 

As noted, this analysis will now focus on the 37 miles (approximately 120,000 ties) for which no 

major tie replacement or maintenance activity has occurred during the three year study period.  

Those miles determined to have had major tie replacement, as discussed above, were not included 

in the analysis going forward. As such, alignment was restricted to these 37 miles for which 

minimum spot tie replacement occurred and where the tie-to-tie distance can be used to align ties. 

Tie condition scores where then used to confirm the alignment.  

 

The data alignment was performed on an individual mile basis using the following steps:  

• For each of the identified miles, an initial sort was performed by year and by milepost. 

• Using the 2016 data, the ties in each mile were indexed from 1 to N, where N is the total 

number of ties in the mile 

• Using a cross-correlational function3 the shift between each mile’s 2016 condition and the 

same mile’s 2019 condition was determined. Note, the shift or lag ranged from small to 

                                                             
3 Available in “R” software package 
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relatively large, more than 100 ties.  

• Each miles’ 2019 ties were then indexed using this calculated lag or shift. 

• After the initial alignment, each mile was divided into 50 tie groups, with a unique numeric 

identifier for each group.  

• Each 50 ties group was indexed from 1 to 50 and then the same cross-correlation function 

used to calculate the lag or shift between 2016 and 2019 data. Note, the individual 50-tie 

group lag was usually less than 10 ties. 

• The individual tie identifier or indices for the 2019 tie data were then shifted to match the 

ties indices of 2016 data with the shift varying per the calculated lag. 

• The alignment was checked using the Cross-Correlation Function on the tie condition 

values.  

• A final visual check was performed. In a few cases, the location indices needed to be 

adjusted by +/- 1 tie. This was because the Aurora test measurements reading were 

performed in opposite directions in 2016 and 2019 (increasing versus decreasing milepost 

direction of travel). Thus, while the tie to tie distance was similar, the buildup of deviation 

from 19 ½” spacing resulted in the need for an occasional shift in tie ID by 1 tie. 

 

Figures 9-14 present examples of tie alignment using the cross-correlation function. 

 

Figure 9 shows the “before alignment”  tie to tie distance (y axis)  for the first 800 ties for mile  

33. Note the red line is 2016 data and the black line 2019 data. 

 

 
 

Figure 9:  Tie to tie distance before alignment (800 ties) 

 

It can be seen that the two plots in Figure 9 (tie-to-tie distance of 2016 and 2019) are not alligned.   

Using the cross correlation function (CCF) for the tie-to-tie distance parameter in 2016 and 2019 

gives the results per lag value as shown in Figure 10. 
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Figure 10: Cross Correlation Function result in R  

 

The lag with the maximum ACF 4coefficient is -185. That means that the ties’indices for 2019 

have to be shifted by -185 feet to be aligned with those of 2016.   

 

After adjusting the indices, the plots are aligned as shown in Figure 11.  While the alignment 

appears to be much better, there is still a lag in some locations. This is due to missing individual 

ties or encoder slip from one inspection to another. 

 

 
 

Figure 11: Tie to tie distance after alignment (800 ties) 
 

After aligning the entire mile, and shifting the indices, a second, smaller scale alignment was 

performed on a 50 per 50 ties basis using the tie number and the tie to tie distance for 2016 and 

2019 as shown in Figure 12. 

 

                                                             
4 ACF stands for Autocorrelation Function 
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Figure 12: Tie to tie distance before alignment (50 ties) 

 

As can be seen in Figure 12,  the two plots (Tie number vs. tie-to-tie distance of 2016 and 2019) 

are not yet perfectly alligned.   

 

Again using the cross correlation function (CCF) for the tie-to-tie distance parameter in 2016 and 

2019 gives the following results (Figure 13): 

 

 
 

Figure 13: Cross Correlation Function result in R (for 50 ties) 

 

The lag with the maximum ACF coefficient is +2. That means that the ties’indices of 2019 should 

be shifted by +2 to be aligned with those of 2016 for this particular 50 foot window.   

 

After adjusting the tie indices for 2019, the plots are aligned as shown in Figure 14: 
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Figure 14: Tie to tie distance after alignment (50 ties) 

 

4.1 Finalization of Tie Alignment 
 

In order to verify the tie alignment for each 50-ties subset, a second alignment analysis was 

performed as illustrated in Figures 15-17. Figure 15 presets the results of the alignment performed 

previously, where the tie condition score (1 through 4) is plotted against the tie number for the 

aligned ties. 

 

 
 

Figure 15: Tie condition score against tie number for the aligned ties 

 

Using the cross-correlation function for the two sets of tie condition data in Figure 15 (tie condition 

for 2016 and 2019) gives the result presented in Figure 16. 
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Figure 16: Cross Correlation Function result in R (for tie score) 

 

As shown in Figure 16, the lag with the maximum ACF coefficient is +1. This means that the 

ties’indices of 2019 should be shifted by +1 to be aligned with those of 2016.  Plotting the final tie 

position vs their respective tie condition scores gives the graph presented in Figure 17. 

 

 
 

Figure 17: Final tie position vs respective tie condition scores 

 

It is to be noted that not all the miles had an index difference of +/-1 in this last step. Some miles 

did not require a modification of the indices based on the tie score, since the initial alignment steps 

produced an accurate alignment of the two years’ worth of data. The steps described above were 

repeated for all 37 study miles; i.e. those miles  in which no tie gang worked as determined by the 

per mile weighted tie condition averages discussed previously. 
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4. Cleaned Dataset  
 

4.1. Study Groups  
 

After cleaning the data, dismissing any individual tie for which tie replacement occurred during 

the three years interval, and aligning the ties, there remained 96,421 ties in the study data set. These 

ties were then divided into 4 different groups depending on the adjacent tie condition and the 

associated loss of support (percentage) that resulted.  

 

The four study tie groups defined by average loss of support, are shown in Table 13, along with 

the number of ties belonging to each group. 

 

Table 13: Average loss of support and ties configurations corresponding to each group 
 

Group Configuration 
Average Loss 

of support (%) 

Number of ties 

in the category 

F 

 

0 77937 

A 

 

17 16379 

B 

 

33 1410 

C 

 

46 695 

 

Note, for Group F, all adjacent ties are in good condition, and the center tie has full support from 

its surrounding ties. Groups A, B, and C have increasing numbers of failed adjacent ties and 
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corresponding increasing loss of support, as calculated from Beam On Elastic Foundation (BOEF) 

theory and Figure 1. Thus, the worst condition, where all four adjacent ties have failed (two on 

each side) is Category C, with a calculated loss of support of 46 %5. 
 

5.2. Tie Condition Distribution  
 

In order to analyze tie scores changes in each group between 2016 and 2019, distribution 

histograms were generated.  

 

Distribution graphs for all tie condition scores at the decimal level are presented in Figures 18 A 

and B for both 2016 and 2019, respectively. 

 

 
 

A: Tie score distribution in 2016 

                                                             
5 Note; this percentage represents the weighted average of the loss of support for the six configurations 

represented by Category C.  Weighted average was based on the number of ties in each of these six 
configurations. 
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B: Tie score distribution in 2019 

 

Figure 18: Tie Condition score histogram for all groups   
 

To better visualize the tie condition degradation over the three year period, the Tie Condition 

score distribution for 2016 and 2019 were plotted on the same graph and are represented in 

Figure 19 below. 

 

 
 

Figure 19: Tie Condition score distribution for 2016 and 2019  
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From Figure 19, it can be noted that there is an overall tie condition degradation as the number of 

“good” ties decreases from 2016 to 2019, and the number of “bad” condition ties increases in the 

same time period. 

 

The histograms presented in Figures 20 to 23 show the distributions of ties scores on a decimal 

level for each group for both 2016 and 2019. Note; moving forward tie condition analysis is based on the 

decimal scores for each individual tie, as opposed to the digital score discussed previously. 

 

5.2.1 Group F 

 

Figures 20 A and B represent the tie score distributions in group F in 2016 and 2019 respectively. 

 

 
 

A: Tie score distribution in 2016 for group F 
 

 
B: Tie score distribution in 2019 for group F 

 

Figure 20: Group F tie score distribution  
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It can be seen that the distribution of tie scores in 2016 is exponential for group F, while it is not 

in 2019. As Group F represents the ties having all four adjacent ties in good condition, F will be 

the reference group to compare how the adjacent tie condition affects the ties scores. 
 

A change in distributions can be noted between 2016 and 2019, such that more ties have a higher 

tie score in 2019. That indicates an overall degradation of ties between 2016 and 2019 for group 

F, as would be expected due to normal aging and traffic loading, without significant tie 

replacement.  
 

5.2.2 Group A 

 

Figures 21 A and B represent the tie score distributions in group A in 2016 and 2019 respectively. 

 

 
 

A: Tie score distribution in 2016 for group A 
 

 
 

B: Tie score distribution in 2019 for group A 

 

Figure 21: Group A tie score distribution 
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The distribution of tie scores in 2016 is exponential having more ties with scores lower than 1.5. 

A change in distributions can be noted between 2016 and 2019, such that more ties have a higher 

tie score in 2019 compared to 2016. That indicates an overall degradation of ties between 2016 

and 2019 for group F, as would be expected due to normal aging and traffic loading, without 

significant tie replacement.  

 

5.2.3. Group B 

 

Figures 22 A and B represent the tie score distributions in group B in 2016 and 2019 respectively. 

 

 
 

A: Tie score distribution in 2016 for group B 
 

 
 

B: Tie score distribution in 2019 for group B 

 

Figure 22: Group B tie score distribution 
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 5.2.4. Group C 

 

Figures 23 A and B represent the tie score distributions in group c in 2016 and 2019 respectively. 

 

 
 

A: Tie score distribution in 2016 for group C 
 

 
 

B: Tie score distribution in 2019 for group C 

 

Figure 23: Group C tie score distribution 
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was performed. Table 14 summarizes the mean, median, and the standard deviation of the tie scores 

for both 2016 and 2019 as well as their difference for each group. 

 

Table 14:  Mean, Median, and Standard Deviation for tie score distributions in 2016 and 2019 
  

Group Tie Scores in 2016 Tie Scores in 2019 Difference  

Mean F 1.425 1.748 0.3219 

A 1.514 1.852 0.3369 

B 1.572 1.932 0.36042 

C 1.604 1.964 0.36043      

Median F 1.3 1.6 0.300 

A 1.3 1.8 0.500 

B 1.3 1.9 0.600 

C 1.4 1.9 0.500      

Standard 

Deviation 

F 0.4552 0.5840 0.129 

A 0.5269 0.6356 0.109 

B 0.5848 0.6769 0.092 

C 0.5974 0.6653 0.068 

 

The median tie score in 2019 for group F is 1.6 while it is 1.8 for group A and 1.9 for both B and 

C, suggesting a higher number of degraded ties in the groups with a loss of support. 

 

Also, a higher difference in means between 2016 and 2019 suggests a higher number of degraded 

ties in the 3 years. For group F (group with 0% loss of support), the means difference is 0.32, while 

for group C (46% average loss of support), it is 0.36. It can also be noticed that the difference in 

means between 2016 and 2019 gets higher as the loss of supports gets larger. This indicates again 

that the greater the loss of support, the faster the degradation of ties.  

 

5.3 Effect Size 
 

 Effect size is a measure of the strength of the relationship between two variables in a statistical 

population. As such it is a way of quantifying the difference between two groups that emphasizes 

the size of the difference. Alternately, it can be defined as “a quantitative measure of the magnitude 

of the experimenter effect. The larger the effect size the stronger the relationship between two 

variables.” [17] In this case, the magnitude of different amounts of loss of support effect (for 

different groups, since each group represents a different loss of support value) is measured between 

2016 and 2019. This effect factor needs to be quantified to see how it changes as the loss of support 

changes from Group F to Group C.  

 

Three effect size methods were used to compare the different groups of ties (different loss of 

supports) between 2016 and 2019. Group F served as the comparison reference because it 

represents the group of ties with good adjacent tie condition and no loss of adjacent tie support. 
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5.3.1.  Cohen’s d effect size 

 

“Cohen's d is an appropriate effect size for the comparison between two means” [17] 
 

Mathematically: 

 

 such that:  [18] 
 

n1 is the number of elements in population 1 (in this case Group F) 

n2 is the number of elements in population 2 (Group A, B, or C) 

s1 is the standard deviation for population 1 (in this case Group F)  

s2 is the standard deviation for population 2 (Group A, B, or C) 

x̄1 mean for population 1 (in this case Group F) 

x̄2 mean for population 2 (Group A, B, or C) 

 

F is the reference, as it represents the best case scenario (all adjacent ties in good condition) and it 

is necessary to measure how the change of adjacent tie condition affects each Group within 3 years. 

The means and standards deviations used are the ones in 2019. Table 15 shows the effect size using 

Cohen’s method. 

 

Table 15: Cohen’s effect size 
 

 Effect Size with F as a reference 

 s d 

A 0.593238 0.17545 

B 0.585732 0.315255 

C 0.584722 0.370975 

 

Taking the reference population as F, the effect size for A is 0.18, while it is 0.22 for B and 0.37 

for C. The effect size gets higher as the loss of supports increases.  
 

5.3.2.  Glass’s Δ method of effect size 

 

“This method is similar to the Cohen’s method, but in this method standard deviation is used for 

the second group”[18].  Mathematically this formula can be written as: 

[18] 

 

Such that  

s2 is the standard deviation for population 2 (in this case Group F)  
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x̄1 mean for population 1 (Group A, B, or C) 

x̄2 mean for population 2 (in this case Group F)  

 

Table 16 below represents the Δ effect size using Glass’s method to compare F and A, F and B, as 

well as F and C respectively: 

 

Table 16: Glass’s effect size 
 

Tier  Population 2 = F 
Population 1 = 

F 

A 0.18 -0.16377 

B 0.32 -0.27281 

C 0.37 -0.32604 

 

Taking population 2 as F, the effect size’s absolute value for A is 0.16, while it is 0.27 for B and 

0.33 for C. The absolute value of Δ effect size gets higher as the loss of support increases.  

 

5.3.3.  Edges’ g Method of Effect Size 

 

Another method of effect size to compare Group F to all 3 tiers is Edges’ g method, where the 

effect size factor g can be computed as follow: 

[18] 

 

Such that s is the standard deviation, and  

x̄1 mean for population 1 (Group A, B, or C) 

x̄2 mean for population 2 (in this case Group F)  

 

Table 17 shows the effect size using Edges’ method. 

 

Table 17: Edges’ effect Size 
  

Effect Size with F as a reference 

Groups s g 

A 0.468461 0.222182 

B 0.457852 0.403308 

C 0.456681 0.474986 

 

Taking the reference population as F, the effect size for A is 0.18, while it is 0.22 for B and 0.37 

for C. The effect size g gets higher as the support condition decreases (from Group A to Group C).  
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5.3.4. Conclusions from the Effect Size analysis 

 

As noted, the effect size is a statistical measure that allowed for the quantification of the effect that 

a particular “process” has on different populations. The higher the effect size factor, the stronger 

the effect the “process” has on a particular population.  

By defining the different loss of support as different “processes” and comparing the effect size 

based on the distribution of scores, the effect of different adjacent tie support conditions can be 

quantified. Based on the results of three such Edge Effect analyses, it can be concluded that the 

higher the loss of support the higher the effect size, and hence the higher the rate of tie degradation. 

 

5. 4.  Tie Condition Changes Within Three Years  
 

The different inspections in 2016 as well as 2019 were accurately aligned to allow for a direct tie 

by tie comparison of condition at the different inspection times, as described in section IV (Tie 

Alignment). This then allowed for the analysis of the change in individual tie condition for all the 

study ties. Figures 24, 25, 26, and 27 represent the detailed number of ties with different tie score 

transitions from year 2016 to year 2019 for each tie support group.  

 

 
 

Figure 24: Tie Score Changes for Group F 
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Figure 25: Tie Score Changes for Group A 
 

 
 

Figure 26: Tie Score Changes for Group B 



35 
 

 
 

Figure 27: Tie Score Changes for Group C 
 

It should be noted that 80.8 % of ties belong to group F, where all four adjacent ties are in good 

condition. 

 

The percentage of ties changing conditions (from their initial condition score) within the 3 years 

(2016- 2019) is calculated as follows:  

 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑒𝑠 𝑤𝑖𝑡ℎ 𝑓𝑖𝑛𝑎𝑙 𝑆𝑐𝑜𝑟𝑒 𝐹 𝑎𝑛𝑑 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑐𝑜𝑟𝑒 𝐼

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑒𝑠 𝑤𝑖𝑡ℎ 𝑠𝑎𝑚𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑐𝑜𝑟𝑒 𝐼
    Equation 2 

 

where F is the final tie score (2019) and I is the initial score (2016). 

 

The percentages calculated using Equation 2 for tie scores 1.0 to 4.0 in groups F, A, B, and C are 

presented in Figure 28, 29, 30, and 31. They represent the percentage of ties that change from a 

particular score in 2016(vertical) to another (higher/more degraded) score in 2019 (horizontal). 
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Figure 28: Percentage of tie score changes for Group F 
 

 
 

Figure 29:  Percentage of tie score changes for Group A 
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Figure 30: Percentage of tie score changes for Group B 
 

 
 

Figure 31:  Percentage of tie score changes for Group C 
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Figures 28-31 show the detailed tie score transitions from year 2016 to year 2019, summarizing 

the changing tie conditions on a decimal level for groups A, B, C, and F. Appendix A shows the 

transition for different Tier bundles: Tier A+F, Tier B+C, and Tier A+B+C. It should be noted that 

the dataset is unbalanced, with tiers B and C having relatively low numbers of ties, while Group F 

represents about 80% of the dataset.  

 

6. Probability of Tie Failure as a Function of Loss of Support 

 

This section of the report addresses the modeling of tie failure probability using the cleaned and 

aligned data presented previously. Because of the tie score data distribution, and the unbalance in 

the dataset, the tie scores were grouped into ranges of 0.5:  

 

• Tie Scores between 1 and 1.4, 

• Tie Scores between 1.5 and 1.9, 

• Tie Scores between 2 and 2.4,  

• Tie Scores between 2.5 and 2.9, 

• Tie Scores between 3 and 3.4, 

• Tie Scores between 3.5 and 4. 

 

Table 18 summarizes the number of ties in each group and with their initial scores (in 2016): 

 

Table 18: Initial Scores 
 

  Number of Ties in Group 

Initial Score Between F A B C 

1 1.4 51,937 9,842 849 378 

1.5 1.9 14,772 3,257 275 144 

2 2.4 7,196 1,981 149 117 

2.5 2.9 2,227 685 79 28 

3 3.4 990 383 42 24 

3.5 4 815 231 16 4 

 

Note that for group F the loss of support is 0%, for group A, the loss of support is 16.67%, while 

it is 33% and 46.44% for Group B and C respectively. 

 

Noting that the reported change of tie condition (on a decimal scale) was traced for each individual 

tie, the data was analyzed based on tie scores ranges of 0.5. Table 19 presents this data based on 

both initial and final tie condition scores.  Thus, for example, the first cell (47.6%) represents the 

percentage of ties having an initial score between 1 and 1.4 and a final score between 1 and 1.4 

and a 0% loss of support. The sum of the values horizontally (100%) in the first line represents the 

total number of ties with a 0% loss of support (51,937). 

 

Table 19: Percentage of ties depending on their loss of support and final score 
 

Final Score 
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Initial 

Score 

Percent Loss 

of support 
1- 1.4 1.5-1.9 2-2.4 2.5-2.9 3-3.4 3.5-4 

1- 1.4 

0 47.6% 33.6% 14.2% 2.4% 0.9% 1.3% 

16.67 42.7% 35.6% 15.5% 3.2% 1.4% 1.5% 

33 39.4% 34.9% 16.4% 3.2% 1.6% 4.4% 

46.44 39.3% 31.9% 18.0% 4.7% 2.8% 3.3% 

1.5- 1.9 

0  34.0% 46.1% 12.8% 4.7% 2.5% 

16.67  33.1% 45.2% 13.6% 5.2% 2.9% 

33  35.4% 38.3% 15.4% 6.7% 4.2% 

46.44  28.3% 46.9% 17.7% 6.2% 0.9% 

2- 2.4 

0   32.5% 35.0% 26.0% 6.5% 

16.67   30.6% 34.2% 27.7% 7.4% 

33   31.5% 33.8% 23.1% 11.5% 

46.44   27.9% 30.2% 29.1% 12.8% 

2.5- 2.9 

0    23.9% 54.1% 22.0% 

16.67    24.5% 52.6% 22.9% 

33    21.7% 56.5% 21.7% 

46.44    22.2% 72.2% 5.6% 

3- 3.4 

0     43.3% 56.7% 

16.67     46.5% 53.5% 

33     48.6% 51.4% 

46.44     38.9% 61.1% 

 

It is to be noted that the Initial score is from the 2016 data and the Final score represents the data 

from 2019. 
 

6.1. Surface Fitting: MATLAB Modeling 

 

In order to determine the probability that a tie will change from a given initial condition value to 

a given final condition value over the three years, a surface fit6  was performed on the dataset. A 

surface fit is a method used to find an equation describing the behavior of two different variables 

as a function of a third. 

 

 It was found that no one equation would define the full range of initial and final tie conditions and 

the associated support conditions, so different surface fittings were developed, as a function of the 

initial tie condition or score. These surface fitting generated an appropriate equation describing the 

degradation behavior of the ties.  Thus, for ties having a specific initial score, the equation predicts 

the probability of a final score Y in 3 years (from 2016 to 2019) given the loss of support X. 

 

The surface fittings were performed for each range of initial score separately using MATLAB. 

Hence, different equations describe different tie condition behavior, depending on the initial tie 

condition.  
 

                                                             
6 The surface fit was performed using MATLAB. 
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The surface fittings were performed for each range of initial score separately. Hence, different 

equations describe different tie condition behavior, depending on the initial tie condition. Table 20 

shows the scope of the equations needed to represent the full range of data; as defined by Initial 

Score (SI) and Final Score (SF). Note, the number of equations required, with some of the ranges 

requiring more than one equation. 

 

Table 20: Equivalent Equations for each range 

 

Initial Score (SI) 
Final Score 

(SF) 
Equation P (SI, Ls, SF) 

1 1.4 1 4 Equation A 

1.5 1.9 

1 2.9 Equation B1 

3 3.5 Equation B2 

3.6 4 Equation B3 

2 2.4 2 4 Equation C 

2.5 2.9 

2.5 2.8 Equation D1 

2.9 3.4 Equation D2 

3.5 4 Equation D3 

3 3.4 3 4 Equation E 

 
The following sections describe and explain the different surface fittings performed for each range 

of Initial Score (SI) and Final Score (SF) as well as their equivalent resulting equations as follows: 

 

• Section 6.1.1: Equation A 

• Section 6.1.2:  

o Section 6.1.2.1: Equation B1 

o Section 6.1.2.2: Equation B2 

o Section 6.1.2.3: Equation B3 

• Section 6.1.3: Equation C 

• Section 6.1.4: Equation D1, Equation D2, Equation D3 

• Section 6.1.5: Equation E 
 

6.1.1 Equation A: Initial Score Between 1 and 1.4 
 

In this section, an equation was generated to model the behavior of ties with an initial score 

between 1 and 1.4. 

 

Table 21 represents the percentage of ties with an initial score between 1 and 1.4 and their final 

scores depending on their adjacent tie condition. Initial scores represent score in 2016, while final 

scores represent scores in 2019. 
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Table 21: Ties with initial score between 1 and 1.4 

 

Using MATLAB, a surface fit was performed to model the final score, the percent loss of support, 

and the percentage of ties in each Group. An equivalent equation was generated. 
 

 
 

Figure 32: Surface fit for probability of a final score for an initial score between 1 and 1.4 

 

Figure 32 represents the MATLAB surface fit output such that: 

 

• x represents the percent loss of support, 

• y represents the final score, and 

• z represents the percentage of ties (in the dataset) having a final score of y and a loss of 

support of x. 

 

The surface resulting equation f(x, y) (Equation A), represents the probability that a tie with 

initial score (between 1 and 1.4) and a loss of support of x gets a final score of y in 3 years as 

follows: 

 

Equation A f(x,y) = p00 + p10*x + p01*y + p11*x*y + p02*y^2 
 

The Coefficients (with 95% confidence bounds) are: 

 
 
 

 

 

 

 

Initial 

Score 

Percent Loss 

of support 

Final Score 

1-1.4 1.5-1.9 2-2.4 2.5-2.9 3-3.4 3.5-4 

1-1.4 0 47.6% 33.6% 14.2% 2.4% 0.9% 1.3% 

16.67 42.7% 35.6% 15.5% 3.2% 1.4% 1.5% 

33 39.4% 34.9% 16.4% 3.2% 1.6% 4.4% 

46.44 39.3% 31.9% 18.0% 4.7% 2.8% 3.3% 

p00 =       94.91 

p10 =      -0.179 

p01 =      -55.21 

p11 =     0.07953 

p02 =       7.936 
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Goodness of fit parameters can be summarized by: 

 

• SSE (sum of squares error): 255 

• R-square (representing how accurate the fit is): 0.9594 

• Adjusted R-square: 0.9509 

• RMSE (Root Mean Square Error): 3.663 
 

6.1.2.  Equations B1, B2, and B3: Initial Score between 1.5 and 1.9 
 

In this section, three equations (B1, B2, and B3) were generated to model the behavior of ties with 

an initial score between 1.5 and 1.9. 

 

Table 22 represents the percentage of ties with an initial score between 1.5 and 1.9 and their final 

scores depending on their adjacent tie condition. The initial score represents the score in 2016, 

while the final score represents the score in 2019. 
 

Table 22: Ties with initial score between 1.5 and 1.9 
 

Initial 

Score 
Percent Loss of support 

Final Score 

1.5-1.9  2-2.4  2.5-2.9  3-3.4 3.5-4 

1.5-1.9 

0 34.00% 46.10% 12.80% 4.70% 2.50% 

16.67 33.10% 45.20% 13.60% 5.20% 2.90% 

33 35.40% 38.30% 15.40% 6.70% 4.20% 

46.44 28.30% 46.90% 17.70% 6.20% 0.90% 

 

For this particular range of Initial Score, i.e., between 1.5 and 1.9, the modelling was performed 

depending on the targeted final score: 

 

• Initial Score between 1.5 and 1.9, Final Score Between 1.5 and 2.9, and the resulting 

equation is: Equation B1, 

• Initial Score between 1.5 and 1.9, Final Score Between 3 and 3.5, and the resulting equation 

is: Equation B2, 

• Initial Score between 1.5 and 1.9, Final Score Between 3.6 and 4, and the resulting equation 

is: Equation B3. 

 

The following sections describe each of the three equations: B1, B2, and B3. 

 

6.1.2.1.  Equation B1 

 

Equation B1 describes the behavior of the behavior of ties having an Initial Score between 1.5 

and 1.9 and a Final Score between 1.5 and 2.9. 

 
Using MATLAB, a surface fit was performed to model the final score, the percent loss of support and the 

percentage.  
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Figure 33: Surface fit for probability of a final score y for an initial score between 1.5 and 1.9 

between 1.5 and 1.9 and a Final Score between 1.5 and 2.9 

 
Figure 33 above represents the MATLAB surface fit output such that: 

 

• x represents the percent loss of support, 

• y represents the final score, and 

• z represents the percentage of ties (in the dataset) having a final score of y and a loss of 

support of x. 

 

The surface resulting equation f(x, y) (Equation B1) represents the probability that a tie with 

initial score (1.5 and 1.9) and a loss of support of x gets a final score of y (between 1.5 and 2.9) 

in 3 years as follows: 
 

Equation B1 f(x,y) = p00 + p10*x + p01*y + p11*x*y + p02*y^2 + p12*x*y^2 + p03*y^3 

 

The Coefficients (with 95% confidence bounds) are: 

 

p00 =      -346.8 

p10 =      -0.814 

p01 =       535.4 

p11 =      0.6566 

p02 =      -233.5 

p12 =     -0.1226 

p03 =       31.18 

 

Goodness of fit parameters can be summarized by: 

 

• SSE: 394.8 

• R-square: 0.9241 

• Adjusted R-square: 0.8891 

• RMSE: 5.511 
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6.1.2.2.  Equation B2 

 

Equation B2 describes the behavior of ties having an Initial Score between 1.5 and 1.9 and a 

Final Score Between 3 and 3.5. 

 

Using MATLAB, a surface fit was performed to model the final score, the percent loss of support 

and the percentage of ties in each Group. An equivalent equation was generated. 

 

 
Figure 34: Surface fit for probability of a final score for an initial score between 1.5 and 1.9 and 

a Final Score Between 3 and 3.5 
 

Figure 34 represents the MATLAB surface fit output such that: 

 

• x represents the percent loss of support, 

• y represents the final score, and 

• z represents the percentage of ties (in the dataset) having a final score of y and a loss of 

support of x. 

•  

The surface resulting equation f(x, y) (Equation B2), represents the probability that a tie with 

initial score between 1.5 and 1.9  and a loss of support of x gets a final score of y (between 3 and 

3.5) in 3 years as follows: 

 

Equation B2 f(x,y) = p00 + p10*x + p01*y + p11*x*y + p02*y^2 

 

The Coefficients (with 95% confidence bounds) are as follow: 

 

 

 

 

 

 

 

 

p00 =       57.25   

p10 =     -0.1088   

p01 =      -8.007   

p11 =     0.04338   

p02 =       -2.55   



45 
 

Goodness of fit parameters can be summarized by: 

 

• SSE: 1286 

• R-square: 0.7528 

• Adjusted R-square: 0.6868 

• RMSE: 9.25 
 

6.1.2.3.  Equation B3 

 

Equation B3 describes the behavior of ties having an Initial Score between 1.5 and 1.9 and a Final 

Score Between 3.6 and 4. 

 

In a similar manner to the surface fitting performed for Equation B1, using MATLAB, a surface 

fit was performed to model the final score, the percent loss of support and the percentage. The 

equivalent equation was generated as follows: 
 

Equation B3 f(x,y) = p00 + p10*x + p01*y + p11*x*y + p02*y^2 + p12*x*y^2 + p03*y^3 

 

The Coefficients (with 95% confidence bounds) are: 

 

p00 =      -346.8 

p10 =      -0.814 

p01 =       535.4 

p11 =      0.6566 

p02 =      -233.5 

p12 =     -0.1226 

p03 =       31.18 
 

Goodness of fit parameters can be summarized by: 

 

• SSE: 394.8 

• R-square: 0.9241 

• Adjusted R-square: 0.8891 

• RMSE: 5.511 

 

 6.1.3.  Equation C: Initial Score Between 2 and 2.4 
 

In this section, an equation (Equation C) was generated to model ties with an initial score between 

2 and 2.4. 

 

Table 23 represents the percentage of ties with an initial score between 2 and 2.4 and their final 

scores depending on their adjacent tie condition. The initial score represents the score in 2016, 

while the final score represents the score in 2019. 
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Table 23: Ties with initial score between 2 and 2.4 
 

 Final Score 

Initial Score Percent Loss of support 2-2.4 2.5- 2.9 3-3.4 3.5-4 

2-2.4 

0 32.50% 35.00% 26.00% 6.50% 

16.67 30.60% 34.20% 27.70% 7.40% 

33 31.50% 33.80% 23.10% 11.50% 

46.44 27.90% 30.20% 29.10% 12.80% 

 

Using MATLAB, a surface fit was performed to model the final score, the percent loss of 

support and the percentage. An equivalent equation was generated. 

 

 
 

Figure 35 : Surface fit for probability of a final score for an initial score between 2 and 2.4 
 

Figure 35 above represents the MATLAB surface fit output such that: 

 

• x represents the percent loss of support, 

• y represents the final score, and 

• z represents the percentage of ties (in the dataset) having a final score of y and a loss of 

support of x. 

 

The surface resulting equation f(x, y) (Equation C), represents the probability that a tie with 

initial score (between 2 and 2.4) and a loss of support of x gets a final score of y in 3 years as 

follows: 

 

Equation C f(x,y) = p00 + p10*x + p01*y + p11*x*y + p02*y^2 

 

The Coefficients (with 95% confidence bounds) are as follow: 

 

p00 =      -67.96 

p10 =     -0.4421   

p01 =       89.93 

p11 =      0.1608 

p02 =       -19.6 
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Goodness of fit parameters can be summarized by: 

 

• SSE: 124.7 

• R-square: 0.9742 

• Adjusted R-square: 0.9591 

• RMSE: 3.3521 

 

 

6.1.4.  Equations D1, D2, and D3: Initial Score between 2.5 and 2.9 

 

In this section, Equations D1, D2, and D3 were generated to model the behavior of ties with an 

initial score between 2.5 and 2.9. 

 

For ties with an initial score between 2.5 and 2.9, performing an overall surface fit did not lead to 

satisfactory results. So, as an alternative, the final scores were considered as decimals of ranges of 

0.1 rather than 0.5, and a loss of support weighted average was computed, as it can be seen in the 

last row of Table 24. 

 

Table 24 represents the number of ties with an initial score between 2.5 and 2.9 and their final 

scores depending on their adjacent tie condition.  

 

Table 24: Number of ties with an initial score between 2.5 and 2.9 and their final scores 

depending on their adjacent tie condition 
 

Groups 
Loss of 

support 

Final Scores 

2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4 

F 0% 26 54 77 103 194 801 94 40 44 50 45 51 39 46 62 175 

A 16.67% 5 12 21 27 78 242 25 15 14 11 14 10 16 17 18 59 

B 33% 0 2 2 4 7 32 2 4 0 1 2 0 0 2 4 7 

C 46.44% 0 0 1 0 3 12 1 0 0 0 0 0 0 1 0 0 

A+B+C 19.03% 5 14 24 31 88 286 28 19 14 12 16 10 16 20 22 66 

 

To model the behavior of ties with an initial score between 2.5 and 2.9, a weighted average of 

the loss of support was computed for Groups A+B+C (19.03%). In other words, the groups  

 

Table 25 below represents ties with an initial score between 2.5 and 2.9 as well as their equivalent 

final scores depending on the adjacent tie condition (percent loss of support).  
 

Table 25: Ties with initial score between 2.5 and 2.9 
 

 

Final Score 

2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4 

Percent 
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Loss of 

support 

0 
1.4
% 

2.8
% 

4.1
% 

5.4
% 

10.2
% 

42.1
% 

4.9
% 

2.1
% 

2.3
% 

2.6
% 

2.4
% 

2.7
% 

2.1
% 

2.4
% 

3.3
% 

9.2
% 

16.67 
0.9

% 

2.1

% 

3.6

% 

4.6

% 

13.4

% 

41.4

% 

4.3

% 

2.6

% 

2.4

% 

1.9

% 

2.4

% 

1.7

% 

2.7

% 

2.9

% 

3.1

% 

10.1

% 

33 
0.0
% 

2.9
% 

2.9
% 

5.8
% 

10.1
% 

46.4
% 

2.9
% 

5.8
% 

0.0
% 

1.4
% 

2.9
% 

0.0
% 

0.0
% 

2.9
% 

5.8
% 

10.1
% 

46.44 
0.0
% 

0.0
% 

5.6
% 

0.0
% 

16.7
% 

66.7
% 

5.6
% 

0.0
% 

0.0
% 

0.0
% 

0.0
% 

0.0
% 

0.0
% 

5.6
% 

0.0
% 

0.0
% 

 

In Table 25, the percentages represent the probability for a tie (with an initial score between 2.5 

and 2.9) to get a specific Final Score, given the Percent loss of adjacent support (i.e., belonging to 

support Group F, A, B or C). 

 

Plotting the values in Table 25 gives Figure 36 which represents the percentage of ties with an 

initial score between 2.5 and 2.9 (probability), their specific final score, as well as their respective 

loss of support. 
  

 
 

Figure 36: Probability of Final Scores as a function of Loss of support for ties with an initial 

score between 2.5 and 2.9 
 

The loss of support for the Group A+B+C is computed using a weighted average of the three 

groups. Table 26 below represents the percentage of ties with an initial score between 2.5 and 2.9 

and their final scores for Group F (with 0 percent loss of support) and Groups A+B+C (with 19% 

average loss of support). 
 

Table 26: Ties with initial score between 2.5 and 2.9 
 

Gro

ups 

Loss of 

support 

Final Score 

2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4 

F 0 1.4
% 

2.8
% 

4.1
% 

5.4
% 

10.2
% 

42.1
% 

4.9
% 

2.1
% 

2.3
% 

2.6
% 

2.4
% 

2.7
% 

2.1
% 

2.4
% 

3.3
% 

9.2
% 

A+B

+C 

19% 0.7
% 

2.1
% 

3.6
% 

4.6
% 

13.1
% 

42.6
% 

4.2
% 

2.8
% 

2.1
% 

1.8
% 

2.4
% 

1.5
% 

2.4
% 

3.0
% 

3.3
% 

9.8
% 

F 0 13.7% 64.3% 22.0% 

A+B

+C 

19% 11.0% 66.6% 22.4% 
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The analysis was conducted for the following ranges: 

 

• For Initial Score between 2.5 and 2.9 and Final Scores between 2.5 and 2.8: Equation D1 

• For Initial Score between 2.5 and 2.9 and Final Scores between 2.9 and 3.4: Equation D2 

• For Initial Score between 2.5 and 2.9 and Final Scores between 3.5 and 4:  Equation D3 

 

Figure 37 A, B, and C show the regression function representing the probability of having a final 

score between 2.5 and 2.8 (Equation D1), 2.9 and 3.48 (Equation D2), and 3.5 and 4 8 (Equation 

D3) respectively.  Note; in Figure 37, Likelihood refers to the probability. 
 

 
 

A: Probability function of having a final score 2.5 to 2.8 

 

 
 

B: Likelihood function of having a final score 2.9 to 3.4 
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C: Likelihood function of having a final score 3.5 to 4 
 

Figure 37: Likelihood function of having a final score between 2.5 and 2.8, 2.9 and 3.4, and 3.5 

and 4  
 

From Figure 37, the resulting regression function represent the Probability equations (Equation 

D1, D2, and D3) and can be summarized as follow: 
 

Equation D1 Probability = -0.014 *LS + 0.1368 

Equation D2 Probability = 0.0012 *LS + 0.6433 

Equation D3  Probability = 0.0002*LS + 0.2199 

 

where LS is the loss of support. 

 

6.1.5. Equation E: Initial Score between 3 and 3.4 

 

In this section, an equation (Equation E) was generated to model the behavior of ties with an initial 

score between 3 and 3.4. 

 

Table 27 represents the percentage of ties with an initial score between 3 and 3.4 and their final 

scores depending on their adjacent tie condition. The initial score represents the score in 2016, 

while the final score represents the score in 2019. 
 

Table 27: Ties with initial score between 3 and 3.4 
   

Final Score 

Initial Score Percent Loss of support 3-3.4 3.5-4 

3-3.4 0 43.30% 56.70% 

16.67 46.50% 53.50% 

33 48.60% 51.40% 

46.44 38.90% 61.10% 

 

Table 27 represents ties with an initial score between 3 and 3.4 and their final scores depending 

on their adjacent tie condition.  
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Using MATLAB, a surface fit was performed to model the final score, the percent loss of 

support and the percentage. An equivalent equation was generated. 
 

 
 

Figure 38: Surface fit for probability of a final score for an initial score between 3 and 3.4 
 

Figure 38 represents the MATLAB surface fit output such that: 

 

• x represents the percent loss of support, 

• y represents the final score, and 

• z represents the percentage of ties (in the dataset) having a final score of y and a loss of 

support of x and an initial score between (3 and 3.4). 

 

The surface resulting equation f(x, y) (Equation E), represents the probability that a tie with initial 

score (between 3 and 3.4) and a loss of support of x gets a final score of y in 3 years as follows: 
 

Equation E f(x,y) = p00 + p10*x + p01*y + p11*x*y 

 

The Coefficients (with 95% confidence bounds) are: 

 
 

 

 

 

 

 

Goodness of fit parameters can be summarized by: 

• SSE: 97.81 

• R-square: 0.7318 

• Adjusted R-square: 0.3741 

• RMSE: 5.71 
 

 

 

p00 =      -4.584 

p10 =     -0.7987 

p01 =        16.8 

p11 =      0.2458 
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6.1.6. Summary 
 

In this section, different surface fittings were performed in order to get an appropriate equation 

describing the behavior of the ties, depending on the initial tie scores as well as the loss of adjacent 

support. No one equation properly modelled the full range of data so a series of equations were 

developed.  These different equations describe and predict the probability of a final score Y in 3 

years given the loss of support X for ties having a specific initial score, for each defined range. 

The equations considered the loss of support as a variable and the surface fittings were performed 

for each range of initial score separately:  

 

• Initial Tie Scores between 1 and 1.4, resulting in Equation A 

• Initial Tie Scores between 1.5 and 1.9, resulting in Equations B1, B2, and B3 

• Initial Tie Scores between 2 and 2.4, resulting in Equation C 

• Initial Tie Scores between 2.5 and 2.9, resulting in Equation D1, D2, and D3 

• and Initial Tie Scores between 3 and 3.4, resulting in Equation E. 

 

The summary of the modeling equation is shown in the following section.
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6.2. Summary of Equations 
 

The equations describing the probability for a tie with initial score SI and loss of support Ls to have a final score SF can be 

summarized in Table 28. 

Table 28: Summary of Equations 
 

Initial Score 

(SI) 

Final Score 
(SF) 

Equation P(SI, Ls, SF) p00 p10 p01 p11 p02 p12 p03 

1 1.5 1 4 
P(SI,Ls, SF) = p00 + p10*Ls + p01*SF + 

p11*Ls*SF + p02*SF^2 
94.91 -0.18 -55.21 0.08 7.94 0.00 0.00 

1.5 2 

1 2.9 
P(SI,Ls, SF) = p00 + p10*Ls + p01*SF + 
p11*Ls*SF + p02*SF^2 + p12*Ls*SF^2 

+ p03*SF^3 

-346.8 -0.81 535.4 0.66 -233.50 -0.12 31.18 

3 3.5 
P(SI,Ls, SF) = p00 + p10*Ls + p01*SF + 

p11*Ls*SF + p02*SF^2 
57.25 -0.11 -8.01 0.04 -2.55 0.00 0.00 

3.6 4 

P(SI,Ls, SF) = p00 + p10*Ls + p01*SF + 

p11*Ls*SF + p02*SF^2 + p12*Ls*SF^2 

+ p03*SF^3 

-346.8 -0.81 535.4 0.66 -233.50 -0.12 31.18 

2 2.5 2 4 
P(SI,Ls, SF) = p00 + p10*Ls + p01*SF + 

p11*Ls*SF + p02*SF^2 
-67.96 -0.44 89.93 0.16 -19.60 0.00 0.00 

2.5 3 

2.5 2.8 P(SI,Ls, SF) = p00 + p10*Ls -0.0014 0.14 0.00 0.00 0.00 0.00 0.00 

2.9 3.4 P(SI,Ls, SF) = p00 + p10*Ls 0.0012 0.64 0.00 0.00 0.00 0.00 0.00 

3.5 4 P(SI,Ls, SF) = p00 + p10*Ls 0.0002 0.22 0.00 0.00 0.00 0.00 0.00 

3 3.4 3 4 
P(SI,Ls, SF) = p00 + p10*Ls + p01*SF + 

p11*Ls*SF 
-4.584 

-

0.798

7 

16.8 0.2458 0.00 0.00 0.00 
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7. Introducing the Time Variable to the Probability of Tie Degradation 

 

After modeling the tie score changes that happen within 3 years, the time variable was introduced 

to the calculated probabilities, to allow for determination of rate of tie degradation. In this analysis, 

the increase in the tie degradation likelihood with time, is used to calculate a rate of degradation 

which, in turn, can be used to calculate tie life. 

 

Both exponential degradation and linear degradation of wood ties are examined and presented in 

this section. 

 

The objective of this study is being able to predict the amount of time it will take for a “good tie” 

to have a high probability of failure based on its adjacent tie condition (loss of adjacent tie support). 

Failure is defined using a probability threshold; for example, 75%. 

 

The previous models allowed for the determination of the probability of a tie changing condition 

(from an initial score SI to a final score SF) in 3 years. The following section expands upon this 

and extends the probability equation to include the time variable. 

 

Introduction the time variable to the previous results is done in two different ways:  

• Exponential crosstie degradation over time 

• Linear crosstie degradation over time 

 

The inputs are: 

• Threshold probability; set here to be 75% as a default case. 

• Initial Score 

• Final Score  

• Average tie life; taken from external studies and dependent on numerous factors  to include 

type of wood, weather/environment, traffic type and density, etc. 

 

The output is: 

• The required time for the probability (of tie failure) of a tie moving from an initial score SI 

to a final score SF to be higher than the set threshold (75% default case). 
 

In order to model the time (t) for the probability to be higher than Tr (a threshold input), for a tie 

with initial condition score (SI) and loss of support (LS) to reach a final score (SF), the following 

abbreviations presented in Table 29, will be used: 

 

Table 29: Used Abbreviations 
 

Ls Loss of Support 

SF Final Score 

SI Initial Score 

P(SI,LS, 

SF) 

Probability that a tie with initial score (SI) and a loss of support of LS gets a final 

score of (SF) in 3 years  (functions from surface modeling) 

T An average tie life (based on wood type, historic data, weather,….) should be an 

input 
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Tr2 

  

The required time for the probability P(SI,LS,SF) to be higher than threshold 

(Tr2) 

Tr1 Probability Threshold (default case is 75%) 

 

• Inputs: 

o Initial Score SI 

o Loss of Support LS 

o A potential final score: SF; as the objective is to determine what the probability to 

get this final score SF is. 

o An average tie life (T): based on traffic, wood type, historic data, weather…  

o A threshold of probability (default case is 75%) 

• Outputs: 

o Change of probability over time to reach a final score (inputted as SF)  

o Time for the probability of reaching initial condition score SI (inputted) to be 

higher than the defined threshold (75%). 

 

7.1. Exponential Degradation of Wood Ties 

 

In this analysis, it is assumed that the degradation of ties is exponential, as shown in Figure 39, 

and the tie score follows an exponential growth trend over time7. This will be the basis for  the 

tie life and probability growth modelling. 

 

 
 

Figure 39: Exponential tie degradation  

 

In Figure 39 above, T (on the x-axis representing Time) represents the average tie life (which is 

an input and depends on many other important factors as discussed in the previous sections), or 

the amount of time it takes for the tie score to reach 4. 

                                                             
7 This statement can be found in an Aurora presentation in : http://railtec.illinois.edu/wp/wp-
content/uploads/pdf-archive/8.6_Euston.pdf  



56 
 

It is to be noted that, in this analysis, the tie life is defined to be the time the tie condition score 

goes from 1 to 4. Note that the mathematical proof can be found in Appendix B. 

 

The tie condition or Tie Score can be modeled by Equation 3: 

 

Tie Score = 4
(t

T(LS)⁄ )
  Equation 3 

 

where: 

• T (LS) = (1.444 LS2 - 1.322 LS + 0.9931) * T (from Equation 1) 

• And t is the time in years. 

 

7.1.1. ∆T: Time to go from a score SI (initial) to a score SF (final) 
 

Using  Equation 3, the time to go from a score SI (initial) to a score SF (final) is  

 

 

∆𝑇 =  
(1.444 𝐿𝑠2 −  1.322 𝐿𝑠 +  0.9931) ∗ 𝑇

ln(4)
∗ ln (

𝑆𝐹

 𝑆𝐼
) Equation 4 

 

Note that the mathematical proof can be found in Appendix B. 
 

7.1.2. Exponential Increase of Probability 

 

Based on the data and the modeling completed in the previous section, the probability to go from 

score SI to Score SF in 3 years is determined based on the loss of support, and will be referred to 

hereinafter as P(SI, LS, SF), where  SI is the initial Score, LS the loss of support and SF the final 

score. 

 

 
Figure 40: Exponential growth of probability over time 
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In Figure 40, P (SI, LS, SF) is computed using the equations from the surface fitting. It represents 

the probability that a tie would go from Score SI to Score SF within 3 years based on the loss of 

adjacent support. 

 

Assuming that the probability is exponentially increasing over time, the change of probability over 

time can be described by Equation 5. Note that the mathematical proof can be found in Appendix 

B. 

Probability(t)  =  (P(SI, Ls, SF))(
∆𝑇

∆T−3
) ∗  (Tr1)(

3
3−∆T

) e

ln (
Tr1

P(SI,Ls,SF)
)

∆T−3
t
 

Equation 5 

7.1.3.  Determining t(Tr1): the time it takes for the probability to be higher than threshold 

Tr1 
 

Using Equation 4, Equation 5, and the mathematical proof in Appendix B, the time it takes for 

the probability of a tie to move from score SI to a final Score SF to be higher than threshold Tr1 

is expressed by Equation 6: 

 

𝐭(𝐓𝐫) = (
(𝟏. 𝟒𝟒𝟒 𝑳𝒔𝟐 −  𝟏. 𝟑𝟐𝟐 𝑳𝒔 +  𝟎. 𝟗𝟗𝟑𝟏) ∗ 𝑻

𝐥𝐧(𝟒)
∗ 𝐥𝐧 (

𝑺𝑭

 𝑺𝑰
) − 𝟑)    

∗   

𝐥𝐧 (   
𝐓𝐫𝟏 ^

(
𝟎.𝟓

𝐒𝐅−𝐒𝐈−𝟎.𝟓
∗

𝟑
(𝟏.𝟒𝟒𝟒 𝑳𝒔𝟐 − 𝟏.𝟑𝟐𝟐 𝑳𝒔 + 𝟎.𝟗𝟗𝟑𝟏)∗𝑻

𝐥𝐧(𝟒)
∗𝐥𝐧 (

𝑺𝑭
 𝑺𝑰

)−𝟑
 )

 

𝐏(𝐒𝐈, 𝐋𝐬, 𝐒𝐅)^

(

(𝟏.𝟒𝟒𝟒 𝑳𝒔𝟐 − 𝟏.𝟑𝟐𝟐 𝑳𝒔 + 𝟎.𝟗𝟗𝟑𝟏)∗𝑻
𝐥𝐧(𝟒)

∗𝐥𝐧 (
𝑺𝑭
 𝑺𝑰

)

(𝟏.𝟒𝟒𝟒 𝑳𝒔𝟐 − 𝟏.𝟑𝟐𝟐 𝑳𝒔 + 𝟎.𝟗𝟗𝟑𝟏)∗𝑻
𝐥𝐧(𝟒)

∗𝐥𝐧 (
𝑺𝑭
 𝑺𝑰

)−𝟑
)

   )

𝐥𝐧 (  
𝐓𝐫𝟏

𝐏(𝐒𝐈, 𝐋𝐬, 𝐒𝐅)  )
 

 

Equation 

6 

 

where: 

• LS: Loss of support 

• Tr1: The threshold set  

• T: Average tie life 

• SI: Initial Score  

• SF: Final Score 

• P(SI, LS, SF): the probability for a tie with an initial Score SI to reach a final score SF in 

3 years, from the modelling presented in the previous section. 
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7.2. Linear Degradation of Wood Ties 
 

In this section, the degradation of tie condition was assumed to be linear, with the tie degradation 

score following a linear relationship over time.  

 

This assumed linear behavior statement was used for the tie life and probability growth modelling. 

 
Figure 41: Linear tie degradation 

 

In Figure 41, T (on the x-axis representing time in years) represents the average tie life (which is 

an input, and depends on many important factors), or the amount of time it takes for the tie 

condition score to go from 1 to 4.  

 

The Tie Score (tie condition) is then modelled by Equation 7. Note that the mathematical proof 

can be found in Appendix C. 

 

Tie Score (t) = 1 +
3t − 1

T(Ls) − 1
 Equation 7 

 

where,  

T (LS) = (1.444 LS2 - 1.322 LS + 0.9931) * T, 

T is the input average tie life, and t is the time in years. 

 

7.2.1. ∆T: Time to go from a score SI (initial) to a score SF (final) 

 

From Equation 7,  

Tie Score SI = 1 +
3 ∗  𝑡𝑆𝐼 − 1

𝑇(𝐿𝑠) − 1
 

Tie Score SF = 1 +
3 ∗  𝑡𝑆𝐹 − 1

𝑇(𝐿𝑠) − 1
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Such that tSI and tSF represent respectively the time for a tie to reach score SI and Score SF, 

respectively. And T(LS) is the average tie life (based on the loss of support). 

 

𝑡𝑆𝐼 =
𝑆𝐼 ∗ (𝑇(𝐿𝑠) − 1) + 4 − 𝑇

3
 

𝑡𝑆𝐹 =
𝑆𝐹 ∗ (𝑇(𝐿𝑠) − 1) + 4 − 𝑇

3
 

 

So, the time to go from a score SI (initial) to a score SF (final) is described by Equation 8. 

 

∆𝑇 = 𝑡𝑆𝐹 − 𝑡𝑆𝐼 =  
𝑆(𝐹 − 𝐹𝐼) ∗ (𝑇(𝐿𝑆) − 1)

3
 Equation 8 

 

7.2.2. Linear Growth of Probability (Over Time) 
 

Based on the data and the modeling completed in the previous section, the probability to go from 

score SI to Score SF in 3 years is determined based on the loss of support, and will be referred to 

hereinafter as P(SI, LS, SF) where  SI is the initial Score, LS the loss of support and SF the final 

score. 

 
Figure 42: Linear growth of probability over time 

 

Assuming that the probability is linearly growing over time, as shown in Figure 42, the change of 

probability over time can be described by Equation 9. The mathematical proof can be found in 

Appendix C. 

 

    Probability(t) =  
P(SI, Ls, SF) − Tr

3 −  ∆T
∗ t +

3 ∗  Tr −  ∆T ∗ P(SI, Ls, SF)

3 −  ∆T
 

Equation 

9 

 

Similar to the previous section, using Equation 8, Equation 9, and the mathematical proof in 

Appendix C, the time it takes for the probability of a tie to move from score SI to a final Score 

SF to be higher than threshold Tr is expressed by the Equation 10. 
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𝐭

=
 
𝑺(𝑭 − 𝑭𝑰) ∗ ((𝟏. 𝟒𝟒𝟒 𝑳𝒔𝟐 −  𝟏. 𝟑𝟐𝟐 𝑳𝒔 +  𝟎. 𝟗𝟗𝟑𝟏) ∗ 𝑻 − 𝟏)

𝟑
∗ (𝐏(𝐒𝐈, 𝐋𝐬, 𝐒𝐅) − 𝐓𝐫(

𝟎.𝟓
𝐒𝐅−𝐒𝐈−𝟎.𝟓

)) + 𝟑 ∗ (𝐓𝐫(
𝟎.𝟓

𝐒𝐅−𝐒𝐈−𝟎.𝟓
) − 𝐓𝐫)

𝐏(𝐒𝐈, 𝐋𝐬, 𝐒𝐅) − 𝐓𝐫
 

Equation 
10 

 

where: 

• LS: Loss of support 

• Tr: The threshold set  

• T: Average tie life 

• SI: Initial Score  

• SF: Final Score 

• P(SI, LS, SF): the probability for a tie with an initial Score SI to reach a final score SF in 

3 years, from the modelling presented in the previous section. 

 

7.3. Summary 
 

In this chapter, the time variable was introduced to the calculated tie degradation probabilities. The 

change in failure probability over time was considered based on the tie behavior modelled in 

chapter 9. 

 

The introduction of the time variable to the previous results was performed in two different ways:  

• Exponential crosstie degradation over time 

• Linear crosstie degradation over time 

 

The resulting equations allow for the prediction of the amount of time it will take for a “good tie” 

to fail or   have a high probability of failure (based on a set threshold such as the default value of 

75%) based on its adjacent tie condition (loss of adjacent tie support). 

 

8. Tie Life Reconstruction 

 

In track, wood crossties do not fail simultaneously even when installed at the same time [11]. This 

is due to variations in maintenance, tie replacement, and the normal statistical distribution of tie 

degradation (related to the anisotropic properties of wood). The distribution of failures represents 

a skewed normal distribution around an average tie life in track [14]. Since the tie condition data 

in the data set represents different tie conditions, which in turn are representative of different 

periods in the tie life, this condition data can be used to create a piecewise reconstruction of an 

average tie life. 

 
As noted, the tie condition is determined by the Aurora automated inspection system which 

provides a tie condition score to each cross-tie. Each tie is individually scanned, and analyzed to 

assess its condition, which is based on more than 20 different variables, including plate cut, 

splitting, internal decay, etc. The system then assigns a grade to each tie on a scale of 1 to 4 

describing its condition, 1 being the best and 4 being failed [19]. 
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Using this scoring system, the tie life reconstruction is performed such that a score of 1 is 

equivalent to the initial year in the tie life with the tie considered “new”, and a score of 4 is 

equivalent to the end of the tie life, with the tie considered failed. 

 

Since the assigned tie scores are decimal, it is possible to monitor the tie condition over the 

inspection interval and use that rate of change of condition to predict forward the tie life. As noted, 

this required a very accurate alignment process [9] using the 96,421 ties from both 2016 and 2019 

inspection years together with their corresponding condition values.  

 

8.1. Regression Function 
 

The first method used to reconstruct an average tie life was regression. Regression functions were 

developed based on the distributions of the different tie score transitions from 2016 to 2019 in 

different support groups and tiers (F, F+A, A+B+C, B+C). These functions were then used 

recursively to predict the tie score in year t+3 knowing the score in t.  

 

Score (t+3) = f (Score(t)), 

 

such that f is the resulting regression function, and t is time in years. This way, a piecewise 

reconstruction of the average tie life was performed and enabled to compare the tie degradations 

rates with respect to loss of adjacent support. 

 

Plotting all the tie score transitions from Figures 28-31 gives Figure 43 which represents the 

different tie scores in 2016 with their equivalent changed tie score in 2019, as well as the percent 

of ties having each transition. 
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Figure 43: Percentages of tie score transitions for Groups A, B, C, and F 

 

The tie score transitions that had a percentage higher than 10%, were kept for this study, as they 

represent significant condition changes.  

 

It should be noted that, because the groups were unbalanced, the tie life reconstruction was 

performed on different group bundles, having different weighted8 average loss of adjacent support 

values. 

• Group F (loss of support= 0) is to be compared to Tier A+B+C (having an average loss of 

support of 19%) 

• Tier A+F (having an average loss of support of 3%) is to be compared to Tier B+C 

(having an average loss of support of 37%) 

 

8.1.1. Tie Life Reconstruction: Group F 

 

A regression analysis of ties in group F (all adjacent ties in good condition) was performed and is 

presented in Figure 44.  This figure represents tie scores in 2016 with their equivalent tie score 

transitions in 2019 in Group F.  Note, only tie score transitions with a percentage higher than 

10% of the ties were used in Figure 44. 

                                                             
8 Weighted based on number of ties in each group 
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Figure 44: Tie Score 2016 Vs Tie Score 2019 for Group F 

 

In order to describe the behavior of the data, two regression lines were fitted to the data with an R2 

of 0.91 and 0.92 respectively: 

• Linear regression, with the resulting equation: y= 1.0009x+0.337 

• Quadratic regression, with the resulting equation:  y= -0.1245x2 +1.6012x-0.2846 

 

where x represents tie condition scores in 2016, while y represents tie condition scores in 2019. 

The equations can thus be described as: 

 

Linear regression:  Score (2019) = 1.0009* Score (2016) +0.337 

Quadratic regression:  Score (2019) = - 0.1245 Score (2016)2 +1.6012* Score (2016)-0.2846 

 

Because the tie score transitions were recorded within an interval of 3 years (between 2016 and 

2019), the equations can be generalized as follow:  

 

Linear regression: Score (t+3) = 1.0009* Score (t) +0.337 

Quadratic regression: Score (t+3) = - 0.1245 Score (t)2 +1.6012* Score (t)-0.2846 

 

where Score(t) is the tie score at time t (in years) and Score (t+3) is the tie score at time t+3 (in 

years). 

 

Assuming a tie score of 1 will occur in year 1, and using the generalized equations above, the tie 

life was reconstructed for group F and the results presented in Table 30. 

 

Table 30: Tie life reconstruction results for group F 
 

Linear Regression  Quadratic Regression 

Time (years) Tie Score  Time (years) Tie Score 

1 1  1 1 
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4 1.3  4 1.2 

7 1.7  7 1.5 

10 2.0  10 1.8 

13 2.3  13 2.2 

16 2.6  16 2.6 

19 2.9  19 3.0 

22 3.2  22 3.4 

25 3.5  25 3.7 

28 3.8  28 3.9 

31 4.14  31 4.06 

 

Using the results of the linear regression function, the average time it takes a tie to reach score of 

3.8 is 28 years. Using the quadratic regression function, the average time it takes a tie to reach 

score of 3.9 is 28 years. 

 

Interpolating the results in Error! Reference source not found. 30, the average time it takes a 

tie to reach score of 4 is: 

• For the linear regression: 29.5 years 

• For the quadratic regression: 29.8 years 

 

8.1.2. Tie Life Reconstruction: Tier A+B+ C 

 

A regression analysis of ties of combined Groups A, B, and C which is defined as Tier A+B+C 

(at least one adjacent tie in poor condition) was performed and is presented in Figure 45.  This 

figure represents tie scores in 2016 with their equivalent tie score transitions in 2019 in Tier 

A+B+C. Note, only tie score transitions with a percentage higher than 10% of the ties were used 

in Figure 45 below.  

 

 
 

Figure 45: Tie Score 2016 Vs Tie Score 2019 for Tier A+B+C 
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In order to describe the behavior of the data, two regression lines were fitted to the data with an R2 

of 0.88 and 0.98 respectively: 

 

• Linear regression with the resulting equation: y = 0.9959 x + 0.3691 

• Quadratic regression with the resulting equation:  y = -0.154x2 + 1.739x - 0.4034 

 

where x represents tie condition scores in 2016, while y represents tie condition scores in 2019, so 

the equations can be described as: 

 

Linear regression:  Score (2019) = 0.9959 *Score (2016) + 0.3691 

Quadratic regression:  Score (2019) = - 0.154* Score (2016) 2 + 1.739* Score (2016) - 0.4034 

 

Because the tie score transitions were recorded within an interval of 3 years (between 2016 and 

2019), the equations can be generalized as follow:  

 

Linear regression: Score (t+3) = 0.9959 *Score (t) + 0.3691 

Quadratic regression: Score (t+3) = - 0.154* Score (t) 2 + 1.739* Score (t) - 0.4034 

 

where Score(t) is the tie score at time t (in years) and Score (t+3) is the tie score at time t+3 (in 

years). 

 

Assuming a tie score of 1 will occur in year 1, and using the generalized equations above, the tie 

life was reconstructed for Tier A+B+C and the results can be seen in Table 31. 

 

Table 31: Tie life reconstruction results for Tier A+B+C 
 

Linear Regression  Quadratic Regression 

Time (years) Tie Score  Time (years) Tie Score 

1 1  1 1 

4 1.4  4 1.2 

7 1.8  7 1.5 

10 2.2  10 1.9 

13 2.6  13 2.2 

16 3.0  16 2.7 

19 3.4  19 3.2 

22 3.8  22 3.6 

25 4.15  25 3.9 

   28 4.04 

 

Using the results of the linear regression function, the average time it takes a tie to reach score of 

3.8 is 22 years. Using the quadratic regression function, the average time it takes a tie to reach 

score of 3.9 is 25 years. 

 

Interpolating the results in Table 31, the average time it takes a tie to reach score of 4 is: 

 

• For the linear regression: 23.7 years 
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• For the quadratic regression: 27 years 

 
8.1.3. Tie Life Reconstruction: Tier F+A 

 

A regression analysis of ties of combined Groups F and A which is defined as Tier F+A was 

performed and is presented in Figure 46.  This figure represents tie scores in 2016 with their 

equivalent tie score transitions in 2019 in Tier F+A. 

 

Note; only tie score transitions with a percentage higher than 10% of the ties were used in Figure 

46 below.  
 

 
 

Figure 46: Tie Score 2016 Vs Tie Score 2019 for Tier F+A 

 

In order to describe the behavior of the data, two regression lines were fitted to the data with an R2 

of 0.91 and 0.92 respectively: 

 

• Linear regression, with the resulting equation: y = 1.0006x + 0.3338 

• Quadratic regression, with the resulting equation:  y = -0.1232x2 + 1.5947x - 0.2802 

 

where, x represents tie scores in 2016, while y represents tie scores in 2019, so the equations can 

be described as: 

 

Linear regression:  Score (2019) = 1.0006 * Score (2016) + 0.3338 

Quadratic regression:  Score (2019) = -0.1232* Score (2016) 2 + 1.5947* Score (2016) - 0.2802 

 

Because the tie score transitions were recorded within an interval of 3 years (between 2016 and 

2019), the equations can be generalized as follow:  

 

Linear regression: Score (t+3) = 1.0006 * Score (t) + 0.3338 

Quadratic regression: Score (t+3) = -0.1232* Score (t) 2 + 1.5947* Score (t)  - 0.2802 

 

where Score(t) is the tie score at time t (in years) and Score (t+3) is the tie score at time t+3 (in 

years). 
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Assuming a tie score of 1 will occur in year 1, and using the generalized equations above, the tie 

life was reconstructed for Tier F+A and the results can be seen in Table 32. 

 

Table 32: Tie life reconstruction results for Tier F+A 
 

Linear Regression  Quadratic Regression 

Time 

(years) 
Tie Score  Time (years) Tie Score 

1 1  1 1 

4 1.3  4 1.2 

7 1.6  7 1.5 

10 1.9  10 1.8 

13 2.2  13 2.2 

16 2.5  16 2.6 

19 2.8  19 3.0 

22 3.1  22 3.4 

25 3.4  25 3.6 

28 3.7  28 3.9 

31 4.04  31 4.07 

 

Using the linear regression resulting function, the average time it takes a tie to reach score of 3.7 

is 28 years. Using the quadratic regression resulting function, the average time it takes a tie to 

reach score of 3.9 is 28 years. 

 

Interpolating the results in Table 32, the average time it takes a tie to reach score of 4 is: 

 

• For the linear regression: 30.6 years 

• For the quadratic regression: 29.7 years 

 

8.1.4. Tie Life Reconstruction : Tier B+C 

 

A regression analysis of ties of combined Groups B, and C with is defined as Tier B+C was 

performed and is presented in Figure 47.  This figure represents tie scores in 2016 with their 

equivalent tie score transitions in 2019 in Tier B+C. Note, only tie score transitions with a 

percentage higher than 10% of the ties were used in Figure 47. 
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Figure 47: Tie Score 2016 Vs Tie Score 2019 for Tier B+C 
 

In order to describe the behavior of the data, two regression lines were fitted to the data with an R2 

of 0.82 and 0.84 respectively: 

 

• Linear regression, with the resulting equation: y = 1.0295x + 0.3891 

• Quadratic regression, with the resulting equation:  y = -0.1798x2 + 1.8705x - 0.4699 

 

where x represents tie scores in 2016, while y represents tie scores in 2019, so the equations can 

be described as: 

 

Linear regression:  Score (2019) = 1.0295 *Score (2016) + 0.3891 

Quadratic regression:  Score (2019) = - 0.1798 * Score (2016) 2 + 1.8705* Score (2016) - 0.4699 

 

Because the tie score transitions were recorded within an interval of 3 years (between 2016 and 

2019), the equations can be generalized as follow:  

 

Linear regression: Score (t+3) = 1.0295 *Score (t) + 0.3891 

Quadratic regression: Score (t+3) = - 0.1798 * Score (t) 2 + 1.8705* Score (t)  - 0.4699 

 

where Score(t) is the tie score at time t (in years) and Score (t+3) is the tie score at time t+3 (in 

years). 

 

Assuming a tie score of 1 will occur in year 1, and using the generalized equations above, the tie 

life was reconstructed for Tier B+C and the results can be seen in Table 33. 

 

Table 33: Tie life reconstruction results for Tier B+C 
 

Linear Regression  Quadratic Regression 

Time (years) Tie Score  
Time 

(years) 
Tie Score 

y = 1.0295x + 0.3891
R² = 0.8227

y = -0.1798x2 + 1.8705x - 0.4699
R² = 0.8371
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1 1  1 1 

4 1.4  4 1.2 

7 1.8  7 1.5 

10 2.2  10 1.9 

13 2.7  13 2.4 

16 3.2  16 3.0 

19 3.7  19 3.5 

22 4.0  22 3.9 

   23 4.09 

 

Using the linear regression resulting function, the average time it takes a tie to reach score of 3.8 

is 28 years. Using the quadratic regression resulting function, the average time it takes a tie to 

reach score of 3.9 is 28 years. 

 
Interpolating the results in Table 33, the average time it takes a tie to reach score of 4 is: 

 

• For the quadratic regression: 22.6 years. 

 

8.2. Comparison 

 

Observing the differences in equations and results for the different Groups/Tiers, to include both 

the linear and quadratic regression equations it is now possible to quantify this difference, and 

relate it to the loss of support. The comparison of the different tie life reconstructions is presented 

in this section. 

 

8.2.1. Quadratic Regression Equation 

 

Tables 30 through 33 presented the results of the tie life reconstruction for the noted tie 

Groups/Tiers. Focusing on the quadratic regression results, plots of tie condition score vs time are 

presented in Figure 48 for Group F and Tier A+B+C and in Figure 49 for   Tier B+C and Tier A+F.  
 

 
 

Figure 48: Time in years Vs Tie Score Using Quadratic function for Tier A+B+C and Group F 
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From Figure 48, it can be seen that group F and group A+B+C behave similarly until condition 

score 2.2 is reached. Then, Tier A+B+C shows a faster rate of degradation (and shorter tie life) 

than Group F. It takes a tie in Tier A+ B+ C on average 25 years to reach score 3.9, while it takes 

28 years to reach the same score for a tie belonging to group F (0% loss of support). Thus, the ties 

with poorer adjacent tie support conditions show a faster rate of degradation and a shorter projected 

life than those with good adjacent tie support condition. 

 

 
 

Figure 49: Time in years Vs Tie Score Using Quadratic function for Tier B+C and Tier F+A 

 

From Figure 49, It can be seen that Tier F+A and Tier B+C behave similarly until condition score 

1.8 is reached. Then, Tier B+C shows a faster rate of degradation (and shorter tie life) than Tier 

A+ F. It takes a tie in Tier B+ C on average 22 years to reach score 3.9(37% loss of support), while 

it takes 28 years to reach the same score for a tie belonging to Tier F+A (3% loss of support). So 

here too, the ties with poorer adjacent tie support conditions show a faster rate of degradation and 

a shorter projected life than those with good adjacent tie support condition. 

 

8.2. 2. Linear Regression Resulting Equation 
 

Likewise, examining the results of the linear regression equations from Tables 30 through 33, plots 

of tie condition score vs time are presented in Figure 50 for Group F and Tier A+B+C and in Figure 

51 for Tier B+C and Tier A+F.  
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Figure 50: Time in years Vs Tie Score Using the Linear function for Tier A+B+C and Group F 

 

 From Figure 50, it can be seen that Group F and Tier A+B+C behave similarly until condition 

score 1.7 is reached. Then, Tier A+B+C shows a faster rate of degradation (and shorter tie life) 

than Group F.  It takes a tie in Tier A+ B+ C on average 22 years to reach score 3.9 (19% loss of 

support), while it takes 28 years to reach the same score for a tie belonging to Group F (0% loss 

of support). 

 

Thus, as was shown for the quadratic equations, these results show a faster rate of degradation and 

shorter tie life for the ties with poor adjacent ties (poor support) as compared to all good ties on 

either side.  

 

 
 

Figure 51: Time in years Vs Tie Score Using the Linear function for Tier B+C and Group F 
 

From Figure 51, It can be seen that Tier F+A and Tier B+C behave similarly until condition score 

1.5 is reached. Then, Tier B+C shows a faster rate of degradation (and shorter tie life) than Tier 

A+ F. It takes a tie in Tier B+ C on average 22 years to reach score 4 (37% loss of support), while 

it takes 30 years to reach the same score for a tie belonging to Tier F+A (3% loss of support).  
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Here too, these results show a faster rate of degradation and a shorter tie life for the ties with high 

loss of adjacent support as compared to those with lower loss of adjacent support.  

 

To better understand the different degradations rates, and corresponding different average tie lives, 

the change in tie score of Tier B+C, Tier A+B+C, and Tier F+A are plotted in Figure 52 below. 

Regression lines were fitted to the points to model the change of tie condition. 

 

 
 

Figure 52: Change in tie score of Tier B+C, Tier A+B+C, and Tier F+A 

 

The resulting regression equations are:  

 

• For  F+A: Tie score = 0.1t + 0.9 

• For A+B+C: Tie score = 0.1333t + 0.8667   

• For B+C: Tie score = 0.1476 t + 0.8024 

 

where t is time in years. 

 

These results again show a faster rate of degradation for the ties with poor adjacent ties (poor 

support) as compared to all or mainly good ties on either side. Table 34 below summarizes the tie 

degradation rates for each group. 

 

Table 34: Loss of support and degradation rates for different tiers  
 

Tier Loss of Support Tie Degradation Rate 

F+A 3% 0.1 

A+B+C 19% 0.1333 

B+C 37% 0.1476 

 

The tie degradation rate is the slope of the regression line.  It should be noted that the tie 

degradation rate increases as the loss of support due to adjacent tie condition increases from F+A 

to B+C.   Figure 53 shows this change of degradation rate with the increase of loss of support. 
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Figure 53: Loss of support Vs Tie degradation rate 
 

From Figure 53, the tie degradation rate increases as the loss of support increases following the 

equation:  

Degradation Rate = 0.1387 LS + 0.0997 

where LS is the percent loss of support. 

 

The trend is well defined. As the loss of support increases, corresponding to increasing number of 

poor ties adjacent to the center tie, the tie condition degradation rate likewise increases. Thus, the 

poorer the adjacent tie support condition, the faster the rate of tie degradation, and the shorter the 

average tie life.  
 

8.3. Conclusion 
 

The objective of this section was to provide a way to predict and model tie life based on support 

condition as defined by the condition of adjacent cross-ties. This analysis made us of a piecewise 

reconstruction of the tie life as a function of varying support condition as well as the calculation 

of the rate of tie condition degradation as a function of the support condition, as defined by the 

adjacent cross-ties.  The result was that ties with the greatest loss of support showed shorter 

predicted average lives as compared to ties where the loss of support was not as significant. Tie 

condition degradation rates were generated as a function of adjacent tie support condition and 

associated loss of support due to poor adjacent ties.  The resulting degradation rate increased as 

percentage loss of support increased. 

 

Using a piecewise reconstruction of tie life as a function of varying support condition it was 

possible to calculate a relationship between percent loss of support and average tie life.  In addition, 

an equation for tie life reduction as a function of adjacent tie condition was also generated. 
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9. Crosstie Life Piecewise Reconstruction using Dijkstra’s Algorithm 
 

After using regression functions to reconstruct an average tie life, an alternate approach was used 

to reconstruct average tie life and to develop the relationship between tie life and adjacent tie 

condition in this section. Specifically, Dijkstra’s Algorithm, an algorithm for finding the shortest 

paths between nodes, was be used.  

 

Dijkstra’s Algorithm provided a piecewise reconstruction of tie life as a function of varying 

support condition and a way to calculate a relationship between percent loss of support and average 

tie life.   

 

9. 1. Dijkstra’s Algorithm and Adjacency Matrices 

 

9.1.1. Dijkstra’s Algorithm 

 

In 1959, Edsger Dijkstra, a Dutch mathematician, came up with an algorithm to obtain the path of 

minimum total length between any two vertices belonging to a weighted graph.  The graph can 

either be directed or undirected, and the weights must all be positive. 

 

Dijkstra’s algorithm is recursive. It uses the concept that the minimal paths from the initial vertex 

to the other vertices are built in order of increasing length until the final vertex is reached [20]. In 

other words, the algorithm is based on finding the length of the shortest path from the starting 

vertex to all the other connected vertices (one by one) progressively [21]. 

 

Dijkstra’s algorithm is based on a series of iterations that allows for the identification of the 

shortest path between nodes; i.e. the minimum length [20, 21, 22].  

 

9.1.2. Adjacency Matrices 

 

An adjacency Matrix can be defined as a matrix that “allows representing a graph with a V × V 

matrix M = [f (i, j)] where each element f (i, j) contains the attributes of the edge (i, j). If the edges 

do not have an attribute, the graph can be represented by a Boolean matrix to save memory space” 

[23]. 

 

To be able to apply graph theory to the tie problem being addressed in this report, the first step is 

to transform the tables in Appendix A, which show the tie condition scores change, into adjacency 

matrices that would represent distances in a weighted graph. The nodes or vertices of the graph 

will be represented by different tie scores: 1, 1.1, 1.2…3.9, and 4. The objective is to use algorithms 

to minimize the path from Vertex 1 (“new” tie) to Vertex 4 (“failed” tie), corresponding to the 

change in tie condition over time.  Thus, Vertex 1 corresponds to the condition 1.0, Vertex 1.1 to 

condition 1.1, Vertex 3 to condition 3., and Vertex 4 to condition 4. 

 

To accomplish this, first, the percentage of ties changing conditions (from their initial condition 

score) within the 3 years (2016- 2019) is calculated as illustrated in Equation 2. 

 

https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Shortest_path_problem
https://en.wikipedia.org/wiki/Shortest_path_problem
https://en.wikipedia.org/wiki/Vertex_(graph_theory)
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As an example, the percentages calculated using Equation 2 for tie scores 1.0 to 2.0 in group F are 

presented in Table 35.  

 

Table 35: Example of percentage of tie score changes 
  

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

1 15.94% 17.91% 11.70% 7.71% 13.51% 6.45% 3.14% 3.50% 3.57% 4.69% 2.15% 

1.1 
 

18.54% 12.37% 8.36% 17.41% 8.70% 4.05% 4.54% 5.16% 6.71% 2.19% 

1.2 
  

12.87% 9.11% 18.42% 10.24% 5.00% 6.10% 6.72% 10.26% 3.20% 

1.3 
   

9.29% 18.35% 10.19% 6.03% 6.89% 8.92% 13.72% 3.90% 

1.4 
    

16.12% 10.25% 6.39% 8.29% 9.33% 16.66% 5.91% 

1.5 
     

11.19% 6.57% 8.53% 10.91% 17.68% 5.36% 

1.6 
      

5.33% 7.22% 9.03% 17.30% 4.09% 

1.7 
       

5.57% 8.09% 16.82% 4.78% 

1.8 
        

7.16% 16.45% 4.41% 

1.9 
         

16.29% 6.32% 

2.0 
          

12.45% 

 

Based on the percentage calculated, the weights can then be defined as follows in Equation 11: 

 

𝑊𝑒𝑖𝑔ℎ𝑡 =  
1

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒
  Equation 11 

 

The adjacent matrix weights represent the distance between nodes on the graph. The minimized 

sum of the weights represents the minimum path. This is identical to the maximum path 

considering the percentages. 

 

The tie score changes or jumps represent the deterioration behavior that the majority (high 

percentage) of ties undergo.  In other words, the resulting path from the Dijkstra’s algorithm 

application would represent the average tie life that the majority of cross-ties in a group or tier 

have. This method allows for modelling and predicting the average tie life. 

 

The higher the percentage of ties having the same initial score and having the same final one, the 

higher the likelihood that a random tie having that initial score will have the final score in 3 years. 

Except in extreme conditions (such as a breaking), tie condition degradation happens gradually. 

Ties showing a high score change in three years represent exceptions (for instance a change from 

1 to a score of 3.5 within 3 years). In order to avoid unrealistic tie changes, the adjacency matrix 

limits possible tie score changes to a maximum range of 0.6 (for instance from 1 to 1.6, or from 

1.3 to 1.9). Unchanged tie scores (from 1.0 to 1.0, or 1.1 to1.1…) were represented by a distance 

that equals 0.  

 

Using Equation 11 on the percentages presented in Table 35 gives the adjacency matrix as shown 

in Table 36. 

Table 36: Example of an adjacency matrix 
  

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 
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1.0 0.00 5.58 8.55 12.97 7.40 15.51 31.88     

1.1 
 

0.00 8.08 11.95 5.74 11.49 24.70 22.01    

1.2   0.00 10.98 5.43 9.77 20.00 16.38 14.88   

1.3    0.00 5.45 9.81 16.60 14.52 11.21 7.29 
 

1.4     0.00 9.75 15.66 12.06 10.71 6.00 16.92 

1.5     
 

0.00 15.21 11.72 9.16 5.66 18.65 

1.6       0.00 13.85 11.07 5.78 24.43 

1.7       
 

0.00 12.36 5.95 20.93 

1.8         0.00 6.08 22.67 

1.9          0.00 15.81 

2.0           0.00 

 

9.2. Application of Dijkstra’s Algorithm  
 

9.2.1 Comparing Each Tier Independently 
 

After generating the adjacency matrices, representative weighted graphs are generated for each 

group or tier such that the vertices are represented by decimal tie scores from 1, 1.1, 1.2, … to 4. 

The edges are then weighted, and these represent the “distances” between the tie condition scores. 

The adjacency matrices for each group and tier were then converted into a graph9[24, 25], as shown 

in Figure 54: 

 

 
 

Figure 54: Graph representation of the tie score changes 

 

The Dijkstra algorithm was then applied to each representative graph in order to find the shortest 

path from Vertex = 1 (“new” tie) to Vertex = 4 (“failed” tie). The graphs for Groups F, A, B and 

C are shown in Figures 55a through 55d. The orange path represents the shortest path from Vertex 

1 to Vertex 4 using Dijkstra’s algorithm:  

 

                                                             
9  This was done using the R open source environment. Graphs were generated using the igraph and DiagrammeR 

packages. 
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Figure 55a: Shortest path for group F

 
 

Figure 55b:  Shortest path for group A 

 
 

Figure 55c: Shortest path for group B 
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Figure 55 d: Shortest path for group C 

 

The weights used in the graph represents the inverse of percentages of tie score changes. Thus, the 

shortest path represents the sequence of tie scores (vertices) that the majority of ties in a group will 

go through before tie failure (i.e. score = 4.0). These sequences of tie scores can be used to forecast 

the tie life. Because the dataset represents inspections from 2016 and 2019, every step in the short 

path will be represented by a period of 3 years.  

 

Assuming a tie score of 1 will occur in year 1, the tie condition changes are plotted in Figure 56 

for each group. Note, each data point in the figure corresponds to a step in the Dijkstra’s algorithm 

graph representation and is equivalent to an interval of 3 years. 

 

 
 

Figure 56a: Time in years vs Tie Score for group A, B, C, and F 

 

Figure 56a shows the forecast tie score changes from 1 to 4 for each group of ties. Note, the tie has 

failed when it reached condition 4, thus the end of its life. Further note that the tie life is longest 

for ties with good support, and shortest for ties with poor support. 
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A regression fit was performed on the data in Figure 56a to obtain the degradation rates for each 

group. By setting the intercept to 1 (new tie) in Figure 56b for all the groups the regression 

generates the following equations: 

 

• For group F: tie score = 0.116t + 1 

• For group A: tie score = 0.1366t + 1 

• For group B: tie score = 0.1482t + 1 

• For group C: tie score = 0.1556t + 1 

 

where t is time in years. Note, the tie degradation rate is the slope of the regression line.  It should 

be further noted that the tie degradation rate increases as the loss of support due to adjacent tie 

condition increases from F to C.   

 

 
 

Figure 56b: Tie score change over time- Linear modeling

9.2.2 Bundling Groups 
 

Because the dataset is unbalanced, i.e. having significantly different number of ties in each 

category (see Table 13), the smaller number of ties in groups B and C, groups were bundled 

together. Three different approaches were used.   

 

In the first approach, three tiers were created corresponding to groups F, A, and B+C. These are 

shown in Figures 55a, 55b and 57a respectively. 

 

In the second, two tiers were created corresponding to groups F+A, and B+C. These are shown in 

Figures 57b, and 57a respectively. 

y(F) = 0.116x + 1
R² = 0.9907

y(A) = 0.1366x + 1
R² = 0.9889

y(B) = 0.1482x + 1
R² = 0.9909

y(C) = 0.1631x + 0.8976
R² = 0.9924

0

0.5

1

1.5

2

2.5

3

3.5

4

0 5 10 15 20 25

Ti
e 

Sc
o

re

Time in Years

F

A

B

C

Linear (F)

Linear (A)

Linear (B)

Linear (C)



80 
 

In the third, two tiers were created corresponding to groups F and A+B+C. These are shown in 

Figures 55a and 57c respectively. 

 

 
 

Figure 57a: Shortest path for Tier B + C 

 
 

Figure 57b: Shortest path for Tier F+A 

 
 

Figure 57c: Shortest path for Tier A+B +C 

 

Bundling:  F vs A vs B+C 
 

Because of the low number of ties in group B and C, and because the same average tie life (19 

years) resulted from the Dijkstra’s algorithm, these two groups were bundled together and 

compared to Groups A and F. 

 

Figure 58a shows how the degradation of the tie condition over time behaves for these three groups 

F, A, and B+C.  Again, note that each data point in the figure corresponds to a step in the Dijkstra’s 

algorithm graph representation and is equivalent to an interval of 3 years. 
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Figure 58a: Time in years vs tie score for each group 
 

A regression line was fit to these data points to model the change of tie score (tie condition) 

throughout the life of the tie for all three cases as shown in Figure 58b.   

 

 
 

Figure 58b: Tie score change over time - linear modelling (Tier B+C) 
 

Once again, regression lines were generated, setting the intercept to 1, with the equations resulting 

as follows:  

 

• For group F: tie score = 0.116t + 1 

• For group A: tie score = 0.1366t + 1 

• For group B+C: tie score = 0.1505t + 1 
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where t is time in years. Again, note the increase in slope, corresponding to an increase in the 

rate of tie condition degradation, as the adjacent tie support condition degrades (i.e. from F to 

A+B). 

 

Bundling: F vs A+B+C 
 

In a similar manner, the three groups A, B, and C (ties having adjacent tie loss of support) are 

bundled and compared to group F which represents the best-case scenario (no loss of support). 

 

Figure 59 shows the results of applying Dijkstra’s algorithm on the changing tie condition scores 

for these two cases, good adjacent tie condition and deteriorated adjacent tie condition (A+B+C). 

 

 
 

Figure 59: Time in years vs tie score for Group F and Tier A+B+C 
 

It can be seen that group F and group A+B+C behave similarly until condition score 2 is reached. 

Then, Tier A+B+C shows a faster rate of degradation (and shorter tie life) than Group F, with an 

average tie life for Tier A+B+C of 22 years, as compared to 25 years for group F. 

 

Again, a regression line was fitted to the points to model the change of tie condition. 

The resulting regression equations are:  

 

• For group F: Tie score = 0.116t + 1 

• For A+B+C, Tie score = 0.1366t + 1   

 

where t is time in years. 

 

These results likewise show a faster rate of degradation for the ties with poor adjacent ties (poor 

support) as compared to all good ties on either side Thus, the rate of degradation (slope) of 0.116 

for good adjacent tie condition (Group F) is smaller than the rate of degradation (slope) of 0.1366 

for poorer adjacent tie condition (Tier A+B+C). 
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Bundling:  F+A vs B+C 
 

The final bundling approach consisted of two groups, where F and A are bundled and compared 

to Tier B+ C. 

 

Figure 60 shows the degradation of the tie condition over time for these two groups F+A, and B+C.  

Again, note that each data point in the figure corresponds to a step in the Dijkstra’s algorithm 

graph representation and is equivalent to an interval of 3 years. 

 

 
 

Figure 60: Time in years vs tie score for Tier F+A and Tier B+C 

 

In this case, both tiers F+A and B+C behave similarly until a score 3 is reached. Then, Tier B+C 

starts having a higher rate of degradation than the better supported Tier F+A with  an average tie 

life for Tier B+C of 19 years, as compared to  22 years for group F. 

 

Once again a regression line was fitted to the points to model the change of tie condition score (tie 

condition) with the resulting equations:  

 

Tier F+A : Tie score = 0.1353t + 1  
Tier B+C : Tie score = 0.1505t + 1 

 

where t is time in years. 

 

Here too, these results show a faster rate of degradation for the ties with poor adjacent ties (poor 

support) as compared to better tie support. The rate of degradation (slope) of 0.1353 for good 

adjacent tie condition (Group F+A) is smaller than the rate of degradation (slope) of 0.1505 for 

poorer adjacent tie condition (Tier B+C). 
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9.3. Comparisons and Analysis 
 

9. 3. 1. Degradation Rates Comparison 

 

Using the slope of the calculated regression equations, presented previously, it is possible to 

evaluate the corresponding degradation rates of the different data sets associated with varying 

degrees of support condition, as defined by the condition of adjacent (support) ties.  These 

degradation rates, corresponding to the slope of the tie condition-time curves presented above, are 

summarized in Table 37 as a function of support condition, by group. Note, the percent loss of 

support shown in Table 37, is calculated from the BOEF equation for the corresponding adjacent 

tie support conditions associated with each group10.  

 

Table 37: Degradation Rates 
 

Group Percent loss of support Degradation Rate 

F 0 0.116 

F+A 3 0.1353 

A 16.67 0.1366 

A+B+C 19 0.1366 

B 33 0.1482 

B+C 37 0.1505 

C 46 0.1556 

 

Using these values, tie condition degradation rate can be plotted against the percent loss of support 

as presented in Figure 61. 

 

 
Figure 61: Percent loss vs degradation rate

                                                             
10 For combined groups, the loss of support is calculated using a weighted average of the individual group loss of 
support values. 
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The trend is clear and well defined. As the loss of support increases, corresponding to increasing 

number of poor ties adjacent to the center tie, the tie condition degradation rate likewise increases. 

Thus, the poorer the adjacent tie support condition, the faster the rate of tie degradation, and the 

shorter the average tie life. This is consistent with the results presented in Reference 9.  

 

9. 3. 2. Comparison with Previous Study11 

 

As noted, the rate of tie condition degradation is directly related to the support condition associated 

with the adjacent tie condition. This was presented in Reference 9 using a simplified analysis 

approach, hereinafter referred to as Method A, and in this section using a more sophisticated and 

accurate approach, based on the Dijkstra method, hereinafter referred to as Method D. In addition, 

the results presented here show a calculated tie life, as a function of support condition.  Using this 

calculated tie life, it is possible to determine the reduction in tie life as a function of loss of tie 

support condition. This will be referred to here as the life reduction factor.  
 

The life reduction factor is a measure of how much the tie life is reduced as a function of percent 

loss of support. As such it is the ratio of average life for each tie support condition group (e.g. A, 

B, C) as compared to the fully supported case (F, all good adjacent ties) where the loss of support 

is 0 %. This is summarized in Table 38.  
 

The life reduction factor for any Group I is defined in Equation 12. 
 

𝐿𝑖𝑓𝑒 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 (𝐺𝑟𝑜𝑢𝑝 𝐼) =  
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐿𝑖𝑓𝑒𝐺𝑟𝑜𝑢𝑝 𝐼

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑙𝑖𝑓𝑒 𝑜𝑓 (𝐹)
  Equation 12 

  

Table 38: Life reduction factor using Method D and Method A for groups A,B,C, and F 
 

Tiers 
Loss of 

support 

Tie life using 

Dijkstra 

Dijkstra based 

(Method D) Life 

reduction factor 

Previous study 

(Method A) life 

reduction factor 

F 0% 25 1.00 1.00 

A 17% 22 0.88 0.79 

B 33% 19 0.76 0.74 

C 46% 19 0.76 0.68 

 

These results are shown graphically in Figure 62. As can be seen in Table 38 and Figure 62, the 

life reduction factor based on Dijkstra’s method (Method D) is less severe than the life reduction 

factor calculated using the previous simplified analysis approach (Method A). This indicates that 

the effect of adjacent tie condition and associated loss of support is somewhat smaller than the 

simpler Method A analysis suggests. In fact, this may be more realistic, since the Method A 

formula shows a dramatic reduction in tie life associated with modest loss of tie support (21%), as 

compared to a more realistic reduction associated with the Method D approach of only 12%.  
 

                                                             
11 The previous study referred to here is the one presented in Reference 9 at the 2020 annual AREMA (American 
Railway Engineering and Maintenance of way Association) conference. 
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Figure 62: Life reduction factors using Method D and Method A 
 

Expanding the comparison to include the intermediate support conditions represented by the 

“bundling” presented previously results in the tie lives and associated tie life reduction factors 

presented in Table 39 and Figure 63. 

 

Table 39: Life reduction factor using Method D and Method A for all groups and tiers 
  

Weighted 

average Loss 

of support 

(%) 

Tie life using 

Method D  

Tie life using 

Method A 

Method 

D life 

reduction 

factor 

Method 

A life 

reduction 

factor 

F 0 25 25 1.00  1.00 

F+A 3% 22 23.87 0.88  0.95 

A 16.70% 22 20.31 0.88  0.81 

A+B+C 19% 22 19.85 0.88  0.79 

B 33% 19 17.84 0.76  0.71 

B+C 37% 19 17.53 0.76  0.70 
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Figure 63: Loss of support vs average tie life and life reduction factor using Method D and 

Method A 

 

From Figure 63, it is possible to calculate a relationship between percent loss of support and 

average tie life, using a base case life of 25 years for a loss of support of 0%. The resulting 

equations, based on a quadratic regression are as follows:  

 

Method D average tie life formula Average tie life = 14.139 LS2 -21.721LS+25  

Method A average tie life formula Average tie life =38.134 LS2-34.11LS +24.938  

where LS is the % loss of support associated with the adjacent tie condition. 
 

Furthermore, from Figure 63, a similar relationship can be obtained for the tie life reduction factor 

as a function of percent loss of support. These are as follows: 

 

Method D life reduction formula Life Reduction = 0.5656 LS 2 - 0.8688 LS + 1 

 

Method A life reduction formula Life Reduction = 1.444 LS2 - 1.322 LS + 0.9931 

 

where LS is the % loss of support associated with the adjacent tie condition.  

 

9.4. Conclusion  

 
The objective of this activity was to provide a way to predict and model tie life based on support 

condition as defined by the condition of adjacent cross-ties. This included a piecewise 
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reconstruction of tie life as a function of varying support condition using Dijkstra’s theorem as 

well as the calculation of the rate of tie condition degradation as a function of the support condition 

defined by the adjacent cross-ties. The study represented an extension of an earlier study where a 

simplified regression analysis approach was used to calculate tie life reduction.  In addition to 

using a more accurate and effective modeling approach, this study also was able to calculate the 

actual average tie life as a function of support condition.  

 

These tie score changes were then used to develop an adjacency matrix and associated weighted 

graphs, where the vertices corresponded to different tie scores.  Dijkstra’s algorithm was then 

applied to find the shortest path from Vertex 1 (best condition) to Vertex 4 (worst/failed condition) 

for the different groups and tiers (combined data sets) with differing loss of support associated 

with the condition of the adjacent ties. The result was that ties with the greatest loss of support 

showed shorter predicted average lives as compared to ties where the loss of support was not as 

significant. 

 

Using the results of the Dijkstra analysis, tie condition degradation rates were generated as a 

function of adjacent tie support condition and associated loss of support due to poor adjacent ties.  

The resulting degradation rate increased as percentage loss of support increased. 

 

Using the piecewise reconstruction of tie life as a function of varying support condition based on 

Dijkstra’s theorem, it was possible to calculate a relationship between percent loss of support and 

average tie life.  In addition, using these generated tie lives as a function of loss of support 

condition, an equation for tie life reduction was also generated. 

 

This life reduction factor based on the Dijkstra’s (Method D) method is less aggressive than the 

life reduction factor calculated using the previous study (Method A). This indicates, that the effect 

of adjacent tie condition and associated loss of support is somewhat smaller than the simpler 

Method A analysis, and in fact may be more realistic. The formula from Method A shows a 

dramatic reduction in tie life associated with modest loss of tie support (21%), as compared to a 

more realistic reduction associated with the revised (Method D) approach of only 12%.  

 

However, despite their different degradation rates, both the Method A formula and the Method D 

formula developed here-in confirm the fact that loss of adjacent tie support contributes to the 

premature degradation and failure of a tie.  

 

10. Markov Chain Application for Tie Failure Prediction 

 

As a second alternative analysis approach, Markov chains were used to determine tie life and the 

effect of loss of adjacent tie support. Markov chains also allow for the prediction of the change of 

probability of reaching a particular tie condition over time. 

 

 Markov chains represent a process in which the outcome of a particular event is influenced by 

that of a previous event [26].  In fact, they are a sequence of random variables represented by 

discrete states such that the state at time ‘t’ depends on the state at time ‘t-1’ [27]. In this study, 

each tie score will be represented by a Markov state, and the transitions (from one state to the 

other) represent the probabilities. 
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Let Pij be the probability of a Markov chain process to transition from state j to i [28].  

 

Knowing that there are N discrete states, the Markov chain one step transition matrix can be 

defined as follow [28]: 

 

    𝑃 =  [
𝑃11 ⋯ 𝑃1𝑁

⋮ ⋱ ⋮
𝑃𝑁1 ⋯ P𝑁𝑁

]         

 

Furthermore, the sum of states transitions probability is equal to 1 as follow: 

 

 ∑ 𝑃𝑖𝑗 = 1    , 𝑓𝑜𝑟 𝑗 =  0, 1, … , 𝑁𝑁
𝑖=0 [24]                   

 

Pij
(n) is the n-step transition probability of a Markov chain process. In other words, Pij

(n) represents 

the probability that after n steps, an event in state j would be in i [28].     

 

Markov Transition Matrices were generated for each group using the transition probabilities. It is 

to be noted, that in this section, the assigned tie scores were grouped into integers (1, 2, 3, and 4)) 

and every tie score was represented by a discrete Markov state.  To build the transition matrices, 

probabilities were represented by the percentage of ties changing condition (from their initial 

discrete condition score) within the 3 year (2016- 2019) period. The percentage of ties changing 

conditions within the 3 years period was calculated using Equation 2.   

 

The transition matrices representing tie condition states for groups F, A, B, and C can be seen in 

Tables 40A, 40B, 40C, and 40D respectively. 
 

Table 40: Transition Matrices 
   

A: Markov Transition Matrix for F  B: Markov Transition Matrix for A 

 1 2 3 4   1 2 3 4 

 0.6687 0.3165 0.0140 0.0008  1 0.6628 0.3194 0.0171 0.0007 

2 0.0000 0.6982 0.2919 0.0099  2 0.0000 0.6597 0.3267 0.0136 

3 0.0000 0.0000 0.8232 0.1768  3 0.0000 0.0000 0.8188 0.1812 

4 0.0000 0.0000 0.0000 1.0000  4 0.0000 0.0000 0.0000 1.0000 

C: Markov Transition Matrix for B  D: Markov Transition Matrix for C 

 1 2 3 4   1 2 3 4 

 0.5991 0.3645 0.0330 0.0034  1 0.5901 0.3778 0.0296 0.0025 

2 0.0000 0.6777 0.3071 0.0152  2 0.0000 0.6870 0.3043 0.0087 

3 0.0000 0.0000 0.8359 0.1641  3 0.0000 0.0000 0.7963 0.2037 

4 0.0000 0.0000 0.0000 1.0000  4 0.0000 0.0000 0.0000 1.0000 

 

The equivalent Markov Diagrams for groups F, A, B, and C were generated using R software 

[28] and are illustrated in Figures 64  
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A: Markov Graph -Group F 

 
 

B: Markov Graph -Group A 
 

 
C: Markov Graph -Group B 

 

 
D: Markov Graph -Group C 

 

Figure 64: Markov Graphs 
 

10.1. Markov Chain Results 
 

Using the matrices generated in the previous section, a step chain probability prediction was 

performed in R software [28] in order to determine the change of failure probability as a function 

of chain steps. It is to be noted that failure is defined as a tie reaching a score of either 3 or 4.  

The initial state of each Markov chain was set as the initial tie condition score for each group as 1 

(best condition). 

 

Markov models were generated for each group independently over 25 chain steps (iterations) to 

determine the probability of reaching a specific tie condition score change over the chain iterations. 

Chain steps represent time. 

 

The change of probability to reach score 1 or 2 (probability to reach 1 + probability to reach 2) is 

represented by the blue plot in Figure 65.  The change of probability to reach score 3 or 4 

representing tie failure (probability to reach 3 + probability to reach 4) is represented by the red 

dashed plot in Figure 65. Note that the solid lines represents good tie condition scores ( 1 or 2), 

and the dashed lines represent bad tie condition scores (3 or 4). 
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Figure 65: Change of tie score probability over time (chain iterations) for groups A, B, C, and F 

 

From Figure 65, it can be seen that the change in failure probability differs from one group to the 

other. For a similar number of iterations (i.e. time), failure is more likely to occur for ties belonging 

to groups with higher loss of support. In other words, the likelihood of failure grows as ties lose 

adjacent support. 

 

Setting the failure probability threshold to 75% and to 90 % respectively, the chain steps necessary 

to reach the thresholds were counted for each group and are summarized in Table 41. A life 

reduction factor was then determined using Equation 12.   

  

Table 41: Markov Chains Life Reduction Factor 
 

Group 
Percent loss 

of support 

Probability of 75% Probability of 90% 

Chain steps 

Life 

reduction 

factor 

Chain steps 
Life reduction 

factor 

F 0% 7.5 1 10.5 1 

A 16.67% 7 0.93 10 0.95 

B 33% 6.5 0.87 9 0.86 

C 46% 6.5 0.87 9 0.86 
 

It can be seen that the life reduction factor decreases as the percent loss of support increases. The 

life reduction factor is plotted against the loss of support, and can be seen in Figure 66 below: 
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Figure 65:  Life reduction factor as a function of loss of support 

 

From Figure 66 above, the life reduction factor can be seen to be behaving similarly for both 

probability thresholds. The trend is well defined, the higher the loss of support, the lower the life 

reduction factor, and thus the lower the tie life. The life reduction factor change as a function of 

percent loss of support can be defined by the following the equation:  

 

Life Reduction Factor = 0.5753 LS2 -0.5703 LS + 1.003        
 

10.2. Summary of Analysis Results 
 

As noted, the rate of tie condition degradation is directly related to the support condition associated 

with the adjacent tie condition. This was first presented in Reference 9 using a simplified analysis 

approach12, hereinafter referred to as Method A. In this paper, this relationship was developed 

using two more sophisticated and accurate approaches, one based on the Dijkstra method, 

hereinafter referred to as Method D, and the other on Markov Chains, hereinafter referred to as 

Method M. In addition, the results presented here show the calculated tie life, as a function of 

adjacent tie support condition.  Using this calculated tie life, it is possible to determine the 

reduction in tie life as a function of loss of adjacent tie support condition. This will be referred to 

here as the life reduction factor.   

 

The life reduction factor is a measure of how much the tie life is reduced as a function of percent 

loss of support. As such it is the ratio of average life for each tie support condition group (e.g. A, 

B, C) as compared to the fully supported case (F, all good adjacent ties) where the loss of support 

is 0 %. This is summarized in Table 42.  The life reduction factor for any group is defined in 

Equation 12. 

 
 

                                                             
12 The previous study referred to here is the one presented in Reference 9 at the 2020 annual AREMA (American 
Railway Engineering and Maintenance of way Association) conference. 
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Table 42: Life reduction factor using Method D and Method A for groups A,B,C, and F 
 

Tiers 
Loss of 

support 

Tie life using 

Dijkstra 

Dijkstra based 
(Method D) Life 

reduction factor 

Markov based 
(Method D) Life 

reduction factor 

Previous study 

(Method A) 

Life reduction 
factor 

F 0% 25 1.00 1.00 1.00 

A 17% 22 0.88 0.93 0.79 

B 33% 19 0.76 0.87 0.74 

C 46% 19 0.76 0.87 0.68 

 

These results are shown graphically in Figure 67. As can be seen in Table 42 and Figure 67, the 

life reduction based on Dijkstra’s algorithm (Method D) is less severe than the life reduction 

calculated using the previous simplified analysis approach (Method A). Furthermore, the life 

reduction factor based on Markov Chains (Method M) is less severe than the life reduction factor 

calculated using both Method A and D. This indicates that the effect of adjacent tie condition and 

associated loss of support is somewhat smaller than the simpler Method A analysis suggests. In 

fact, this may be more realistic, since the Method A formula shows a dramatic reduction in tie life 

associated with modest loss of tie support (21%), as compared to a more realistic reduction 

associated with the Method D approach of only 12%, and Method M approach of about 7%.  

 

 
 

Figure 66 : Life reduction factors using Method D, Method M, and Method A 
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From Figure 67, it is possible to calculate a relationship between percent loss of support and 

average tie life, using a base case life of 25 years13 for a loss of support of 0%. The resulting 

equations, based on a quadratic regression are as follows:  

 

Method D average tie life formula Average tie life = 14.139 LS2 -21.721LS+25  

Method M average tie life formula Average tie life = 13.956 LS2 -14.075LS+25.076 

Method A average tie life  formula Average tie life =38.134 LS2-34.11LS +24.938  

 

where LS is the % loss of support associated with the adjacent tie condition.

 

Furthermore, from Figure 67, a similar relationship can be obtained for the tie life reduction factor 

as a function of percent loss of support as follows: 

 

Method D: Dijkstra life reduction formula Life Reduction = 1.005 LS 2 – 1.013 LS + 1.005 

Method M: Markov Chain Life reduction 

formula 
Life Reduction =0.5753 LS2 -0.5703 LS + 1.003 

Method A (Previous Study) life reduction 

formula 
Life Reduction = 1.444 LS2 - 1.322 LS + 0.9931 

 

10.3. Conclusion 
 

The objective of this activity was to develop and implement a second methodology to predict tie 

life based on support condition, as defined by the condition of adjacent cross-ties.  In addition, this 

activity also examined the effect of any loss of support on the tie life and developed a life reduction 

factor based on loss of adjacent support. 

 

Markov chains were used to model how the probability of premature tie failure changes over time. 

It was concluded that the probability of tie failure grows faster over time for groups with higher 

loss of adjacent tie support compared to well supported tie groups. 

 

A life reduction factor was generated for the Markov chain approach together with a life reduction 

formula as follows: 

 

 Life Reduction =0.5753 LS2 -0.5703 LS + 1.003  

Such that LS is the percent loss of support. 

 

Both the Dijkstra and Markov Chains approaches allowed for the determination of a relationship 

between percent loss of support and average tie life.  In addition, using these generated tie lives as 

a function of loss of adjacent tie support condition, equations for tie life reduction due to this loss 

of adjacent tie support were also generated. 

 

 

                                                             
13 From Group F as shown in Figure 4.  



95 
 

GENERAL CONCLUSION 
 

This report addresses the issue of tie life and the effect of adjacent poor condition ties on that life. 

Specifically, this report looks at the effect of poor adjacent tie condition on the life of a wood 

cross-tie. In this report, a series of analyses has been presented using tie condition data collected 

by the Aurora tie inspection system over a three-year period from 2016 through 2019. The analysis 

focused on the portion of the track where no tie gang or significant number of spot tie replacement 

occurred (about 40 miles and just under 100,000 cross-ties) 

 
The ties were carefully aligned so as to accurately define the change in tie condition through the 

inspection years 2016, and 2019. Cross-correlation analysis was used to insure an accurate 

matching of the individual ties for approximately 40 miles of data over the three-year study period. 

These 40 miles represented track where it was determined that no major tie replacement activity, 

such as a system or regional tie gang, took place during the three-year study period.  

 

After alignment, the study tie data set was divided into different tie support categories based on 

the condition of the adjacent cross-ties and the associated loss of support. Using Beam on Elastic 

Foundation (BOEF) theory, the percentage of load carried by these poor adjacent ties was 

calculated for each of the four categories, with category F serving as a baseline with all adjacent 

ties in good condition. Approximately 100,000 ties were included in this study. The tie condition 

inspection scores, which were subdivided into decimal subcategories, allowed for the calculation 

of a change in tie condition score for each tie, over the three-year period. 

 

Following this further, the effect size analysis allowed for the quantification of the effect that the 

loss of adjacent tie support has on different tie groups. It was determined that the higher the loss 

of adjacent tie support the higher the effect size, and hence the higher the rate of tie degradation. 

 

In addition, different surface fittings were performed in order to get an appropriate equation 

describing the behavior of the ties over time. Because of the complexity of the degradation 

behavior, different surface fitting equations were developed as a function of the initial tie 

conditions scores and the loss of adjacent tie support. Thus, different equations were developed to 

describe and predict the probability of a final score in 3 years given initial tie score and the 

associated loss of adjacent tie support. These equations considered the loss of adjacent tie support 

as a variable and the surface fittings were performed for each range of initial tie condition score 

independently. 

 

The time variable was then introduced to the calculated probabilities. The degradation likelihood 

change over time was considered after modeling the tie score changes that happen within the 3-

year data time period.  The introduction of the time variable to the previous results was performed 

in two different ways:  

 

• Exponential crosstie degradation over time 

• Linear crosstie degradation over time 
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The study aimed at predicting the amount of time it will take for a “good tie” to have a high 

probability of failure (determined to be a 75%) based on its adjacent tie condition (loss of adjacent 

tie support). 

 

The next level of analysis consisted of developing a life reduction factor based on loss of adjacent 

tie support. Three analysis approaches were used: 

 

• A recursive function for tie life reconstruction 

• A piecewise reconstruction of tie life as a function of varying support condition using 

Dijkstra’s algorithm. 

• A Markov Chains analysis to predict the change in tie failure probability for different 

support conditions.  

 

The results represented an extension of an earlier study where a simplified regression analysis 

approach was used to calculate tie life reduction.  In addition to using a more accurate and effective 

modeling approach, this study also was able to calculate the average tie life as a function of support 

condition.  

 

The recursive function made use of a heuristic method that confirmed the fact that loss of adjacent 

tie support contributes greatly to premature failure of the middle tie. As of the two other methods, 

the resulting life reduction factors, i.e. the loss of tie life as a function of support condition, based 

on both the Dijkstra’s (Method D) algorithm and Markov Chains (Method M) were less aggressive 

than the life reduction factor calculated using the original “simplified analysis” study (Method A). 

These two methods indicated that the effect of adjacent tie condition and associated loss of support 

is somewhat smaller than the original analysis, and in fact may be more realistic. The formula from 

Method A showed a dramatic reduction in tie life associated with modest loss of tie support, as 

compared to a more realistic reduction associated with the revised approaches. 

 

Relationships were obtained for the tie life reduction factor as a function of percent loss of support 

as follows: 

 

Dijkstra life reduction formula Life Reduction = 1.005 LS 2 – 1.013 LS + 1.005 

Markov Chain Life reduction formula Life Reduction =0.5753 LS2 -0.5703 LS + 1.003 

Method A (Previous Study) life reduction 

formula 

Life Reduction = 1.444 LS2 - 1.322 LS + 0.9931 

 

However, despite their different degradation rates, all three methods confirm the fact that loss of 

adjacent tie support contributes to the premature degradation and failure of a tie. These findings 

can be useful to the railroad industry as they can provide a basis for more efficient maintenance 

and tie replacement planning.  

 

RECOMMENDATIONS FOR FUTURE RESEARCH  

 
While the analyses performed herein present important and practical results; the time span of 

available data was limited to three years. It is expected that the accuracy and effectiveness of the 
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modeling would benefit from extending this research to a dataset with a longer time horizon and 

additional inspection cycles.  

 

In addition, the study was limited to a data set of approximately 100,000 ties. Furthermore, the 

dataset was unbalanced, in that 80% of the ties belonged to the group where all the adjacent ties 

were in good condition.  Future studies should aim to replicate these results on an even larger scale 

and longer time period. Extending this research to more miles of track with varying operating 

conditions, such as variations in annual MGT, variations in curvature/grade, and potential 

variations in climate can help to enhance the life reduction equation presented. 

 

Finally, another limitation of the analysis was that the condition of the adjacent ties was held 

constant. This does not happen in the field and as such future research should consider the potential 

effects of changing adjacent tie support conditions over time. 
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APPENDIX A 
 

The figure below represents the bundle of A + B + C 
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F+A 

 
B+C 
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APPENDIX B 
 
 

INTRODUCING THE TIME VARIABLE TO THE PROBABILITY OF TIE 

DEGRADATION - EXPONENTIAL 
 

Exponential Degradation of Wood Ties 

 

The tie condition or Tie Score can be modeled by the following equation: 

 

𝑇𝑖𝑒 𝑆𝑐𝑜𝑟𝑒 = 𝐴 𝑒𝐵 𝑡 

 

Such that A and B are constants and t is time. 

 

The initial score at t= 0 is 1, so: 

 

𝑤ℎ𝑒𝑛 𝑡 = 0:  =>   𝑇𝑖𝑒 𝑆𝑐𝑜𝑟𝑒 = 1 => 𝐴 = 1 

 

T is dependent on the different loss of support conditions, and T(Ls) represents the average tie 

life as computed by the formula developed in Chapter 7 (equation 5): 

 

T(Ls)= (1.444 Ls2 - 1.322 Ls + 0.9931) * T 

 

𝑇𝑖𝑒 𝑆𝑐𝑜𝑟𝑒(𝑡 = 𝑇(𝐿𝑠)) =  𝑒𝐵∗𝑇(𝐿𝑠) = 4 

 

𝐵 =
ln (4)

𝑇(𝐿𝑠)
  

 

Tie Score = 4
(t

T(Ls)⁄ )
 Equation 3 

 

where: 

• T (Ls) = (1.444 Ls2 - 1.322 Ls + 0.9931) * T 

• And t is the time in years. 

 

∆T: Time to go from a score SI (initial) to a score SF (final) 

 

Using Equation 23, SI (Initial Tie Score) and SF (Final Tie Score) are expressed as follow:  

 

𝑆𝐼 = 4
(𝑡𝑆𝐼

𝑇(𝐿𝑠)⁄ )
 

 

     SF = 4
(tSF

T(Ls)⁄ )
      

 

where tSI and tSF represent the time for a tie to reach score SI and Score SF respectively. 

And T(Ls) is the average tie life (based on the loss of support). 
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𝑡𝑆𝐼 =
ln (𝑆𝐼)

ln (4)
∗ 𝑇(𝐿𝑠) 

𝑡𝑆𝐹 =
ln (𝑆𝐹)

ln (4)
∗ 𝑇(𝐿𝑠) 

 

∆𝑇 = 𝑡𝑆𝐹 − 𝑡𝑆𝐼 =  
𝑇(𝐿𝑠)

ln(4)
∗ ln (

𝑆𝑐𝑜𝑟𝑒 𝑆𝐹

𝑆𝑐𝑜𝑟𝑒 𝑆𝐼
) 

 

So, by replacing T(Ls) by its expression, the time to go from a score SI (initial) to a score SF 

(final) is: 

 

∆𝑇 =  
(1.444 𝐿𝑠2 −  1.322 𝐿𝑠 +  0.9931) ∗ 𝑇

ln(4)
∗ ln (

𝑆𝐹

 𝑆𝐼
) Equation 13 

 

Exponential Increase of Probability 

 

Assuming that the probability is exponentially increasing over time, the change of probability 

over time can be described as: 

 

    Probability(t)  =  C ekt         Equation AB1 

 

Such that C and k are constants. 

 

Determining the constants C and k 

 

When    t = 3 years:        Probability(t=3) = P (SI, Ls, SF)  

 

Where P(SI, Ls,SF) are the equations developed. 

 

𝑃(𝑆𝐼, 𝐿𝑠, 𝑆𝐹)= 𝐶 𝑒3𝑘  

 

C =
P(SI, Ls, SF)

e3k
 Equation AB2 

        

Note: 

• The probability to change scores from SI to SF is referred to as Tr1 (Threshold 

probability) 

• ∆T= tSF- tSI is the amount of time for the tie score to move from SI to SF, as expressed 

in Equation 4. 

 

When    t = ∆𝐓 years , 

Tr1 = Probability(t=∆T) 
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Tr1 =
P(SI, Ls, SF)

e3k
∗ e k∆T 

 
Tr1

P(SI, Ls, SF)
= ek∆T−3k 

 

k =
ln (

Tr1
P(SI, Ls, SF))

∆T − 3
 

Equation AB3 

 

From Equation AB3: 

3𝑘 =
3 ∗ ln (

Tr1
P(SI, Ls, SF))

∆T − 3
 

e3k = e

3∗ln (
Tr1

P(SI,Ls,SF)
)

∆T−3  

 

 

e3k = (
Tr1

P(SI,Ls,SF)
)

(
3

∆T−3
)

   Equation AB4 

 

From Equation AB2: 

C =
P(SI, Ls, SF)

 (
Tr1

P(SI, Ls, SF)
)(

3
∆T−3

)
 

 

C = P(SI, Ls, SF) ∗  (
Tr1

P(SI, Ls, SF)
)−(

3
∆T−3

)
 

 

C = P(SI, Ls, SF) ∗ (
Tr1

P(SI, Ls, SF)
)

(
3

3−∆T
)

 

 

C = P(SI, Ls, SF) ∗ (P(SI, Ls, SF))(
3

∆T−3
) ∗  (Tr1)(

3
3−∆T

)
 

 

C = (P(SI, Ls, SF))(1+
3

∆T−3
) ∗  (Tr1)(

3
3−∆T

)
 

 

C = (P(SI, Ls, SF))(
∆𝑇

∆T−3
) ∗  (Tr1)(

3

3−∆T
)
  Equation AB5 

 

From Equation AB1, AB4, and AB5: 

 

Probability(t)  =  (P(SI, Ls, SF))(
∆T

∆T−3
) ∗ (Tr1)(

3

3−∆T
) e

ln (
Tr1

P(SI,Ls,SF)
)

∆T−3
t  Equation 5 
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Determining t(Tr1) time it takes for the probability to be higher than threshold Tr1 

 

Let t(Tr2) be the required time for the probability P(SI, Ls,SF) to be higher than the  Threshold 

probability (Tr2),  such as: 

 

𝐓𝐫𝟐 = 𝐓𝐫𝟏(𝟎.𝟓/(𝐒𝐅−𝐒𝐈−𝟎.𝟓))  Equation AB6 

 

 

From Equation 5Error! Reference source not found. 

 Probability(t(Tr2)) = Tr2 =  C ek t(Tr2) 

 

 

t(Tr2) =  
ln (

Tr2
C )

k
 

 

replacing with k and C with their respective the expressions from Equation AB2 and AB3 

 

t =  

ln (   
Tr2

(P(SI, Ls, SF))
(

∆𝑇
∆T−3

)
∗  (Tr1)(

3
3−∆T

)
  )

ln (
Tr1

P(SI, Ls, SF)
)

∆T − 3

 

 

 

t(Tr2) = (∆T − 3) ∗  

ln (   
Tr2

(P(SI, Ls, SF))
(

∆𝑇
∆T−3

)
∗  (Tr1)(

3
3−∆T

)
  )

ln (  
Tr1

P(SI, Ls, SF)  )
 

 

from Equation AB6: 

t(Tr1) = (∆T − 3) ∗   

ln (   
Tr1 (

0.5
SF−SI−0.5

)

P(SI, Ls, SF)(
∆𝑇

∆T−3
) ∗ Tr1(

3
3−∆T

)
  )

ln (  
Tr1

P(SI, Ls, SF)  )
 

 

 

t(Tr1) = (∆T − 3) ∗  

ln (   
Tr1 

(
0.5

SF−SI−0.5
)
 Tr1

(
3

∆T−3
)

P(SI, Ls, SF)(
∆𝑇

∆T−3
)

   )

ln (  
Tr1

P(SI, Ls, SF)  )
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t(Tr) = (∆T − 3) ∗  

ln (   
Tr1 (

0.5
SF−SI−0.5

∗
3

∆T−3
 ) 

P(SI, Ls, SF)(
∆𝑇

∆T−3
)

   )

ln (  
Tr1

P(SI, Ls, SF)  )
 

 

Replacing ∆T with its expression in Equation 4 gives Equation 6. 

 

So, the time it takes for the probability of a tie to move from score SI to a final Score SF to be 

higher than threshold Tr1 is expressed by the following Equation: 

 

𝐭(𝐓𝐫) = (
(𝟏. 𝟒𝟒𝟒 𝑳𝒔𝟐 −  𝟏. 𝟑𝟐𝟐 𝑳𝒔 +  𝟎. 𝟗𝟗𝟑𝟏) ∗ 𝑻

𝐥𝐧(𝟒)
∗ 𝐥𝐧 (

𝑺𝑭

 𝑺𝑰
) − 𝟑)    

∗   

𝐥𝐧 (   
𝐓𝐫𝟏 ^

(
𝟎.𝟓

𝐒𝐅−𝐒𝐈−𝟎.𝟓
∗

𝟑
(𝟏.𝟒𝟒𝟒 𝑳𝒔𝟐 − 𝟏.𝟑𝟐𝟐 𝑳𝒔 + 𝟎.𝟗𝟗𝟑𝟏)∗𝑻

𝐥𝐧(𝟒)
∗𝐥𝐧 (

𝑺𝑭
 𝑺𝑰

)−𝟑
 )

 

𝐏(𝐒𝐈, 𝐋𝐬, 𝐒𝐅)^

(

(𝟏.𝟒𝟒𝟒 𝑳𝒔𝟐 − 𝟏.𝟑𝟐𝟐 𝑳𝒔 + 𝟎.𝟗𝟗𝟑𝟏)∗𝑻
𝐥𝐧(𝟒)

∗𝐥𝐧 (
𝑺𝑭
 𝑺𝑰

)

(𝟏.𝟒𝟒𝟒 𝑳𝒔𝟐 − 𝟏.𝟑𝟐𝟐 𝑳𝒔 + 𝟎.𝟗𝟗𝟑𝟏)∗𝑻
𝐥𝐧(𝟒)

∗𝐥𝐧 (
𝑺𝑭
 𝑺𝑰

)−𝟑
)

   )

𝐥𝐧 (  
𝐓𝐫𝟏

𝐏(𝐒𝐈, 𝐋𝐬, 𝐒𝐅)  )
 

 

Equation 

6 

 

where: 

• Ls: Loss of support 

• Tr1: The threshold set  

• T: Average tie life 

• SI: Initial Score  

• SF: Final Score 

• P(SI, Ls, SF): the probability for a tie with an initial Score SI to reach a final score SF in 

3 years, from the modelling presented in the previous section. 
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APPENDIX C 

 

 

INTRODUCING THE TIME VARIABLE TO THE PROBABILITY OF TIE 

DEGRADATION - LINEAR 

 

Linear Degradation of Wood Ties 

 

The Tie Score (tie condition) is then modelled by the following equation: 

 

𝑇𝑖𝑒 𝑆𝑐𝑜𝑟𝑒 = 𝐴 ∗ 𝑡 + 𝐵 

 

where A and B are constants and t is time. 

 

The initial score at t = 0 is 1, so: 

 

𝑤ℎ𝑒𝑛 𝑡 = 1:  =>   𝑇𝑖𝑒 𝑆𝑐𝑜𝑟𝑒 = 1 => 𝐴 =
3

𝑇 − 1
 

 

As shown in Chapter 6, T is affected by the different loss of support conditions, and T(Ls) 

represents the average tie life as computed by the formula developed in Reference 9: 

 

                T(Ls)= (1.444 Ls2 - 1.322 Ls + 0.9931) * T 

 

𝑇𝑖𝑒 𝑆𝑐𝑜𝑟𝑒(𝑡 = 𝑇(𝐿𝑠)) =  
3

𝑇(𝐿𝑠)
∗ 𝑇(𝐿𝑠) + 𝐵 = 4 

 

𝐵 =
T(Ls) − 4

𝑇(𝐿𝑠) − 1
  

So, 

𝑇𝑖𝑒 𝑆𝑐𝑜𝑟𝑒 (𝑡) = 1 +
3𝑡 − 1

𝑇(𝐿𝑠) − 1
 Equation 7 

 

where,  

T (Ls) = (1.444 Ls2 - 1.322 Ls + 0.9931) * T, 

 

T is the input average tie life, and t is the time in years. 

 

∆T: Time to go from a score SI (initial) to a score SF (final) 

 

From Equation 7,  

Tie Score SI = 1 +
3 ∗  𝑡𝑆𝐼 − 1

𝑇(𝐿𝑠) − 1
 

 

Tie Score SF = 1 +
3 ∗  𝑡𝑆𝐹 − 1

𝑇(𝐿𝑠) − 1
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Such that tSI and tSF represent respectively the time for a tie to reach score SI and Score SF, 

respectively. 

 

And T(Ls) is the average tie life (based on the loss of support). 

 

𝑡𝑆𝐼 =
𝑆𝐼 ∗ (𝑇(𝐿𝑠) − 1) + 4 − 𝑇

3
 

𝑡𝑆𝐹 =
𝑆𝐹 ∗ (𝑇(𝐿𝑠) − 1) + 4 − 𝑇

3
 

 

So, the time to go from a score SI (initial) to a score SF (final) is:  

 

∆𝑇 = 𝑡𝑆𝐹 − 𝑡𝑆𝐼 =  
𝑆(𝐹 − 𝐹𝐼) ∗ (𝑇(𝐿𝑠) − 1)

3
 Equation 8 

 

Linear Growth of Probability (Over Time) 

 

Assuming that the probability is linearly growing over time, the change of probability over time 

can be described as: 

 

    𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑡) =  𝐴 ∗ 𝑡 + 𝐵 

 

Such that A and B are constants. 

 

When    t = 3 years:        Probability(t=3) = P (SI, Ls, SF) 

 

𝑃(𝑆𝐼, 𝐿𝑠, 𝑆𝐹)= 3𝐴 + 𝐵 

 

When    t = ∆𝐓 years, (∆T=tSF-tSI) (i.e., the amount of time for the tie score to move from SI to 

SF), the probability to change scores from SI to SF is referred to as Tr (Threshold probability) 

 

Probability (t=∆T) = Tr = A * ∆T + B 

 

A =  
P(SI, Ls, SF) − Tr

3 −  ∆T
 

 

B =  
3 ∗  Tr −  ∆T ∗ P(SI, Ls, SF)

3 −  ∆T
 

 

    Probability(t) =  
P(SI, Ls, SF) − Tr

3 −  ∆T
∗ t +

3 ∗  Tr −  ∆T ∗ P(SI, Ls, SF)

3 −  ∆T
 

Equation 

9 

 

Similarly to the previous section Let t(Tr2) be the required time for the probability P(SI, Ls,SF) 

to be higher than the  Threshold probability (Tr2). 
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t = (Probability(t) −  
3 ∗  Tr −  ∆T ∗ P(SI, Ls, SF)

3 −  ∆T
) ∗

3 −  ∆T 

P(SI, Ls, SF) − Tr
  

t = (Tr2 −  
3 ∗  Tr −  ∆T ∗ P(SI, Ls, SF)

3 −  ∆T
) ∗

3 − ∆T 

P(SI, Ls, SF) − Tr
 

 

t = ( 
Tr2 ∗ (3 −  ∆T) − 3 ∗  Tr +  ∆T ∗ P(SI, Ls, SF)

P(SI, Ls, SF) − Tr
) 

 

t =
∆T ∗ (P(SI, Ls, SF) − Tr2) + 3 ∗ (Tr2 − Tr)

P(SI, Ls, SF) − Tr
 

 

t =
∆T ∗ (P(SI, Ls, SF) − Tr(

0.5
SF−SI−0.5

)) + 3 ∗ (Tr(
0.5

SF−SI−0.5
) − Tr)

P(SI, Ls, SF) − Tr
 

 

So, the time it takes for the probability of a tie to move from score SI to a final Score SF to be 

higher than threshold Tr is expressed by the following Equation: 

 
t

=
 
𝑆(𝐹 − 𝐹𝐼) ∗ ((1.444 𝐿𝑠2 −  1.322 𝐿𝑠 +  0.9931) ∗ 𝑇 − 1)

3 ∗ (P(SI, Ls, SF) − Tr(
0.5

SF−SI−0.5
)) + 3 ∗ (Tr(

0.5
SF−SI−0.5

) − Tr)

P(SI, Ls, SF) − Tr
 

Equation 

10 

 

where: 

• Ls: Loss of support 

• Tr: The threshold set  

• T: Average tie life 

• SI: Initial Score  

• SF: Final Score 

• P (SI, Ls, SF): the probability for a tie with an initial Score SI to reach a final score SF in 

3 years, from the modelling presented in the previous section. 
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