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ABSTRACT 
 
As transit vehicle wheels accrue mileage, they experience flange and tread wear based on the 
contact between the railhead and wheel-running surface. When wheels wear excessively, the 
likelihood of accidents and derailments increases. Thus, regular maintenance is performed on the 
wheels, until they require replacement. One common maintenance practice is truing; using a 
specially designed cutting machine to bring a wheel back to an acceptable profile. This process 
removes metal from the wheel and is often based on wheel flange thickness standards (and 
sometimes wheel flange angle). Wheel replacement is usually driven by rim thickness, which is 
continuously reduced by wear, as well as metal removal during truing. This research study used 
wheel wear data provided by the New York City Transit Authority (NYCTA) to analyze wheel 
wear trends and forecast wheel maintenance (truing based on flange thickness) and wheel life 
(replacement based on rim thickness). Using automatic wheel-scanning technology, NYCTA was 
able to collect wheel profile measurements for nearly 4,000 wheels in its fleet over a two year 
period, measured weekly. The resulting wheel measurement data was analyzed using advanced 
stochastic techniques to determine relationships for the changes in flange thickness over time for 
each wheel in the fleet. Flange thickness wear rate relationships for each wheel were then used to 
forecast the time it would take for a wheel to reach the flange thickness maintenance threshold as 
defined by NYCTA standards. Furthermore, a subpopulation of wheels that exhibited very high 
rates of wear were classified as “bad actors”, and identified for further investigation to understand 
the cause of accelerated wear. This allows for identification and addressing of causal factors that 
relate to accelerated wear, such as angle of attack and L/V ratio. NYCTA has recently started 
capturing such data that relates truck performance, which in turn, can be related to rate of wear. 
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EXECUTIVE SUMMARY 
 
Over time, transit vehicle wheels begin to experience flange and tread wear based on the contact 
between the railhead and wheel-running surface. When wheels continue to wear excessively, the 
likelihood of accidents and derailments vastly increases. Thus, regular maintenance is performed 
on the wheels, until they require replacement. One common maintenance practice is truing; using 
a specially designed cutting machine to bring a wheel back to an acceptable profile. This process 
removes metal from the wheel and is often based on wheel flange thickness standards (and 
sometimes wheel flange angle). Wheel replacement is usually driven by rim thickness, which is 
continuously reduced by wear, as well as metal removal during truing.  
 
This research effort utilized various data streams made available from a recent project carried out 
by the New York City Transit Authority (NYCTA). Wheel profile measurements, L/V 
measurements, and truck performance parameters were some of the more insightful data streams 
used. This research primarily used wheel profile measurements (obtained from the KLD Automatic 
WheelScan installed on NYCTA 7 Line) and NYCTA truing standards to analyze flange wear. 
Currently, NYCTA is truing primarily to maintain flange thickness. According to NYCTA 
standards, truing occurs when the flange thickness approaches an “8” on the AAR finger gauge, 
or 24.2 mm. A new or recently trued wheel will read “0” on the AAR finger gauge, corresponding 
to a flange thickness of 32.1 mm. The negative result of truing is that the rim thickness decreases. 
When a wheel is trued, the rim thickness decreases anywhere from 5 to 10 mm as a function of the 
truing process. Eventually, there comes a point where the rim thickness can no longer be decreased, 
and thus, a new wheel needs to be installed. According to NYCTA, the rim thickness is not allowed 
to drop below 22.2 mm. Therefore, there are a finite number of times a given wheel can be trued. 
These standards were used in order to analyze flange wear and predict future maintenance events.  
 
Nonlinear regression techniques were used in order to predict the rate of flange wear for each 
wheel in the NYCTA 7 Line fleet. Upon investigation of the data, it was discovered that the 
wearing of wheels behaved in a nonlinear and exponential manner. Thus, exponential regression 
was used in order to obtain a flange thickness wear rate parameter for every wheel. Based on the 
behavior of the wheel wear data and the results of the analysis, an exponential fit appears to be an 
appropriate method for calculating the wear rate of these particular wheels at this time.  
 
With a flange wear rate obtained for every wheel in the fleet, predictions could be made as to when 
the next maintenance event would occur. With the last recorded flange thickness measurement 
known for every wheel, a simple forecast could be made as to when the wheel will reach a flange 
thickness of 24.2 mm; the NYCTA maintenance limit. When forecasts were made for every wheel 
in the fleet, it was discovered that NYCTA may be truing their wheels too early. Rather than 
allowing the wheels to wear until the threshold, they are being trued before reaching their actual 
maintenance limit. This is a more conservative and safety-oriented approach. The operational and 
economic effects of altering these practices should be examined. 
 
It was also discovered that within the overall population of wheels, there appears to be three 
different sub-populations based on their actual wear performance. There is a large group of wheels 
that are behaving as expected. Next, there is a slightly smaller group of wheels that are behaving 
better than expected. These subpopulations of wheels are exhibiting a very low rate of flange wear, 
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and as such, can be classified as “good actors”. Lastly, there is a small group of wheels that are 
behaving worse than expected. This subpopulation of wheels is exhibiting a very high rate of flange 
wear, and as such, can be classified as “bad actors”.  It is of practical significance to be able to 
identify and understand these bad actor wheels, so that they may be more regularly inspected and 
maintained. Thus, a logistic regression model was developed in order to predict which wheels in 
the fleet will act as bad actors. The wheel’s wear rate, last flange thickness measurement, average 
L/V ratio, average angle of attack, average tracking position, and average speed were used to build 
such a model. The model correctly identified 83.1 % of the “bad acting” wheels and 93.3 % of the 
“good acting” wheels. Overall, the logistic regression model operated at an accuracy of 92.1 %.  
 
Lastly, a relation between flange wear rate and L/V ratio was discovered. More specifically, such 
a relationship was found for those wheels with excessive wear rates. For those wheels with wear 
rates less than -0.007 days-1, it was found that there are two distinct types of behavior. There are 
some wheels in the fleet whose high rate of flange wear is largely dependent on a high L/V ratio. 
On the other hand, there are other wheels in the fleet whose high rate of flange wear is largely 
independent of a high L/V ratio. Another unknown variable is likely controlling these excessive 
rates of wear. 
 
In all, the results of this research effort can lead to opportunities for future work. For example, 
further analyses should be conducted in order to better understand those wheels with excessive 
wear rates. In addition, the developed logistic regression model can continue to be improved, and 
higher-order regression techniques could be implemented to solve for flange wear rate. However, 
this research effort was successful in proving that big data analysis techniques can be used in order 
to provide in-depth analyses of basic engineering data.  
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INTRODUCTION 
 
Introduction to Wheel Wear 
 
In the railroad industry, a railway’s maintenance and safety standards often govern the manner in 
which the line operates. In other words, engineering decisions are made to ensure that maintenance 
and safety standards are upheld. This is especially true when dealing with transit rail operations; 
if maintenance and safety standards are not followed, human lives are put at risk. One area that is 
of particular interest to transit rail operations is wheel wear. As transit vehicle wheels accrue 
mileage, they experience wear based on the contact between the railhead and wheel-running 
surfaces. If this wear is not properly monitored, these wheels can begin to wear excessively over 
time. This greatly increases the likelihood of accidents and derailments, as the wheel profile no 
longer conforms with the railhead profile. This presents a danger as thin flanges, hollowed treads, 
and excessive flange angles can lead to fracture and cause wheel climb. Therefore, it is crucial that 
wheel wear is monitored to ensure that maintenance and safety limits are not exceeded.  
 
Introduction to the Project 
 
A recent project undertaken by New York City Transit Authority’s (NYCTA) titled “Integrated 
Wheel/Rail Characterization and Safety” was funded under the auspices of the Federal Transit 
Administration and US Department of Transportation. The goal of this study was to implement a 
comprehensive wheel, track, and truck measurement and analytics system. More specifically, the 
NYCTA aimed to enhance operational safety and system resiliency, reduce energy usage, planned 
capital costs, and cost of asset ownership, and improve overall passenger experience and customer 
service. As part of the work, several automated inspection systems were installed on the NYCTA 
7 Line, and multiple levels of data analytics implemented. As a result of this project, a large amount 
of wheel condition and maintenance data were collected that leant itself to a detailed stochastic 
analysis of wheel condition, degradation, and maintenance performance. The focus of this research 
is a comprehensive analysis of the rate of wear of the NYCTA transit vehicle wheels, and 
assessment of current maintenance performance. Wheel tread and flange measurements 
(conducted approximately weekly), collected as part of this activity by the recently installed KLD 
Automatic WheelScan system, were made available together with NYCTA furnished information 
about the truing maintenance and replacement of the wheels. This allowed for the rate of wheel 
wear to be thoroughly analyzed and assessed.  
 
As previously mentioned, due to the continuous nature of transit rail operations, wheels will begin 
to wear excessively over time. Thus, regular maintenance is performed on the wheels, until they 
require replacement. One of the most common maintenance practices used to address wheel wear, 
particularly wheel flange wear as most commonly experienced by NYCT, is truing. Thus, this 
analysis looked at current NYCTA standards for wheel wear, to include when the wheel is to be 
trued and when it is to be replaced.  Truing is the act of bringing a wheel back to an acceptable 
wheel profile as defined by standards. This is done through the use of specially designed cutting 
machines known as wheel truing machines, which cut and reshape up to four wheels (one truck) 
at a time. Currently, NYCTA is truing primarily to maintain flange thickness. According to 
NYCTA standards, truing occurs when the flange thickness approaches an “8” on the AAR finger 
gauge, or 24.2 mm. A new or recently trued wheel will read “0” on the AAR finger gauge, 
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corresponding to a flange thickness of 32.1 mm. Wheel tread defects and flats are milled away as 
necessary, depending on the defect. Therefore, the “cut depth” of each truing cycle varies. The 
negative result of truing is that the rim thickness decreases. When a wheel is trued, the rim 
thickness decreases anywhere from 5 to 10 mm as a function of the truing process. Eventually, 
there comes a point where the rim thickness can no longer be decreased, and thus, a new wheel 
needs to be installed. According to NYCTA, the rim thickness is not allowed to drop below 22.2 
mm. Therefore, there are a finite number of times a given wheel can be trued.  
 
Introduction to the Research Objectives 
 
The overall objective of this study was to analyze the wear patterns of transit vehicle wheels in 
order to better understand their behavior and life cycle. This was done by analyzing the wear rates 
of the NYCTA transit vehicle wheels, project that rate of wear to calculate a remaining wheel life, 
and identify wheels that have excessively high rates of wheel wear. It should be noted that NYCTA 
wheel wear is predominantly flange wear and as such, flange wear is the primary analysis 
parameter used here. The analysis used wheel flange data as measured by the KLD Automatic 
WheelScan system to calculate the wear rate of each wheel on every vehicle in the fleet. The 
calculation of these wear rates allows for a projection to when the next maintenance event will 
occur. In other words, it is possible to forecast the time until a given wheel will have a flange 
thickness of 24.2 mm, the NYCTA maintenance limit. Ultimately, these forecasts allow for an 
assessment of the performance of NYCTA’s vehicle fleet from a wheel wear perspective, and can 
be used to optimize current maintenance practices. In addition, advanced statistical techniques 
such as logistic regression were used in order to identify and predict which wheels in the fleet will 
perform poorly in terms of projected life. Such wheels can be classified as “bad actors”, and are 
important to identify so that they may be more regularly inspected, maintained, and replaced. 
Lastly, an initial exploratory data analysis (EDA) was performed in order to provide a preliminary 
assessment of the data and identify potential relationships within the dataset. 
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BACKGROUND 
 
Railroad Wheels 
 
There are many components required for effective and safe railroad operations. and. The track, 
ties, and ballast must be able to support and distribute the heavy loads exerted by cars. The signal 
systems must be operational, and the employees must be qualified and able to operate the trains. 
However, one of the most important components used in the railroad industry is the wheel. Over 
time, the rail wheel has changed little in size or shape, but has been upgraded in order to meet the 
demands of today’s railway operations. Improvements made to the wheel have allowed for 
increased safety, reduced maintenance, increased mileage, higher travel speeds, and greater 
tonnage capacity. Yet, despite all of these advancements, the wheel still serves the same three core 
functions. First, the wheel must be able to support the car on the track and allow it to move. Second, 
the wheel must be able to effectively guide and control the motion of the car to follow the rails. 
Last, the wheel must be able to act as a braking surface for which the brake shoes act upon (Railway 
Education Bureau, 2015). Figure 1 presents a cutaway of  a standard wheel.  
 

 
 

Figure 1 Standard railroad wheel (railway education bureau, 2015). 
 
If a railroad wheel fails to meet one of the three aforementioned core functions, safety is greatly 
compromised. Each and every train is dependent upon the integrity of each individual wheel within 
that train. Traveling on wheels with defects or wheels that have been excessively worn greatly 
increases the likelihood of serious accidents and derailments; which in turn cause economic losses, 
injuries, and deaths. All operating railroads place great emphasis on wheel durability under heavy 
load conditions and high wear resistance. In addition, railroads implement a vast network of wheel 
inspection, maintenance, and replacement standards, to ensure that safety and efficiency can be 
maximized. Wheels that are excessively worn or defective must be identified and removed from 
service in order to maintain safety (Railway Education Bureau, 2015). Therefore, in order to best 
maintain wheels and maximize safety, the fundamentals of wheel wear need to be understood.  
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Wheel Wear 
 
One of the most fundamental issues facing the rail industry today is wheel wear. Wheels wear as 
a result of friction between the wheel and rail during operation. Moreover, wheels wear as a 
function of the contact forces and creep forces associated with the longitudinal and lateral motion 
of the wheelset. As a consequence, wheels tend to wear in two distinct locations: the flange and 
the tread. The rate of wear at these two locations depends on vehicle design, wheel service profile, 
track profile, the status of the contacting surfaces, and the inherent properties of the wheel and rail.  
(Braghin, et al., 2009).  As wear increases over time, the wheel profile changes depending on the 
severity of the load environment. These changes in wheel profile greatly impact the dynamic 
characteristics of railway vehicles. For example, the stability of vehicles with worn wheels is 
greatly compromised as the wheel profile and rail head profile no longer conform with one another. 
This situation can lead to increased dynamic loads and excessive wear, which can result in 
accidents and derailments.  In addition, in the passenger rail realm, increased vibration and noise 
levels can be attributed to worn wheels, which ultimately decrease passenger comfort (Braghin, et 
al., 2009). The difference between in a new wheel and a worn wheel is shown in Figure 2.  
 

 
Figure 2 New wheel profile vs worn wheel profile (Braghin, et al., 2009). 

  
Nonetheless, when wheels wear, the flange becomes thinner and the tread becomes hollower. In 
particular, a worn or thin flange is extremely dangerous, as it can result in total flange fracture. A 
worn flange also results in an excessive flange angle, which promotes wheel climb. Figure 3 
presents the breakdown of train accidents classified by wheel defect type. As can be seen, worn or 
thin flanges is the most frequent wheel defect that causes accidents (IHHA, 2001). Thus, it is 
crucial that the wearing behavior and patterns for wheel flanges are better analyzed and 
understood, in hopes of reducing the accidents associated with them. 
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Figure 3 Breakdown of total train accidents classified by wheel defect type  
(IHHA 2001). 

 
  
Essentially, the life cycle of a railway wheel is governed by wheel wear (Braghin, et al., 2006). 
Wheel life can be extended through the use of truing; a maintenance practice that reshapes a worn 
wheel to its original profile. This is a common practice that most railroads use in order to combat 
the aforementioned issue of worn or thin flanges. However, constant reshaping and reprofiling can 
negatively impact the physical characteristics and metallurgical properties of the wheel itself 
(Pradhan, et al., 2018). Therefore, it is of great practical significance to be able to analyze and 
predict wheel profile degradation due to wear. Doing so would allow decisions to be made as to 
when wheels should be maintained (e.g. by truing), when wheels should be replaced, and how 
maintenance practices could be altered to limit the effects of worn wheels. By optimizing the wheel 
and rail profiles with respect to wear, the dynamics between the wheel and rail can be better 
controlled (Braghin, et al., 2006). A great deal of work has been done in the field of predicting 
wheel wear, and a few examples will be discussed in the coming sections. 
 
However, creating a model to predict wheel wear is not a trivial feat. The load environment that 
occurs at the interface between the rail head and the wheel running surface is quite complex. The 
wheel’s running surface is constantly exposed to high normal and tangential contact forces and 
stresses. As stated earlier, wheels wear as a function of the contact forces and creep forces 
associated with the longitudinal and lateral motion of the wheelset. The creep forces are mainly 
caused by friction during braking and acceleration, truck hunting, track defects, temperature 
changes, and the load implications of traveling through sharp curves (Pradhan, et al., 2018). The 
contact forces between the wheel and the rail are constantly changing, as the point of contact can 
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move. The magnitude and orientation of these contact forces vary as the wheels travel through 
curves, crossing, and track surface defects. As wheels travel down the track, the contact patch 
moves along the wheel tread, and in some cases can extend to the flange. There may also be a 
small amount of localized slipping that occurs at the interface between the wheel surface and the 
rail head. The amount of slipping depends on the geometry of the contact patch, the coefficient of 
friction between the wheel and rail, and the exerted normal and lateral forces (Braghin, et al. 2006). 
A flowchart describing the wheel wear process in shown in Figure 4. In addition, Figure 5 shows 
a schematic representation of the contact patch between the wheel and the rail.  
 

 
 

Figure 4 Wheel Wear Flowchart (Braghin, et al., 2009). 
 
 

 
Figure 5 Wheel/Rail contact interface (Ayasse and Chollet, 2006). 

  
The flowchart presented in Figure 4 provides a general idea as to how wheels wear over time. It 
begins with an initial wheel profile, and considers how vehicle dynamics cause dynamic variations 
of wheel loads. Next, the effects of the various creepage and frictional forces, as well as the 
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migration and slipping of the contact patch, are considered. This information gives way to the 
determination of the shape, location, and size of the contact patch, as well as the distribution of the 
normal and tangential stresses within that patch. Finally, the normal and tangential stresses cause 
metal to be worn away in the tread and flange, and ultimately cause the aforementioned 
modification of wheel profile and causes maintenance process to form a natural loop. 
Unfortunately, the components that make up the loop are non-linear. This makes it difficult to 
predict how the process will evolve with time, and how the change of a single parameter, such as 
initial wheel profile, will impact the progression of wear (Braghin, et al., 2009). 
 
Wheel/Rail Contact 
 
As discussed, rail wheel wear is a function of the contact stresses and slippage between the wheel 
and rail surfaces. However, studying the mechanics of wheel/rail contact is quite complex. The 
interface at which the wheel and rail come in contact with one another can be thought of as a small 
horizontal patch. At this patch, there is a great deal of concentrated stress due to the contact 
between the two bodies. The center of this patch is also the point at which the tangential forces are 
applied. In order to understand the dynamic behavior of a wheelset, and better understand how 
wear is affected, these forces must be known (Ayasse and Chollet, 2006). There are two primary 
means in which this can be accomplished: the “normal problem” and the “tangential problem”. 
When looking at the normal problem, the contact patch and stress distributions are obtained as a 
function of both the geometry of the wheel and rail profiles and the resulting normal force 
reactions. When looking at the tangential problem, contact stresses and slippage are defined as a 
function of the normal pressures, the resulting frictional forces, and the creepage forces (Braghin 
et al., 2009). 
 
The primary means as to which the normal problem of wheel/rail contact is defined is through 
Hertzian contact theory. In 1882, German physicist Heinrich Hertz was able to demonstrate the 
various pressures, stresses, and deformations that occur when two or more curved elastic bodies 
contact each other (Oldknow, 2017). Hertz assumed that when two elastic bodies are pressed 
together, there would be elastic behavior, a large curvature radius compared to the contact patch 
size, and constant curvatures inside the contact patch. If all of these assumptions held true, then it 
can be stated that when two elastic bodies are pressed together, the resulting contact patch will be 
a flat ellipse. Furthermore, the resulting contact pressures will be parabolic. The geometry of the 
contact patch and the maximum value of the contact pressure depend on the curvature of and the 
normal force reaction between the wheel and rail surfaces. Also, they are typically expressed by 
analytical formulas that are based on elliptic integrals. This is one of the main reasons why 
Hertzian contact theory is the most computationally efficient solution to the normal problem 
(Braghin et al., 2009). Hertzian contact theory in the general and railroad-specific cases can be 
seen in Figure 6 (Ayasse and Chollet, 2006). A visual representation of the parabolic distribution 
of contact pressures can be seen in Figure 7 (Braghin, et al., 2009).  
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Figure 6 General (left) and railroad-specific (right) Hertzian contact  

(Ayasse and Chollet, 2006). 
 
 

 

 
 

Figure 7 Parabolic contact pressure distribution according to Hertzian contact theory 
(Braghin et al., 2009). 

 
  
However, the assumption of constant curvature inside the contact patch does not hold true when 
considering the contact of worn wheels and rails. Wear tends to modify the profile of wheels and 
rails, causing them to be nonconformal. In this case, the Hertzian contact theory is not appropriate, 
and more complex techniques are needed to solve the normal problem. The most accurate way of 
doing this was presented by Kalker in 1990. He makes use of the initial assumptions made by 
Hertz, but adds that the two contacting surfaces have a transversal profile curvature that is constant 
in the longitudinal direction. This is acceptable in the rail world, since the longitudinal curvature 
of the wheel is constant and the rail surface has no curvature in the longitudinal direction. When 
the wheel and rail come in contact, the normal pressure at the interface is computed as a function 
of the elastic displacements of the two bodies. Thus, the contact patch geometry and the normal 
pressure magnitude can be approximated. Kalker’s approach is more attractive when considering 
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the contact of worn wheels and rails. It allows for the repeated calculation of contact conditions, 
simulating the modification of the wheel profile over time (Braghin et al., 2009).  
 
Kalker’s work also gave way to the primary means as to which the tangential problem of wheel/rail 
contact is defined. Essentially, the tangential problem deals with determining the tractions and the 
slippages that occur within the contact patch. Kalker divided the contact patch into longitudinal 
regions. For each region, constant deformation is assumed and calculated based on the resulting 
normal force reactions and creep forces. The tangential contact stresses can then be calculated 
along each region of the contact patch, assuming stress is proportional to the deformation. This 
process was originally used for Hertzian contact applications, where tables of friction and 
flexibility coefficients can be chosen to match the real-world behavior of the wheel and rail 
(Braghin et al., 2009).  
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METHODOLOGY 
 
Instrumentation 
 
As previously mentioned, the overarching goal of the NYCTA’s Integrated Wheel/Rail 
Characterization and Safety project was to prove that it is both technically feasible and cost 
effective to implement and operate an advanced and automated data collection, measurement, and 
analytics system. These analytics could then be used to foster the decision-making process that is 
associated with wheel, track, and equipment maintenance. Thus, a number of advanced 
instrumentation and measurement systems were installed and used throughout this project. To 
narrow their scope, NYCTA chose the 7 Line as its study line. The 7 Line is one of the longest and 
most heavily traveled lines in New York City, as it runs from Times Square to Queens. A map of 
the 7 Line can be seen in Figure 8 NYCTA 7 Line Map. Systems installed on the 7 Line include 
the KLD Automatic WheelScan, NRC-C Instrumented Wheelsets (IWS), WID TBOGI, ISI L/V 
measurement system, Data Collection Consist (DCC), NYCTA Track Geometry Car (TGC), and 
Automated Equipment Identification (AEI). Each of these systems collects specific data types and 
has significant applications to maintenance and analysis. Thus, the wayside (track) mounted 
measurement systems, such as the WheelScan, TBOGI, and L/V systems collected data on each 
wheel and/or axle that passed over it. Conversely, the vehicle mounted measurement systems, such 
as the DCC, IWS, and TGC collected data on the track and the interaction of the specific vehicle 
with the track. Finally, the AEI system allowed for the ready identification of individual cars for 
analysis and correlation of results. This information is summarized in Table 1. However, for the 
scope of this thesis, the data provided by the Automatic WheelScan, TBOGI, and L/V 
Measurement System were primarily used. 
 

 
 

Figure 8 NYCTA 7 Line map (NYCTA). 
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Table 1 Data Sources 
 

Source Data Acquired Instrumentation Used 
NYCTA Track geometry Track Geometry Car 
KLD Labs Wheel profile measurements Automatic WheelScan 
NRC - C Dynamic forces Instrumented Wheelset 
Dayton T. Brown Acceleration, noise, vibration, energy Data Collection Consist 
Plasser American RFID tags, contact analytics Data Collection Consist 
WID Angle of attack T-BOGI 
ISI L/V ratio L/V Measurement System 

 
KLD Automatic WheelScan 
 
One of the key new wayside instrumentation packages installed for this project was the Automatic 
WheelScan, provided by KLD Labs at the NYCTA car wash at Corona Yard, Queens, NY. The 
WheelScan is designed to monitor wheel profile and record digitized wheel condition data for each 
wheel that passes over it. For every wheel in the NYCTA 7 Line Fleet, the flange thickness, flange 
angle, flange height, rim thickness, wheel diameter, back of flange reading, and back to back gauge 
are measured. This, in turn, allows for accurate and timely monitoring of wheel profile conditions, 
based on NYCTA standards for wheel safety, maintenance, and replacement. In addition, this data 
allows for calculation of wheel wear rates and forecasting of projected wheel lives. This in turn 
allows for a more in-depth understanding and evaluation of current wheel maintenance procedures. 
The KLD Automatic WheelScan is shown in Figure 9. 
 

 
 

Figure 9 KLD automatic WheelScan located at the Corona Yard Car Wash (NYCTA). 
 
ISI L/V Measurement System 
 
Another newly installed wayside system was the L/V Measurement System, as provided by ISI. 
This wayside device was also located in a 3.2-degree left-hand curve just north of 103rd Street 
station, approximately 300 feet away from the TBOGI. As the name implies, this system measured 
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lateral and vertical wheel/rail forces and calculated associated L/V ratios for every vehicle that 
passed over it, which included the entire 7 Line fleet. Excessively high L/V ratios are a cause for 
concern, as wheel climb derailments could occur. Thus, using the L/V system allows for better 
monitoring of wheel and rail performance, and identifies specific axles or bogies that may be at 
risk of derailment. In addition, the system allows for better monitoring of truck performance, and 
how it is affected by track maintenance activities like re-profiling, grinding, and lubrication. The 
ISI L/V Measurement System is shown in Figure 10. 
 

 
 

Figure 10 ISI L/V measurement system located north of 103rd street station (NYCTA). 
 
WID TBOGI 
 
A companion wayside measurement system, also installed as part of this project was the TBOGI, 
as provided by WID, and located at the exit of a 3.2-degree curve just north of 103rd Street station. 
This wayside device was designed to measure key truck (bogie) characteristics and performance. 
Thus, for every truck that passes over the TBOGI, a set of key truck performance parameters are 
measured or calculated; most notably angle of attack and tracking position, but also inter-axle 
misalignment, rotation, shift, and tracking error. These parameters are used to help to identify bad 
acting trucks, to include any truck with curving performance issues, such as skewed axles, 
misaligned axles, or improper tracking. If left unattended, these issues can result in unsafe lateral 
load or L/V levels, as well as accelerated wheel and rail wear.  In addition, these measurements 
can help characterize the wheel/rail interface, wheel and rail wear rates, and rolling resistance. The 
WID TBOGI is shown in Figure 11. 
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Figure 11 WID TBOGI site located north of 103rd Street station (NYCTA). 
 
Explanation of the Dataset 
 
The NYCTA 7 Line fleet consisted of nearly 500 cars and 4,000 wheels, each of which was 
measured each time it passed the WheelScan. This resulted in each wheel being measured at least 
once a week. Furthermore, thanks to AEI, each car was equipped with an RFID tag, so individual 
wheels and their associated wear data could be identified. The data that was used for this research 
spanned from June 1, 2017 to April 30, 2018. In all, there were over 140,000 data points recorded 
by the WheelScan, where one point is a complete set of wheel profile measurements.  
 
The TBOGI and L/V Measurement System produced a much greater amount of data. As these 
systems are installed in track, data is recorded every time a wheel passes them. Thus, thousands of 
data points were made available each day. Unfortunately, these systems were not operational until 
January 19, 2018. Therefore, the data that was used for this research spanned from January 19, 
2018 to February 19, 2018. In all, there were over 1,000,000 total data points recorded by the L/V 
Measurement System and 250,000 recorded by the TBOGI. Note that the difference in data volume 
is due to the fact that the L/V Measurement System measures every wheel, while the TBOGI 
measures every truck. 
 
In order to utilize the data that was made available by the aforementioned instrumentation systems, 
a working database needed to be created. Microsoft Access was used to organize and store the 
large amount of data. Code was written in VBA that allowed for data files to be easily read, 
formatted, and imported into the Microsoft Access database. Upon completion of the database, the 
data was able to be used for further analyses.  
 
Exploratory Data Analysis 
 
As is with most research efforts, the first step of this study was to understand the data that was 
provided and its general stochastic parameters. Therefore, an Exploratory Data Analysis (EDA) 
was conducted. EDA is a standard data analytics approach that is used to provide a preliminary 
assessment of the data and identify any potential relationships within the dataset (Attoh-Okine, 
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2017). Typical techniques used in EDA include creating histograms, scatterplots, and box and 
whisker plots of the data, as well as generating descriptive statistics. Various aspects of EDA were 
implemented in order to understand the WheelScan, L/V Measurement System, and TBOGI data. 
 
Exploratory Data Analysis of the WheelScan Data 
 
The data provided from the WheelScan was the initial focus of this thesis. As mentioned, the 
WheelScan is designed to monitor wheel profile and record wheel profile data for each wheel that 
passes over it. For every wheel in the fleet, the flange thickness, flange angle, flange height, rim 
thickness, wheel diameter, back of flange reading, and back to back gauge are measured. 
Furthermore, it is known that NYCTA maintains wheels based on flange thickness. Yet, other 
parameters recorded by the WheelScan, such as rim thickness, flange height, and flange angle are 
used for maintenance and replacement decisions. Therefore, these four parameters were deemed 
to be the most important when conducting a wheel wear analysis, and as such, were investigated 
with various EDA techniques. Figure 12 defines these various wheel profile measurements. 
 

 
Figure 12 Wheel profile measurements. 

  
The initial EDA included but was not limited to summaries of descriptive statistics, histograms, 
and box-and-whisker plots. Of particular interest were the histograms of flange thickness, flange 
height, flange angle, and rim thickness shown in Figure 13. The x-axis displays the measurement 
of each parameter; rim thickness, flange thickness, and flange height are measured in millimeters, 
while flange angle is measured in degrees. The y-axis displays the frequency of the observations. 
The blue lines on these plots represent the value of a new or recently trued wheel. Values beyond 
these lines can be attributed to measurement errors or errors in fabrication or maintenance. The 
red lines on these plots represent the maintenance limits set forth by the NYCTA. It is important 
to note that the rim thickness maintenance limit is 22.2 mm, but no wheel in the fleet has yet to 
reach a rim thickness that low. Wheels are typically replaced before this point is reached. Lastly, 
NYCTA has not reported a maintenance limit for flange height.  
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Figure 13 Histograms of wheel profile measurements. 
  
Various observations can be made from the distributions above. First of all, the distributions of 
flange angle, flange height, and flange thickness all appear to be generally normal. Flange angle 
and flange height are slightly skewed, but not drastically. These distributions allow for the 
conclusion to be made that wheels were regularly maintained. Had the distributions been more 
spread out, such a conclusion may not have been supported. More specifically, the histogram of 
rim thickness was particularly insightful, as shown in Figure 14, which shows three distinct 
distributions. At any point in time, a wheel can fall into one of three groups, based upon its rim 
thickness.  This can be attributed to maintenance practices. Recall that every time a wheel is trued, 
its rim thickness is decreased in order to restore an acceptable profile. Thus, it appears that there 
is a large population of new wheels that have not yet been trued, along with two smaller 
populations of wheels which have been trued once or twice. 
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Figure 14 Histogram of rim thickness (mm) depicting truing cycles. 

  
While the previous figure indicates that wheels are being trued at regular intervals, further 
investigation was conducted to verify this observation. In order to do this, plots of wheel 
measurements against time were generated, including flange thickness, rim thickness, and flange 
height. When truing occurs, a sudden drop in rim thickness is observed, accompanied by an 
increase in flange thickness. Moreover, the value of flange height stays relatively constant. Figure 
15 is an example of one of these plots, for the left wheel on the first axle of car 7228. 
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Figure 15 Plot of wheel measurements for Car 7228, Axle 1, left wheel. 
 

From the above figure, it is clear that truing occurred between July 24, 2017 and August 13, 2017. 
At this point, there is an approximate 12 mm drop in rim thickness accompanied by a slight 
increase in flange thickness. However, it is important to note that the flange thickness measurement 
was not at the 24.2 mm threshold at the time of truing. Rather, the flange thickness was 
approximately 28 mm at the time of truing. This is due to NYCTA’s maintenance practices. 
NYCTA practice is to true the entire truck when the flange thickness of one wheel on the truck 
approaches the 24.2 mm limit.  Therefore, on Car 7228, this wheel did not trigger the truing 
decision for this truck. On car 7228, wheel 2L (Axle 2, left wheel) reached a flange thickness value 
of 25.56 mm, which prompted the entire truck to be trued. Thus, it appears that there may be wheels 
that are being trued too early. This idea will be further evaluated in the coming chapters. 
 
Similar wheel wear plots were created for a number of the most frequently measured cars. The 
behavior shown in Figure 15 was consistently observed, indicating truing was regularly occurring. 
Since the truing process is primarily governed by the flange thickness measurement, the flange 
thickness wear rate is of great interest. If the flange thickness wear rate is known, then it can be 
used in order to predict when the next maintenance event will occur. 
 
Exploratory Data Analysis of the L/V Measurement System Data 
 
It was decided that in addition to the WheelScan data, L/V data would be used in order to form 
conclusions about the wearing of the wheels on the 7 Line. The higher the L/V ratio on a given 
wheel, the higher the lateral force will be, and thus the more that wheel will be expected to wear. 
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As discussed, ISI has instrumented a portion of the NYCT Flushing line to measure the L/V ratio 
on every passing wheel. Each wheel can be identified to a single car thanks to RFID tags. The 
device has been installed on a 3.2 degree curve, with a positive L/V value indicating a gage 
spreading force. Furthermore, due to issues associated with matching the data from L/V 
Measurement System to the car RFID tags, usable data was not available until January 2018. 
However, the measurement system recorded every single wheel that passed over it in a given day. 
Thus, each day anywhere from 30,000 to 40,000 new data points were obtained. At the time of 
analysis, there are over 1,000,000 data points in the L/V ratio database. Figures 16 and 17 present 
a histogram and cumulative distribution plot of all recorded L/V ratios. 
 

 
Figure 16 Histogram of L/V ratio. 
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Figure 17 Cumulative distribution plot of L/V ratio. 
 
As shown in Figure 16, there are two clear distributions within the L/V dataset. There is one 
distribution containing all the positive L/V values, while the other contains all the negative L/V 
values. This split in the distribution causes the mean to be nearly zero, at 0.033. Based on the 
anticipated behavior of the wheels, this is expected. Because of equilibrium, there should be an 
equal amount of positive (gage spreading) and negative (gage narrowing) lateral forces. This is 
also shown in Figure 17. Nearly 50% of the L/V ratios are less than zero. Similarly, nearly 50% of 
the L/V are greater than zero. However, if each distribution is looked at independently, it appears 
as if their means would be closer to 0.1 and -0.1. These are relatively small L/V ratios, which is 
due to the fact that the measurement system was placed in a relatively shallow curve. Had the 
system been installed in a sharper curve, the measured L/V ratios may have been of a greater 
magnitude. However, when a distribution of L/V ratios by wheel position is generated, some more 
insightful conclusions can be drawn. Figure 18 shows such distributions, where the measured L/V 
ratios are plotted according to wheel position.  
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Figure 18 Histogram of L/V ratio by wheel position. 

 
Figure 18 shows that the two aforementioned L/V ratio distributions can be attributed to the 
position of the wheel being measured. The population of positive L/V ratios are being seen on 
leading axle, right-side wheels (1R and 3R) and trailing axle, left-side wheels (2L and 4L). 
Conversely, the population of negative L/V ratios are being seen on leading axle, left-side wheels 
(1L and 3L) and trailing axle, right side wheels (2R and 4R). Being that the L/V measurement 
system is installed on a 3.2 degree, left-hand curve, this behavior is expected. As the car travels 
through the curve, the wheels in the 1R and 3R position will flange up against the high rail, leading 
to the generation of high positive (gage spreading) lateral forces. Meanwhile, the wheels in the 1L 
and 3L position will generate forces towards the center of the track, resulting in negative L/V 
ratios. This confirms that the data is behaving as expected, and can thus be deemed reliable. It can 
also be seen that there are slightly higher positive L/V ratios that negative. These are wheels that 
are excessively flanging and generating higher lateral forces. In turn, it is believed that these 
wheels are much more likely to be wearing more severly than the rest of the population. In order 
to further investigate this belief, relationships between wheel wear rate and L/V ratio were 
examined, and will be discussed in later sections.  
 
Exploratory Data Analysis of the TBOGI Data 
 
In addition to the WheelScan and L/V data, TBOGI data would also be used in order to form 
conclusions about the wearing of the wheels on the 7 Line. The TBOGI measures a variety of 
parameters, such as angle of attack, tracking position, inter-axle misalignment, rotation, shift, 
tracking error, and speed. Angle of attack was the most interesting parameter here, as it can be 
used to identify misbehaving trucks and axles. Essentially, the higher the angle of attack is, the 
more a wheel will be expected to wear. WID has instrumented a portion of the NYCT Flushing 
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line with their TBOGI system. This will take measurements of the aforementioned parameters of 
every passing axle. The device has been installed on a 3.2 degree curve, approximately 300 feet 
from the L/V Measurement System. Figure 19 defines each parameter measured by the TBOGI, 
with a positive sign convention shown. Angle of attack, inter-axle misalignment, and rotation are 
measured in milliradians, and the other parameters are measured in millimeters.  

 
 
 
  
Similar to the issues encountered with the L/V data, the TBOGI was not useable until January 
2018. Prior, the RFID tag reader was not functioning properly, meaning that data could not be 
matched up to individual cars. However, the system records every single truck that passes over it 
in a day. At the time of analysis there are over 250,000 data points in the TBOGI database. 
 
From an engineering perspective, it was thought that angle of attack, tracking position, and speed 
would have the greatest impact on the wearing of wheels. The greater the angle of attack is, the 
greater the lateral force between the wheel and rail will be. Similarly, the faster an axle is traveling, 
the higher the generated forces will be. In addition, the greater the tracking position (the more off 
center an axle is), the more likely severe wheel flanging is to occur. In all cases, there should be a 
direct correlation to wear. Increased lateral forces and increased wheel flanging are typical causes 
of accelerated wear. Thus, these parameters were deemed to be most influential in this study. 
However, this does not mean that the other variables are unimportant. Rather, it means that angle 
of attack, tracking position, and speed are more significant for this work. Figure 20 below presents 
a histogram of all recorded angle of attack values. 
 

Figure 19 Parameters measured by the TBOGI (NYCTA). 
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Figure 20 Histogram of angle of attack (mrad). 

  
As shown, the angle of attack measurements is normally distributed and the mean is nearly zero. 
However, a large spread is seen in the data. Angle of attacks have been recorded anywhere between 
-10 mrad to 10 mrad. While these values are small in magnitude, the difference in behavior 
between an axle with a 0 mrad angle of attack and an axle with a 10 mrad angle of attack is 
significant. When the data is separated by axle, as in Figure 21, it can be seen that the lead axle 
angle of attack trend in the positive direction, while the trail axle angle of attack trends in the 
negative direction. Based on the fact that the TBOGI was placed in a left-hand curve, this type of 
behavior is anticipated. The same plots were created for tracking position, as shown in Figures 22 
and 23, and the same statements can be made. Again, the mean is nearly zero, but there are some 
more extreme values that can lead to poor axle and truck behavior. However, when the data is 
separated by axle in Figure 23, the two distributions are nearly identical. 
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Figure 21 Histogram of angle of attack by axle position. 
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Figure 22 Histogram of tracking position (mm). 
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Figure 23 Histogram of tracking position by axle position. 

 
Figure 24 shows a histogram of speed. The TBOGI system measures the speed of every truck that 
passes over it, rather than every axle. Unlike previous distributions, speed does not appear to be 
normally distributed about its mean. Rather, the distribution is heavily skewed to the right side. A 
large cluster of trucks passing over the TBOGI are travelling between 45 – 60 km/hr. A slightly 
smaller cluster of trucks are traveling below 45 km/hr. And, there is a significantly small cluster 
of trucks that appear to be travelling over 60 km/hr. NYCT states that balance speed on this section 
of the track is 56 km/hr. With a mean speed of 44.927 km/hr, the trains on this line are travelling 
significantly under balance speed on average. This would lead to less lateral force generation, and 
in turn, less wheel wear, than if the trains were consistently traveling at the same speed. However, 
it needs to be noted that these are speed measurements at one point along the line. The speeds at 
this location are not indicative of the speeds along the rest of the line, which must be considered 
as this study progresses.  
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Figure 24 Histogram of speed (km/hr). 

 
 
Although the three aforementioned parameters were thought to be most influential in a wheel wear 
analysis, histograms of the others were created. The following figures present distributions of inter-
axle misalignment, tracking error, rotation, and lateral shift.  
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Figure 25 Histogram of inter-axle misalignment (mrad). 
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Figure 26 Histogram of tracking error (mm). 
 



 31 

 
 

Figure 27 Histogram of rotation (mrad). 
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Figure 28 Histogram of shift (mm). 

  
From the previously shown distributions, each variable is normally distributed about their means. 
Furthermore, the mean value of each variable is nearly zero. This could lead to the assumption that 
all axles and trucks are behaving properly. However, as shown by the spreads of the distributions, 
this is not the case. For example, the inter-axle misalignment measurement spans from -10 mrad 
to 10 mrad. In fact, during NYCTA’s study, it was cited that for the given speed of travel, the 
measured inter-axle misalignments were alarmingly higher than expected. Thus, it appears that 
there are some trucks behaving poorly. 
 
Data Preparation 
 
With various the various Exploratory Data Analyses completed, the various streams of data were 
better understood. Moreover, the trends and behaviors seen in the data lined up with prior 
expectations, leading to the assumption that the data collected was reliable. As mentioned earlier, 
the overall objective of this study was to analyze the wear patterns of transit vehicle wheels in 
order to better understand their behavior and life cycle. Therefore, the data needed to be prepared 
in a way that would allow for a population of wheel wear rates to be obtained and analyzed. 
Furthermore, in hopes of findings relationships between wheel wear and the other available data 
sources, the L/V Measurement System and TBOGI data needed to be adjusted accordingly. The 
following sections provide a narrative on how this was accomplished.   
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Calculation of Wheel Wear Rates 
 
With all of the KLD WheelScan data combined into a database, wheel wear rates could be 
calculated. However, the data needed to be cleaned prior to performing this analysis. Prior to 
receiving the data, KLD had performed their own analysis in order to filter out any bad data points. 
These bad points could be due to errors in the image scanning system or faulty calculations. Thus, 
any bad data point received a data quality index value of “0”. Conversely, all good data points 
received a data quality index value of “1”. Therefore, any points with a “0” data quality were 
discarded. Furthermore, KLD stated that this filtering process was not put in place until June 1, 
2017. Thus, all data before June 1, 2017 had not been analyzed and filtered. Therefore, the decision 
was made to ignore all data before June 1, 2017, since there was a great deal of uncertainty 
associated with it. Lastly, all data from January 2018 had not been correctly tagged with the RFID 
scanner. Therefore, it is not possible match this data with the appropriate car numbers. However, 
the RFID scanner was fixed as of February 7, 2018. Thus, in order to establish degradation rates 
and maintenance performance, the wheel wear measurements were collated for each wheel for the 
data collected from June 1, 2017 to December 31, 2017 and February 7, 2018 to April 30, 2018. 
 
Confident that any bad data points had been removed, the next step was to parse out the data based 
on when a maintenance event happened. In this dataset, there are essentially three events that can 
take place: a wheel can be trued, a wheel can be replaced, or a wheel can have no maintenance 
performed. In order to obtain accurate results, it is necessary to calculate only the wear rates for 
the duration of each event. For example, in Figure 15, two wear rates would be calculated: one 
before truing and one after truing. Conversely, for those wheels that had not been trued or replaced 
yet, only one wear rate would be calculated. Thus, a series of rules and checks were put in place 
to determine if and when a maintenance event occurred. 
 
Code was then written in VBA that would calculate the wear rate of every wheel in the 7 Line 
fleet, based upon their flange thickness measurements over time. As discussed, NYCTA wheel 
wear is predominantly flange wear and as such, flange wear is the primary analysis parameter used. 
In addition, NYCTA truing practices are governed by a wheel’s flange thickness measurements. 
Therefore, in order to eventually accurately predict when a wheel will need to be maintained or 
replaced, a wear rate based upon flange thickness needed to be calculated. Originally, standard 
linear regression was used to calculate wear rate. The flange thickness measurements for each 
wheel were regressed linearly over time in order to generate the following equation: 
 

𝑦𝑦 = 𝑚𝑚𝑚𝑚 + 𝑏𝑏 (1) 
 

Where 
 y = flange thickness (mm) 
 m = flange thickness wear rate (mm/day) 
 x = time (days) 
 b = constant (mm) 
 
Initially, this approach provided an adequate representative of the fleet’s wheel wear. However, 
upon further investigation of the data, it was realized that linear regression would not be 
acceptable. The flange thickness of a new or recently trued wheel exhibited a sharp and rapid 
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wearing in period, whereby the flange would wear at a higher rate early on and eventually settle 
into a steady wear rate. Typically, this type of behavior appears to be an exponential decay. This 
is illustrated in Figure 29, where it can be seen that the flange thickness appears to decay 
exponentially over time, rather than at a constant linear rate. This is clearly shown by the first 
series of data, from June to December. This type of behavior was also cited by multiple parties 
involved in NYCTA’s Integrated Wheel/Rail Characterization and Safety Project (NYCTA 2019). 
In their discussion on wheel wear, they too noticed the aforementioned wearing in period, and 
suggested that a nonlinear or exponential fit of the data would be most appropriate and 
representative of the behavior of these particular wheels. Thus, simple linear regression would not 
accurately portray the wheel’s behavior. Instead, a nonlinear regression analysis technique would 
be needed. 
 

 
Figure 29 Plot of flange thickness measurements depicting exponential decay for Car 7502, 

Axle 1, right wheel. 
  
The resulting analysis utilized an exponential decay function derived through nonlinear regression 
for each event of every wheel in the population. The code that was originally written was adjusted 
to regress the flange thickness nonlinearly over time, rather than linearly. For reference, the code 
that was written to perform this analysis can be found in Appendix A. Equation 2 represents the 
exponential decay function that was derived through nonlinear regression for each event of every 
wheel in the population. 
 

𝑦𝑦 = 𝐴𝐴𝑒𝑒𝑘𝑘𝑘𝑘 (2) 
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Where 
 y = flange thickness (mm) 
 A = constant (mm) 
 e = 2.71828 (mathematical constant) 
 k = flange thickness wear rate (1/days) 
 x = time (days) 
  
Using Equation 2, the A and k parameters were calculated for each event of every wheel in the 
population. In addition, an R2 value was calculated to indicate how well the nonlinear regression 
fit the data. As an example, Figure 30 shows how the data in Figure 29 was fit to this function. At 
first glance it appears as if the fit is linear. This is deceiving, because the data range is so narrow. 
It is difficult to fully visualize an exponential curve when the data lies within a 2 mm range. In 
addition, any scatter that is observed in the data can be attributed to the measurement system 
having the capability of measuring flange thickness with a tolerance of +/- 0.5mm.  This inherent 
field accuracy tolerance affects the overall fit of the exponential function. 

 
Figure 30 Exponential regression of flange thickness for Car 7502, Axle 1, right wheel. 

 
This process was repeated for every wheel on every car and stored in the database. Upon 
completion of this analysis step, just over 7,000 wear rates were obtained. Any records with a 
positive k parameter (indicating flange thickness increasing with time) were ignored, as this would 
not represent the exponential decay function expected of a wheel experiencing wear. These 
instances were due to a lack of data points, or irregular maintenance events. A number of these 
were checked by hand in order to ensure the analysis was being performed correctly.  
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Calculation of Average Values from the L/V Measurement System and TBOGI 
 
In addition to calculating and analyzing wear rates, the large amount of data that was made 
available as part of NYCTA’s research efforts allowed for further relationships to be explored. For 
example, in theory, the data from the L/V Measurement System and TBOGI could be used to find 
relationships between L/V ratio, angle of attack, tracking position, and speed and wheel wear rate. 
However, this data needed to be first condensed into a more workable format. For instance, with 
the nonlinear regression completed, each wheel in the fleet has its own corresponding flange wear 
rate. However, the nature of the L/V Measurement System and TBOGI results in each wheel 
having hundreds to thousands of recorded L/V ratios and angles of attack. From a statistical 
perspective, it is not simple to compare one data point to thousands of data points. So, it was 
decided that average values of each measured parameter would be calculated for each wheel in the 
fleet. This was done with the thinking that when completed, there would be a population of wheels, 
each with their own corresponding wear rate, average L/V ratio, average angle of attack, and so 
on. This approach would lend itself to a more standard statistical analysis of the data. Therefore, 
code was written in VBA to calculate these average values for every recorded wheel in the 7 Line 
fleet.  
 
Initial Analysis of the Data 
 
With a population of wheel wear rates, as well as a population of average values from the L/V 
Measurement System and TBOGI for each wheel, some initial analyses of the data could be 
conducted. Mainly, relationships between wheel wear rate and the other measured variables would 
be explored. However, in order to better understand the newly obtained data, an Exploratory Data 
Analysis was conducted. 
  
Exploratory Data Analysis of Wheel Wear Rates 
 
Figure 31 below presents histograms of the A and k parameters that were obtained from the 
exponential regression of the wheel wear data. In addition, Table 2 presents basic descriptive 
statistics of the obtained A and k parameters. If Equation 2 is thought of as an exponential decay 
function, then it can be assumed that the A parameter is representative of the initial flange thickness 
of each wheel, and the k parameter is representative of the wear rate of each wheel. It is interesting 
to note that the mean a value of 31.855 mm is nearly equal to the new flange thickness value of 
32.1 mm. In addition, it can be seen that a majority of the k values are greater than -0.001. This 
means that most of the wheels in the fleet are wearing at similar rates. However, there are a 
significant amount of k values less than -0.001. This indicates that there is a subpopulation of 
wheels which are wearing at a higher rate. Note that the more negative a wear rate is, the more 
severe the wheel is expected to wear. 
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Figure 31 Histograms of A (left) and k (right) parameters derived from  

 exponential regression.  
 

Table 2 Descriptive Statistics for A and k Parameters 
 

 Mean Median Std. Dev. Min 1st 
Quartile 

3rd 
Quartile 

A 31.855 30.470 27.368 5.887 28.794 32.788 
k -0.00064 -0.00035 0.00138 -0.07607 -0.00065 -0.00016 

 
 
Since the focus of this study was wheel wear rates, a histogram of k sorted by wheel position was 
created, and can be seen in Figure 32. In addition, Table 3 presents descriptive statistics of the k 
parameter by wheel position. As can be seen, the wheel wear rate is not dependent upon wheel 
position. The distributions of all eight wheels are nearly identical, as too are the descriptive 
statistics. This is because the 7 Line is nearly symmetrical. Therefore, throughout a wheel’s 
lifetime, it will experience an equal amount of left-hand and right-hand curves, meaning each 
wheel should wear similarly. 
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Figure 32 Histogram of k parameter by wheel position. 

 
Table 3 Descriptive Statistics of k Parameter by Wheel Position 

 
 Mean Median Std. Dev. Min 1st 

Quartile 
3rd 

Quartile 
1L -0.00050 -0.00037 0.00095 -0.00863 -0.00065 -0.00016 
1R -0.00058 -0.00037 0.00101 -0.01319 -0.00071 -0.00017 
2L -0.00050 -0.00035 0.00115 -0.00848 -0.00068 -0.00015 
2R -0.00056 -0.00035 0.00115 -0.01748 -0.00065 -0.00016 
3L -0.00056 -0.00034 0.00269 -0.07607 -0.00061 -0.00014 
3R -0.00052 -0.00036 0.00084 -0.00572 -0.00064 -0.00016 
4L -0.00044 -0.00033 0.00143 -0.00669 -0.00065 -0.00015 
4R -0.00048 -0.00034 0.00074 -0.00504 -0.00061 -0.00017 

 
Exploratory Data Analysis of Average L/V Ratios 
 
Once a population of average L/V ratios were obtained for each wheel in the NYCT fleet, a 
histogram of all average L/V ratios was created, and is shown in Figure 33. Also, to investigate 
the behavior of individual wheels, Figure 34 displays a histogram of average L/V ratio by wheel 
position. Lastly, Table 4 presents basic descriptive statistics of the obtained average L/V ratios.  
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Figure 33 Histogram of average L/V ratios. 
 

 
 

Figure 34 Histogram of average L/V ratios by wheel position. 
 
 

Table 4 Descriptive Statistics of Average L/V Ratios 
 

  
Mean 

 
Median 

 
Std. Dev. 

 
Min 

 
Max 

1st 
Quartile 

3rd 
Quartile 
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ALL 0.032 0.061 0.138 -0.271 0.301 -0.106 0.138 
1L -0.127 -0.132 0.059 -0.271 0.103 -0.162 -0.095 
1R 0.141 0.137 0.048 -0.002 0.286 0.107 0.175 
2L 0.153 0.127 0.072 -0.031 0.295 0.092 0.224 
2R -0.079 -0.107 0.079 -0.244 0.240 -0.135 -0.035 
3L -0.040 -0.068 0.090 -0.235 0.260 -0.113 0.024 
3R 0.158 0.165 0.082 -0.026 0.301 0.081 0.242 
4L 0.143 0.126 0.059 -0.007 0.285 0.100 0.196 
4R -0.097 -0.106 0.061 -0.247 0.222 -0.132 -0.069 

 
Cleary, from Figure 33 there are three distinct sub-populations within the entire population. The 
first one contains all negative L/V values. Then, there are two positive sub-populations, with one 
containing more extreme L/V values. This is different from the behavior seen earlier in Figure 16, 
where there only appeared to be two L/V populations. The process of averaging the data has made 
the more excessive L/V values more pronounced. Excessive L/V ratios can lead to accelerated 
wheel wear, which in turn can lead to increased likelihood of derailments. In addition, Figure 34 
displays the same trends seen earlier. The population of positive L/V ratios are being seen on 
leading axle, right-side wheels (1R and 3R) and trailing axle, left-side wheels (2L and 4L). 
Conversely, the population of negative L/V ratios are being seen on leading axle, left-side wheels 
(1L and 3L) and trailing axle, right side wheels (2R and 4R). There are also some wheels with two 
different L/V populations. For example, wheel 3R shows two well-defined L/V ratio populations. 
Typically, this can be an indication that some cars, trucks, and axles are behaving differently than 
others. Ultimately, when this data is joined with and compared to the wear rate data, it will be 
interesting to see if the excessive average L/V ratios correlate with the excessive wear rates. If so, 
this would indicate that wheel wear is affected by L/V ratio. 
 
Exploratory Data Analysis of Average TBOGI Data 
 
Once a population of average values from the TBOGI were obtained for each axle in the NYCT 
fleet, histograms of these values were created, and are shown in the following figures. The 
following set of figures and tables present histograms of the average angles of attack and average 
tracking positions, as well as their descriptive statistics. 
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Figure 35 Histograms of average angle of attack (left) and average tracking position (right). 
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Figure 36 Histogram of average angle of attack (left) and average tracking position (right) 
by axle position. 
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Table 5 Descriptive Statistics for Average Angle of Attack (mrad) 

 
  

Mean 
 

Median 
 

Std. Dev. 
 

Min 
 

Max 
1st 

Quartile 
3rd 

Quartile 
ALL -0.005 -0.063 0.497 -1.998 1.816 -0.320 0.290 

Axle 1 -0.449 -0.388 0.362 -1.998 0.552 -0.666 -0.199 
Axle 2 0.267 0.222 0.369 -0.581 1.187 0.001 0.561 
Axle 3 -0.133 -0.137 0.253 -1.526 0.589 -0.291 0.029 
Axle 4 0.295 0.299 0.529 -0.977 1.816 -0.120 0.670 

 
 

Table 6 Descriptive Statistics for Average Tracking Position (mm) 
 

  
Mean 

 
Median 

 
Std. Dev. 

 
Min 

 
Max 

1st 
Quartile 

3rd 
Quartile 

ALL 0.001 0.020 1.259 -5.088 4.225 -0.818 0.783 
Axle 1 -0.247 -0.205 1.288 -5.088 3.788 -1.084 0.619 
Axle 2 -0.408 -0.329 1.215 -5.003 4.225 -1.186 0.291 
Axle 3 0.185 0.181 1.133 -3.052 3.009 -0.518 0.928 
Axle 4 0.475 0.475 1.197 -3.256 3.994 -0.201 1.229 

 
 
The previous figures and tables present histograms and statistics of the average angle of attack and 
tracking position values for each axle in the NYCT fleet. Each distribution is generally normal 
about its mean. However, some other more interesting trends can be identified. First of all, the 
average angle of attack and tracking position when all axles are considered is nearly zero. This is 
due to the behavior of the other axles. It is seen that Axles 1 and 3 (the trailing axles) have a 
negative mean average angle of attack. On the other hand, axles 2 and 4 (the leading axles) have a 
positive mean average angle of attack. When referring back to the sign convention in Figure 1, it 
is clear that some axles may be skewed. For example, axles 1 and 2 (which are on the same truck) 
are contacting the rail at different directions. If all axles and trucks were behaving properly, this 
should not be the case. Furthermore, it is seen that Axles 1 and 2 (which are on the same truck) 
have a negative mean average tracking position. On the other hand, axles 3 and 4 (which are on 
the same truck) have a positive mean average tracking position. This suggests that as cars are 
traveling through the instrumented curve, the leading truck tends to shift in one direction, while 
the trailing truck shifts in the other direction. Again, this may be an indication of poor truck 
performance. Therefore, there may be a population of poor trucks that are affecting the behavior 
of the entire population. Ultimately, when this data is joined with and compared to the wear rate 
data, it will be interesting to see if high average angles of attack and tracking positions correlate 
with the excessive wear rates. If so, this would indicate that wheel wear is predominantly affected 
by truck performance. 
 
In addition to angle of attack and tracking position, speed is also an important measured parameter. 
The faster an axle is traveling through a curve, the higher the generated positive forces will be on 
the high rail. Increased forces directly lead to increased wear. Thus, the average speed values that 
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were obtained were also investigated. Figure 37 and Table 7 show the distribution and descriptive 
statistics for the average speed of each axle measured by the TBOGI. 
 

 
Figure 37 Histogram of average speed. 

 

Table 7 Descriptive Statistics for Average Speed (km/hr) 
 

  
Mean 

 
Median 

 
Std. Dev. 

 
Min 

 
Max 

1st 
Quartile 

3rd 
Quartile 

SPEED 44.899 44.995 1.371 38.690 48.163 44.157 45.832 
 
This information reiterates what was discovered about the speed of axles through the TBOGI site 
earlier. It is seen that on average, nearly all axles are traveling through the TBOGI site between 43 
and 47 km/hr. There are some axles outside of this range, however, the vast majority of axles are 
traveling at the same speed, on average. This means that the average lateral forces felt at this site 
should be relatively constant as well. Again, it is also seen that trains are travelling significantly 
under balance speed on average, possibly indicating lower high rail forces.  
 
Figure 38 shows histograms of the averages of the other measured parameters; inter-axle 
misalignment, tracking error, rotation, and shift. Table 8 presents the descriptive statistics of these 
parameters. 
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Figure 38 Histograms of average inter-axle misalignment, tracking error, rotation, and 
shift. 

 
Table 8 Descriptive Statistics of Average Inter-Axle Misalignment, Tracking Error, 

Rotation, and Shift 
 

  
Mean 

 
Median 

 
Std. Dev. 

 
Min 

 
Max 

1st 
Quartile 

3rd 
Quartile 

IAM (mrad) 0.572 0.607 0.506 -0.803 2.459 0.217 0.905 
TE (mm) 0.065 0.085 1.419 -4.520 5.546 -0.867 0.991 

ROT (mrad) 0.083 0.039 0.213 -0.520 0.909 -0.058 0.194 
SHIFT (mm) -0.001 0.009 0.987 -4.754 3.668 -0.565 0.534 

 
The distributions for these for variables all appear to be generally normally distributed about their 
means. That being said, the mean average values of tracking error, rotation, and shift are all nearly 
zero. However, the mean average inter-axle misalignment in more significant, at 0.572 mrad. As 
mentioned, during NYCTA’s study, it was cited that for the given speed of travel, the measured 
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inter-axle misalignments were alarmingly higher than expected, according to WID. Again, this 
indicates that there are some trucks in the 7 Line fleet exhibiting poor performance, which may 
ultimately be leading to accelerated wheel wear. 
 
Initial Correlation Analysis of the Data 
 
One of the primary objectives of this research was to find a distinct relationship between wheel 
wear rate and one of the other measured parameters (L/V ratio, angle of attack, tracking position, 
speed, etc.). There are many ways to find relationships between variables. One way is to use 
Pearson’s correlation coefficient; a numerical value between -1 and 1 indicating the strength of the 
relationship between two variables. The closer the value is to -1 or 1, the stronger the relationship. 
Unfortunately, calculating Pearson’s correlation coefficient for these variables did not yield 
satisfactory results, as shown in Figure 39. When looking at the relationship between wear rate (k) 
and the other variables, there are no strong relations. No Pearson coefficients are large enough to 
be significant.  
 

 
 

Figure 39 Correlation matrix. 
  
Another method used to examine relationships between variables are scatter plots. Plotting the 
values of one variable against another can lead to assumptions being made about trends within the 
data. Since considering all of the data did not yield any strong results (see Figure 39), the decision 
was made to analyze the variables on a wheel-by-wheel basis. Organizing the data in a more 
focused way could lead to relationships being found that were previously hidden due to the amount 
of data initially considered. Furthermore, wheels 1R and 3R were chosen to be the focal points of 
such analyses. As seen in the previously presented L/V distributions, wheels 1R and 3R exhibited 
higher L/V ratios when compared to other wheels. Analyzing these wheels would highlight these 
high L/V values and determine whether or not they had an impact on wheel wear. Presented on the 
following pages are scatterplot matrices of the wheel 1R and 3R datasets. The same matrices were 
created for all other wheels and can be found in Appendix B.  Unfortunately, once again there does 
not appear to be any significant relationships between wear rate and the other parameters. Again, 
there is a split distribution of L/V values for wheel 3R, indicating that some wheels are 
experiencing higher lateral forces than others. However, no clear conclusions can be drawn from 
these figures as to how this impacts wear rate. Therefore, further refined correlation analyses must 
be conducted, and will be discussed in future chapters. 
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Figure 40 Scatterplot matrix for wheel 1R. 

 
 

 
Figure 41 Scatterplot matrix for wheel 3R. 
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FORECASTING FUTURE MAINTENANCE EVENTS 
 
As outlined in the prior chapters, the primary objective of this study was to calculate flange wear 
rates. These wear rates could then be utilized to forecast future maintenance events, according to 
NYCTA maintenance standards. From the wear rate data developed in the aforementioned 
nonlinear regression analysis, the A and k parameters for each maintenance cycle of every wheel 
in the 7 Line fleet are known. Thus, these values can be used to calculate the time it will take for 
any given wheel to reach the threshold of 24.2 mm. It is worthwhile to mention that for any given 
wheel, any of the life conditions shown in Figure 42 can exist. First, a wheel can have an unknown 
start date, meaning it is not known when it was put in service. Second, a wheel can have an 
unknown end date, meaning it is not known when it will be taken out of service. These are the 
wheels that will be used to forecast future maintenance events. Lastly, there are a small population 
of wheels which have a known start and end date. For these wheels, there is enough data to show 
two maintenance events. These wheels will be compared to the wheel forecasts in order to evaluate 
the forecast results. Note that Figure 42 does not correspond to any wheel in the fleet. Rather, this 
data was created to better visualize wheel life conditions. 
 

 
 

Figure 42 Examples of wheel life conditions. 
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Predicting Future Maintenance Events 

 
In this analysis, any wheel that met the previously described condition of having an unknown end 
date was used in the forecasting of future maintenance cycles. When referring back to Equation 2, 
a flange thickness value can be substituted for y. From the wear rate data developed in the nonlinear 
regression analysis, the A and k parameters for each maintenance cycle of every wheel in the 7 
Line fleet are known. With known A and k parameters, x; the time it will take to reach this flange 
thickness value; can be calculated. In other words, if the last recorded flange thickness 
measurement by the KLD Automatic Wheelscan and the NYCTA flange thickness maintenance 
threshold are substituted for y, wheel life can be calculated by solving for the x value. This is 
shown in Equation 3. 
 

𝑚𝑚 =
𝑙𝑙𝑙𝑙 �𝑦𝑦𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝐴𝐴 �

𝑘𝑘
−
𝑙𝑙𝑙𝑙 �𝑦𝑦𝑜𝑜𝑙𝑙𝑟𝑟𝑡𝑡𝐴𝐴 �

𝑘𝑘
 (3) 

 
Where 
 x = time to reach the NYCTA flange thickness maintenance threshold (days) 
 A = constant (mm) 
 k = wear rate (1/days) 
 ythreshold = 24.2 mm (NYCTA flange thickness maintenance threshold) 
 ylast = the last recorded flange thickness measurement mm) 
 
By taking the results of Equation 3, and adding it to the time that the wheel was in service for prior 
to the measurement of ylast (which is  known based on the nature of the data) a value for total wheel 
life is obtained, based on a flange thickness threshold of 24.2 mm and the wear rate parameters 
specific to that wheel. This calculation was performed for each wheel that met the condition of 
having an unknown end date. Figure 43 presents histograms of both the last recorded flange 
thicknesses and predicted wheel lives.   
 

 
 

Figure 43 Histograms of last recorded flange thickness (left) and wheel life (right). 
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As can be seen in the histogram of the last recorded flange thickness, there is a broad range of 
values. Final flange thicknesses anywhere from 25 mm to just over 32 mm have been recorded. 
While new wheels are expected to have a flange thickness no greater than 32.1mm, it is understood 
that there is a system tolerance which can introduce variability. This range of values indicates that 
there are wheels at different points in their life cycle. Some wheels have very low measurements, 
meaning they are approaching the time when maintenance must occur. Other wheels have higher 
flange measurements, meaning that they have recently been installed or trued. In addition, there is 
a large group of wheels with a last flange thickness value between 28 mm and 30 mm. This would 
suggest that on average, most wheels in this fleet should have a significant amount of life 
remaining before maintenance would become necessary. 
 
The results shown in the histogram of predicted wheel life are not as clear. At first glance, a mean 
maintenance cycle of 1,816 days is clearly excessive. This high mean is a result of a few extremely 
high maintenance intervals that are not displayed in the figure. Since the wear rate is exponential, 
the data may appear to behave asymptotically, with results approaching infinity. This is not 
realistic. To account for this issue, wheels with extremely low k values were removed, so that the 
overall population would not be skewed by these few wheels. Another issue that was found is that 
some wheels have very few data points. This too can cause abnormally long lives to be calculated. 
In addition, this can also result in abnormally short lives. As discussed earlier, there is a sharp 
initial wear-in period that a majority of these wheels experience. If too few data points exist, the 
regression fit will be entirely within this wear-in period and will not account for the overall 
behavior of the wheel across its whole life. Thus, any wheels with less than ten data points were 
removed. After investigating numerous wheels with the sharp wear-in period, a value of ten was 
determined to be the minimum number of points needed to encompass a wheel’s full behavior. 
Lastly, any wheel with a R2 value less than 0.50 was removed. This ensured that only the wheels 
fit well by the exponential function were included in the analyses. Applying such filters resulted 
in 2,460 total wheels to be included in further analyses. Figure 44 shows revised histograms of 
those shown in Figure 43, with the aforementioned data filtering criteria applied.  
 

 
 

Figure 44 Revised histograms of last recorded flange thickness (left) and wheel life (right). 
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While the shapes of the histograms presented in Figure 44 remained relatively unchanged, the 
unrealistic and outlier data points have been removed from the analysis. This allows for more 
accurate results that are representative of the fleet’s behavior, namely a mean maintenance cycle 
of 768 days. This value is still quite excessive, and suggests that on average, a wheel in the NYCT 
7 Line fleet can last for about two years without maintenance. Although a majority of the outlier 
data points have been removed, this value is still likely overestimated. As mentioned, exponential 
regression treats the data asymptotically. This assumes that the wheels will continue to wear at a 
very slow rate once the initial sharp wear in period ends. In practice, this is most likely not the 
case. Defects can form in the wheel or the rail that can lead to accelerated wear. The exponential 
regression model cannot account for such factors. In addition, it is important to keep in mind that 
the calculated wear rates are based solely on time. In the rail industry, time is seldom used as a 
benchmark due to differences in tonnage and mileage. However, this data was not made available 
for this study, and thus could not be incorporated. Had this data been available, key information 
such as vehicle out of service time and total mileage could have been utilized to produce more 
accurate wear rates.  
 
Yet, with a more focused data set and improved data accuracy, a plot of flange thickness against 
maintenance interval could be created. Figure 45 shows how maintenance interval is affected by 
the last flange measurement and wear rate. Each point on this plot represents one wheel. As can 
be seen, there is a widespread distribution of wheels with varying behaviors. Some wheels have 
very high last flange measurements, but short maintenance intervals. This indicates that these 
wheels have a high wear rate, and may be associated with cars that have poor steering 
characteristics, misaligned trucks, or high generated forces. If so, it could be inferred that these 
wheels are behaving poorly and can be deemed “bad actors”. This idea will be expounded upon in 
future sections. In addition, there are some wheels that are projected to last many years until the 
next maintenance cycle. As noted previously, this is not realistic and is simply a result of the 
asymptotic behavior of the exponential fit, as well as the lack of mileage information. Yet, this 
plot still shows that there are some wheels that are performing better than other wheels. From a 
practical perspective, this means that some wheels in the 7 Line fleet may not need to be maintained 
or inspected as frequently. On the other hand, those wheels displaying poor performance need to 
be more regularly maintained and inspected, as to preserve appropriate levels of safety. Thus, it is 
of great importance to be able to classify wheels based upon their performance, in order to better 
understand the inherent characteristics that govern their behavior.  
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Figure 45 Plot of last recorded flange thickness (mm) vs. predicted wheel life (days). 
 
Comparison to Wheels with Known Lives 
 
The prediction of wheel life presented in the previous section revealed a great deal about wheel 
behavior. However, in order to better interpret these results, it is important to analyze the small 
population of wheels which have known start and end dates. As presented in Figure 42, there is a 
small population of wheels which have a known start and end date. For these wheels, there is 
enough data to show two maintenance events. Therefore, it is easily possible calculate the lives of 
these wheels by simply taking the difference between the start and end dates. Essentially, this is 
the life of that specific wheel. By comparing these known lives to those lives which have been 
predicted, more sense can be made of the obtained results. While there are not many of these 
wheels in the database (555 total wheels), there are enough to form a few conclusions. Figure 46 
presents a histogram of wheel life for those wheels whose start and end dates are known. As can 
be seen here, a majority of the wheels in this population have lives less than 100 days, or about 3 
months. However, there are some wheels that are lasting close to 300 days, or almost 10 months. 
Again, the split between good and poor wheel performance is seen. Note however that the term 
“life” refers to the time from the last maintenance event until the next maintenance event. 
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Figure 46 Histogram of known wheel lives. 

  
Figure 46 becomes particularly interesting when it is compared to the histogram of predicted wheel 
life shown in Figure 44. Figure 47 compares the predicted wheel lives and  the known wheel lives. 
Although the population sizes greatly differ, it is clear that substantially longer lives are being 
predicted than the lives that are actually known. Again, this could be an indication of some of the 
shortcomings discussed earlier. As discussed, the asymptotic nature of exponential regression may 
tend to overestimate wheel life. Also, missing information such as mileage, rail defects, and wheel 
defects did not allow for the model to be as robust as possible. This may also be an indication that 
using exponential regression is not the best way to fit and project the data at hand. However, by 
applying the aforementioned R2 threshold of 0.50, this issue should be somewhat addressed, since 
that is indicative of a good fit with the data. Using such a threshold ensures only those wheels with 
accurately fitted regression lines are used in the analysis. While it may be true that the lives that 
have been predicted are slightly overestimated, there is another explanation for the difference 
between the red and blue histograms. Figure 47 could be a sign that wheels are being trued too 
early. This theory will be investigated in the following section.  
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Figure 47 Histogram of wheel life for predicted (red) and known (blue) wheel lives. 
 
Examination of Current Maintenance Practices 
 
As previously noted, Figure 47 suggests that wheels are being trued or replaced too early. 
According to the current NYCTA standards, truing occurs when the flange thickness approaches 
an “8” on the AAR finger gauge, or 24.2 mm. In addition, a new or recently trued wheel will read 
“0” on the AAR finger gauge, or 32.1 mm. However, Figure 47 shows that wheels are not reaching 
their full potential “lifespan”. In Figure 47, the red histogram shows that when wheel life is 
forecasted to a flange thickness limit of 24.2 mm (the NYCTA standard), significantly longer 
maintenance intervals are predicted than what have been seen in the field thus far.  
 
In order to examine whether or not wheels were being trued too early, two histograms of the last 
recorded flange thickness measurement were created. Figure 48 and Figure 49 present histograms 
of the last known flange thickness measurements, normalized to give a percentage. Moreover, the 
data shown here represent a specific wheel’s flange thickness measurement just before a 
maintenance event is known to occur. Referring back to Figure 42, the flange thickness 
measurement just before a maintenance event can be determined for two of the three wheel life 
conditions. Figure 48 displays the last flange thickness measurements for any wheel that meets the 
known start and end date condition. These are those 555 wheels used for comparisons in the 
previous section. In addition, Figure 49 combines these data with those of any wheel with an 
unknown start date. Although the exact lifespan of these wheels is unknown, the last flange 
thickness measurement just before maintenance can be utilized to further investigate whether or 
not wheels are being trued too early. This results in a total of 4,144 wheels. In Figure 48 and Figure 
49, it can be observed that the mean last flange thickness measurements before maintenance were 
28.5 mm and 27.9 mm, respectively. This confirms that maintenance is occurring too early. On 
average, the last flange thickness measurement just before a maintenance event is nearly 4 mm 
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greater than the 24.2 mm NYCTA standard for wheel replacement or truing. Essentially, this 
means that an average of 4 mm of life is being wasted, as wheels are not being allowed to wear to 
the limit. This type of practice restricts wheels from reaching their full potential in terms of life, 
and in turn, can greatly increase maintenance costs and out of service time. Ultimately, this fact 
appears to be the reason why the forecasted lives are significantly greater than known lives. 
 

 
Figure 48 Histogram of last recorded flange thickness measurements before maintenance 

for wheels with known lives. 
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Figure 49 Histogram of all known last recorded flange thickness measurements before 

maintenance. 
  
Adjusting current practices to allow wheels to wear to the flange limit may prove beneficial to 
NYCTA. In order to better visualize and understand the implications of such adjustments, new 
forecasts were made. As before, the 2,460 total wheels with unknown end dates were used. By 
substituting new values for ythreshold into Equation 3, new predictions could be made as to when 
wheels will reach various flange thickness values. Here, it was decided that forecasts would be 
made to 27.9 mm; the mean last flange thickness measurement before maintenance in Figure 49. 
It should be noted that any wheel whose last flange measurement was already below the mean 
value of 27.9 mm would have a life equal to the time that had already elapsed since the last 
maintenance event. Thus, based on this new threshold of 27.9 mm, this wheel should have been 
trued or replaced already. These forecasts were then converted into histograms normalized to give 
a percentage. In addition, they were compared to the predicted lives when a threshold of 24.2 mm 
is used, as well as those lives which are known. These results are presented in Figure 50. Table 9 
shows the average wheel life for each of these distributions. 
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Figure 50 Comparison of predicted wheel lives. 
 
 

Table 9 Comparison of Average Wheel Lives 
 

Distribution Average Wheel Life 
(days) 

24.2 mm limit (red) 768 
27.9 mm limit (blue) 368 
Known lives (gray) 114 

 
Figure 50 compares predicted wheel maintenance intervals for varying flange thickness thresholds. 
Wheel maintenance based on a threshold of 24.2 mm is shown in red and based on a threshold of 
27.9 mm is shown in blue. In addition, the known intervals for wheels with known cycles is shown 
in gray. Again, this is a much smaller population, however, it falls much more in line with the new 
projections. The slight shift to the right could once again be due to the asymptotic nature of the 
exponential fit, as well as the other shortcomings associated with the manner in which wear rates 
were calculated. However, although the predictions are still overestimated, the manner in which 
they were calculated is sound. Therefore, it can still be confidently stated that maintenance is 
occurring too early, and adjustments should be made to maximize the service time of these 
particular wheels.  
 
Based on the results of Figure 50, it appears that NYCTA is currently being quite conservative in 
its maintenance efforts. By consistently performing maintenance at higher flange thickness limits, 
wheels may be trued or removed prematurely. It can be seen that on average, 300 days of life is 
being wasted. While truing at higher thresholds allows for a greater factor of safety against 
accidents and derailments, it can decrease the overall life of the wheel. From a cost perspective, 
truing at higher thresholds may lead to increased maintenance, labor, and out of service time. For 
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all operating railroads, one of the highest annual costs is consistently maintenance cost. By 
allowing wheels to continue to wear, great savings could be experienced. In addition, out of service 
time hinders a passenger system such as NYCTA. The greater the out of service time is, the less 
trains there are in service. This greatly impacts passenger experience and overall customer service.  
 
However, it should be noted that NYCTA currently trues an entire truck during a maintenance 
cycle. In other words, if one wheel on a truck reaches the NYCTA flange thickness maintenance 
limit of 24.2 mm, all four wheels are trued regardless. This is done in order to reduce maintenance 
costs and out of service time. It is a more efficient maintenance approach than just truing one wheel 
at a time. Truing an entire truck also allows for the lateral stability and effective conicity of the 
wheelsets to be preserved; which is crucial in derailment prevention. This approach could be the 
underlying reason as to why an average last flange thickness measurement before maintenance of 
27.9 mm was identified. One excessively worn wheel is forcing the other three to be trued. 
Nonetheless, there are still some wheels on a truck that are being trued or replaced before it is 
necessary. Again, in order to maximize wheel life, adjustments to current practice could be made. 
Perhaps NYCTA could investigate truing on an “axle-basis” rather than a “truck basis”. This would 
result in only two wheels being trued at a time rather than four, effectively reducing the number of 
prematurely maintained wheels. However, the safety implications and risks of such changes need 
to be examined prior to a decision being made.  
 

INVESTIGATION OF WHEELS WITH POOR PERFORMANCE 
 
As previously discussed,  Figure 45 displays the results of the forecasting study. For those wheels 
whose maintenance cycle is unknown, the last flange thickness measurement is plotted against 
total maintenance interval. As shown, it is clear that there are some wheels that have a higher rate 
of wear than other wheels. Thus, there are wheels with relatively short lives even though their final 
recorded flange thickness was quite high. For example, refer to the population of wheels whose 
final recorded flange thickness was greater than 30 mm. When forecasting to the threshold of 24.2 
mm, these wheels should last the longest. However, it is seen that a small population of these 
wheels have some of the shortest predicted lives. Conversely, there are some wheels with lower 
final flange thickness values, yet longer predicted lives. The data suggest that within the NYCTA 
fleet of cars, there are some wheels that have extremely high rates of wear and some wheels with 
very low rates of wear. These wheels could be exhibiting high wear rates for a variety of reasons, 
including poorly steering trucks and associated high lateral forces, softer wheels, or other causes 
associated with either the wheel itself or with the car or truck.  
 
Clearly, it is of great practical significance to be able to identify these “bad actor” wheels, so that 
they may be more regularly inspected and maintained before their poor behavior compromises 
overall safety. In addition, determining the causal factors related to poor wheel performance would 
promote better and maintenance of the truck and vehicle to reduce the rate of wear. Furthermore, 
if it could be predicted which wheels would exhibit poor performance, then more preventive 
maintenance measures could be taken to reduce the likelihood of such behavior occurring. The 
following sections present a method for both classifying and predicting these bad actor wheels. 
 
Classification of Wheels with Poor Performance 
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In order to accurately and appropriately classify the population of wheels, two unique methods 
were implemented. The first method involves the use of k-means cluster analysis. Unfortunately, 
its results were not ideal. Therefore, a second method which created statistical performance bands 
was explored. The results of this approach were much more in line with the behavior of the fleet 
and engineering judgment. The findings of the k-means cluster analysis and statistical performance 
band approaches are outlined in the following sections. 
 
Cluster Analysis 
 
First, a method for classifying wheels based on their performance needed to be established. This 
would be done by using the data shown in Figure 45. In data analytics, one technique that is 
commonly used to classify data is cluster analysis. Cluster analysis is usually performed in order 
to combine observations into unknown groups. Unlike other classification methods, the number 
and characteristics of the groups must be derived from tendencies within the dataset, and are 
unknown prior to the work being done (Afifi et. al., 2012). Here, it was thought that the wheels in 
the upper-left corner would be the bad actors. However, a more concrete analysis method was 
desired. There are many different types of cluster analysis that can be used, but for this work, k-
means clustering was used. K-means clustering is one of the most common forms of cluster 
analysis, as it groups observations based on their distance from the means of predetermined 
clusters (Afifi et. al., 2012). It was decided that three clusters would be ideal for this analysis; one 
cluster of bad actors, one of good actors, and one of wheels that lie in between. The results of a k-
means cluster analysis can be seen in Figure 51, where the three clusters are shown in different 
colors. 
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Figure 51 Results of K-means cluster analysis. 

  
The results of the k-means cluster analysis show that wheels have been sorted into three 
performance-based clusters. The green cluster contains all of the wheels classified as bad actors. 
The red cluster contains all of the wheels classified as good actors. The black cluster contains all 
of the wheels that are somewhere between the two. While the k-means cluster analysis did create 
three distinct groups, it does not appear to appropriately take the last flange measurement into 
consideration when doing so. Rather, the wheels are sorted based solely on their predicted life. For 
example, all wheels with a life less than approximately 700 days were placed in the bad actor 
group. However, within this group, there are wheels are different points in their life cycle. For 
example, there are some wheels in this group with a last flange thickness measurement of less than 
26 mm, while there are others with a last flange thickness measurement of more than 30 mm. 
Those wheels above 30 mm are likely bad actors, as they are expected to wear rapidly. However, 
those wheels less than 26 mm are most likely not bad actors. The expected life they have remaining 
is low due to the fact that they are so further along in their life cycle. It is important to account for 
where a wheel is in its life cycle when evaluating their performance. Thus, it is not acceptable to 
classify wheels based on a k-means cluster analysis. 
 
Statistical Performance Bands 
 
As the k-means cluster analysis did not yield ideal results, a secondary approach was undertaken. 
The approach used was to define performance bands to separate the good wheels from the bad 
wheels. This was done through an analysis of the data’s standard deviation. The mean and standard 



 61 

deviation was calculated for both variables (last flange thickness measurement and predicted wheel 
life). Each mean was adjusted by adding or subtracting one standard deviation. These boundaries 
were then set by passing lines through these points and the origin: a last flange thickness 
measurement of 24.2 mm (NYTA maintenance limit) and a wheel life of zero days. Based on this 
analysis approach, adding and subtracting a value of 1.5 times the standard deviation appeared to 
create the best results at first.  Figure 52 presents these wheel performance bands. 
 

 
Figure 52 Plot of last flange thickness measurement vs. wheel life with performance bands. 
  
As seen in, three distinct performance bands have been developed. The first set, consisting of a 
large population of wheels on the right side of the figure, are exhibiting relatively low wear rates. 
The second set, consisting of a small population of wheels on the left side, are exhibiting high wear 
rates. These are the “bad actor” wheels with high wear rates and relatively short lives, even though 
their final recorded flange thickness may have been relatively high. Finally, there is a large 
population of wheels that are somewhat in the middle exhibiting “average” wear rates. Also, this 
approach seems to better account for the last recorded flange thickness measurement; unlike k-
means clustering. Using the performance bands better encompasses the full behavior of these 
wheels and creates more representative groupings. However, in Figure 52, only 89 of the 2,460 
wheels were classified as bad actors. This means that in the entire NYCTA 7 line fleet, only 3.5% 
of the wheels are behaving poorly. Such a small sample size does not allow for one to form accurate 
conclusions. Therefore, the bands in Figure 52 were adjusted by adding and subtracting a value of 
1 standard deviation, rather than 1.5. This is shown in Figure 53. 
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Figure 53 Revised plot of last flange thickness measurement vs. wheel life with 

performance bands. 
 
Figure 53 shows the same tendencies as Figure 52. Three groups of wheels have been created, 
based upon their performance. However, by adjusting the bands to 1 standard deviation rather than 
1.5, a larger population of bad actor wheels was obtained. The performance bands shown in Figure 
53 results in a total of 295 bad actor wheels. This means that in the entire NYCTA 7 Line fleet, 
11.8% of the wheels are behaving poorly. This is a much more substantial population of bad actors, 
and would allow for a more valid prediction model to be generated. Thus, it was decided that bad 
actor wheels would be classified based upon the statistical performance bands shown in  Figure 
53. A list of those 295 bad actor wheels can be found in Appendix C. 
 
Wheel Performance Prediction Model 
 
Once the wheels were classified as discussed in the prior section, the next step of the analysis was 
to create a model to predict a wheel’s performance. The creation of an accurate model would allow 
for poor wheel performance to be identified earlier in its life cycle, allowing for more preventive 
maintenance measures to be enacted. For this work, a logistic regression model was created to 
calculate the probability of any given wheel being a bad actor wheel. 
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Introduction to Logistic Regression 
 
Logistic regression is a common technique used in the realms of statistics, data science, and 
engineering. It is often used in order to classify observations into one of two populations, and 
applies to both discrete and continuous variables. A discrete variable is thought of as a binary 
classification variable. Examples include male or female, even or odd, and yes or no. Continuous 
variables on the other hand have an infinite number of possible measured values, and in logistic 
regression, are used in order to predict the value of a discrete variable. Therefore, an initial logistic 
regression analysis requires knowledge of both the dependent and independent variables, and its 
results can be later applied to cases where only the independent variables are known (Afifi et. al., 
2012).  
 
The basic form of the logistic regression function is: 
 

𝑃𝑃𝑍𝑍 =  
𝑒𝑒𝛼𝛼+𝛽𝛽1𝑋𝑋1+𝛽𝛽2𝑋𝑋2+⋯+𝛽𝛽𝑛𝑛𝑋𝑋𝑛𝑛

1 + 𝑒𝑒𝛼𝛼+𝛽𝛽1𝑋𝑋1+𝛽𝛽2𝑋𝑋2+⋯+𝛽𝛽𝑛𝑛𝑋𝑋𝑛𝑛
(4) 

 
Where 
 PZ = probability of occurrence 
 e = 2.71828 (mathematical constant) 
 α = logistic regression constant 
 βn = logistic regression coefficients 
 Xn = independent variables 
 
One of the fundamental assumptions of logistic regression is that the probability of occurrence is 
linearly related to each of the independent variables. Additionally, no assumptions need to be made 
about the distributions of the various independent variables. Unlike other methods which requires 
variables to be continuous and normal, logistic regression can account for all distributions and 
handle both discrete and continuous variables. This is one of the major advantages of using logistic 
regression: that it can be essentially applied to all data types. Furthermore, logistic regression uses 
the method of maximum likelihood. The method of maximum likelihood is an iterative estimation 
process that can be used to determine model parameters. These parameters are found in such a way 
that maximizes the likelihood that the observed data will be accurately produced by the generated 
model. The theories behind it are complex and beyond the scope of this work. However, the use 
of this method allows for the logistic regression parameters to be more robust than other linear 
classification methods (Afifi et. al. 2012).  
 
Logistic Regression Model 
 
The overarching goal of this portion of the research was to create a model that would predict the 
likelihood that a given wheel will exhibit poor performance and behavior. Based on the nature of 
the data that would be used to create a wheel performance prediction model, logistic regression 
was deemed the most appropriate method. As discussed, logistic regression is used to classify 
observations into one of two populations, and applies to both discrete and continuous variables. 
For the purposes of this work, the two populations that observations would be grouped into would 
be a bad and good actor wheel. Although the performance bands shown in Figure 53 create three 
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populations, applying logistic regression requires only two. Therefore, those 295 wheels originally 
classified as bad actors would remain bad actors. However, all of the remaining wheels would be 
thought of as the good actors, rather than splitting their population.  
 
In turn, this would allow for the creation of a discrete variable; whether or not a wheel is a bad 
actor. Using the performance bands allowed for a simple binary variable to be generated. All of 
the bad actor wheels would be given a value of 1, while all of the good actor wheels would be 
given a value of 0. In addition, other discrete variables were created in order to classify the wheels 
in varying ways. These discrete variables were based solely on the predicted life of each wheel, 
with different values being used as thresholds for a bad actor. By creating multiple discrete 
variables, multiple logistic regression models were created. Each model was then analyzed and 
investigated, allowing for the most robust and realistic model possible to be selected. A summary 
of the different discrete variables used is presented in Table 10. 
 

Table 10 Description of Discrete Variables 
 

Name Description No. of Bad Actors 
Bands Classification of bad actors based upon the results 

shown in Figure 53. 
295 

Year Any wheel with a life less than 1 year (365 days) 
would be classified as a bad actor. 

98 

Mean  Any wheel with a life less than the overall mean 
life (768 days) would be classified as a bad actor. 

1230 

MeanSD Any wheel with a life less than the overall mean 
life minus 1 standard deviation (437 days) would 
be classified as a bad actor. 

268 

Quartile Any wheel with a life less than the 25% quartile 
(533 days) would be classified as a bad actor. 

615 

 
However, in order to create a complete logistic regression model, continuous variables need to be 
incorporated. These continuous variables would come from the suite of instrumentation systems 
made available as part of NYCTA’s research project, and would be used to develop a model that 
would predict the probability of a wheel being a bad actor. Values that were derived from the 
exponential regression of the KLD Automatic WheelScan data, as well as values directly measured 
by the L/V System and TBOGI would be included. Similar to the manner in which there were 
multiple discrete variables, different combinations of continuous variables were tested to obtain a 
final model. The variables that were used in order to develop a wheel performance prediction 
model can be seen in Table 11. 
 

Table 11 Description of Continuous Variables 
 

Variable Abbreviation Units Instrumentation System 
Wear Rate k days-1 KLD Automatic WheelScan 
Last Flange Thickness 
M t 

Ylast mm KLD Automatic WheelScan 
L/V Ratio LV N/A L/V Measurement System 
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Angle of Attack AOA mrad TBOGI 
Tracking Position TP Mm TBOGI 
Speed S km/hr TBOGI 

 
With the various discrete and continuous variables outlined, a logistic regression model was 
created using R software. Different discrete variables and varying combinations of continuous 
variables were repeatedly tested. Yet, the best results were obtained when all six continuous 
variables were used to predict the discrete variable defined by the performance bands. If all six 
continuous variables were not used, the accuracy of the model was greatly compromised. This was 
especially true if the wear rate was excluded from the model. Similarly, using discrete variables 
other than that defined by the performance bands decreased accuracy. In addition, when referring 
back to Table 10, applying each discrete variable results in a different bad actor sample size. Using 
the Year variable only results in 98 bad actors, which is likely an underestimation. Conversely, 
using the Mean and Quartile variables likely overestimates the number of bad actors in the fleet. 
The MeanSD variable yields a similar bad actor population, but in the end, was not as accurate as 
the performance band approach. The resulting logistic regression function that was developed to 
predict the likelihood that a given wheel will exhibit poor performance and behavior is shown in 
Equation 5. From the R software, the various statistical parameters that are associated with the 
logistic regression function in Equation 5 can be seen in Figure 54. 
 

𝑃𝑃𝑏𝑏𝑙𝑙𝑜𝑜 𝑙𝑙𝑎𝑎𝑡𝑡𝑜𝑜𝑟𝑟 =  
𝑒𝑒(−53.860−18,960∗𝑘𝑘+2.202∗𝑌𝑌𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−0.212∗𝐿𝐿𝐿𝐿+0.147∗𝐴𝐴𝐴𝐴𝐴𝐴−0.053∗𝑇𝑇𝑇𝑇−0.522∗𝑆𝑆)

1 + 𝑒𝑒(−53.860−18,960∗𝑘𝑘+2.202∗𝑌𝑌𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−0.212∗𝐿𝐿𝐿𝐿+0.147∗𝐴𝐴𝐴𝐴𝐴𝐴−0.053∗𝑇𝑇𝑇𝑇−0.522∗𝑆𝑆)  (5) 

 
Where 
 Pbad actor = probability of a wheel being a bad actor 
 e = 2.71828 (mathematical constant) 
 k = wear rate (1/days) 
 Ylast = last flange thickness measurement (mm) 
 LV = average L/V ratio 
 AOA = average angle of attack (mrad) 
 TP = average tracking position (mm) 
 S = speed (km/hr) 
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Figure 54 Logistic regression function statistical parameters. 
 
Based on the results of the logistic regression analysis, it can be concluded that wear rate has the 
greatest impact on determining a bad actor wheel. This can be seen by the values presented in 
Figure 54. Additionally, performing a basic parametric study reveals similar results. A parametric 
study is commonly done in the realm of statistics in order to evaluate the importance and influence 
of different independent variables. By changing the values of one independent variable while 
keeping all others constant, conclusions can be made regarding the impact of the altered variable. 
Essentially, this approach shows how one variable affects the outcome compared to other 
variables. Such an analysis was performed for this work, and the results can be seen in Figure 55. 
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Figure 55 Parametric study of the variables included in the Logistic regression equation. 
 
Figure 55 shows how altering wear rate, last flange thickness, L/V ratio, angle of attack, tracking 
position, and speed impact the probability of a bad actor wheel. Note that the x-axis displays the 
value of the variable when multiplied by its coefficient. This allows for all values to be on a similar 
scale, making comparisons easier. Again, it is clear that wear rate has the greatest impact on the 
probability of a bad actor. The variation in the wear rate value primarily governs whether or not 
the result of Equation 5 will be 0 or 1. Furthermore, last flange thickness also plays a large role. 
Intuitively, this makes reasonable sense, as the classification of bad actors relied heavily on wear 
rate, last flange thickness, and life. It is also a representation of where a wheel is in its life cycle, 
which is incorporated into the classification. Speed also appears to have some impact on the 
outcome, but not as significant as wear rate and last flange thickness. Lastly, L/V ratio, angle of 
attack, and tracking position are seemingly invisible on this plot. They all overlap one another near 
the point (0,0) and have no real impact on the outcome of Equation 5. This suggests that L/V ratio, 
angle of attack, and tracking position have no impact on a wheel’s behavior. From an engineering 
perspective, this does not seem reasonable. It is expected that the greater these values are, the 
greater the lateral forces and subsequent wear will be. This should have some correlation with 
wheel performance. However, it is not apparent through logistic regression. This may be due to 
the fact that these variables are only measured at one location on the 7 line. The behavior at the 
instrumented site north of 103rd Street station may not be fully representative of the entire line. 
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Had data been available for more points along the entire line, perhaps the results of the parametric 
study would have been different. Nevertheless, the relationships between these variables 
(specifically L/V ratio) and wear rate will be further explored in the next chapter.  
 
With the model created and the variables examined, the next step was to assess the accuracy of the 
results. As previously discussed, values for wear rate and last flange thickness were calculated 
from the KLD WheelScan data and average values for L/V ratio, angle of attack, tracking position, 
and speed were derived from the L/V Measurement System and TBOGI for every wheel in the 
fleet. These values were then substituted into Equation 5, calculating a value for Pbad actor for every 
wheel in the fleet. A range of probability values were obtained, and it was determined from 
engineering judgement, as well as through trial and error, that a Pbad actor value greater than 0.25 
would identify a wheel as a bad actor. These results were then compared to the original 
classifications from the performance bands in order to assess the accuracy of the generated logistic 
regression model. All in all, the model that was created and shown in Equation 5 is quite accurate. 
This can be seen in the following figures and tables. Figure 56 shows the receiver operating 
characteristic (ROC) curve for the model. Table 12 shows the confusion matrix generated when 
the predicted results are compared to the actual results.  
 

 
Figure 56 ROC curve for Logistic regression model. 

 
Table 12 Confusion Matrix for Logistic Regression Model 

 

 Actual 
Good Actor (0) 

Actual 
Bad Actor (1) 
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Predicted 
Good Actor (0) 

2,019 
(93.3 %) 

50 
(16.9 %) 

Predicted 
Bad Actor (1) 

146 
(6.7 %) 

245 
(83.1 %) 

 
From the ROC curve, an area under the curve of 0.961 was calculated. The area under a ROC 
curve essentially represents how good a model is at differentiating between classes. It can range 
from 0 to 1, with 1 meaning the model perfectly classifies all observations (Afifi et. al., 2012). 
Therefore, an area under curve value of 0.961 means that the logistic regression model created 
performs very well, and is capable of distinguishing between good and bad actor wheels. The 
accuracy of the model is further validated by the confusion matrix. Out of the 2,165 total good 
actor wheels, 2,019 of them were correctly identified (93.3 %). Moreover, out of the 295 bad actor 
wheels, 245 of them were correctly identified (83.1 %). Although there are some observations that 
were falsely identified, the model is still quite accurate overall. Of the 2,460 total wheels used in 
the analysis, 2,264 were correctly classified. This means that the logistic regression model is 
operating at an overall accuracy of 92.1 % and can be deemed successful. To further validate the 
successfulness of the model, those wheels that were falsely identified were examined. The 
following figures show those wheels that are actually good actors but predicted as bad actors, and 
vice versa.  
 

 
 

Figure 57 Good actors wheels predicted as bad actors (false positives). 
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Figure 58 Bad actors wheels predicted as good actors (false negatives). 
  
As can be seen in the two previous plots, those wheels that were incorrectly classified by the 
logistic regression model all hover on or near the performance band that was created to separate 
good and bad actors. This would suggest that the model is successful in classifying those wheels 
more towards the extremes; i.e. it can correctly identify the very bad actors and the very good 
actors. However, the model has some trouble correctly identifying those wheels which are near the 
performance band threshold. Yet, overall the model is still quite successful. Only 6.7 % of wheels 
were false positives, which is not necessarily a drawback. This would just mean that more 
preventive maintenance would take place. In fact, these wheels could be thought of as “at risk” of 
becoming a bad actor, and thus, maintenance would be beneficial in the long run. The 16.9 % of 
false negative wheels is a bit more alarming. When a wheel is not classified as a bad actor, 
preventive maintenance action cannot take place, and thus, safety may be compromised by 
allowing such wheels to continue to be in service. An ideal model would correctly identify all of 
the 295 bad actor wheels. However, for the scope of this work, 83.1 % was deemed to be an 
acceptable level of accuracy. 
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CORRELATING WHEEL WEAR RATE AND L/V RATIO 
 
As shown in Figures 40 and 41, no apparent relationships can be determined between wear rate 
and the other measured variables. As discussed, split distributions of L/V values are seen for wheel 
3R, indicating that some wheels are experiencing higher lateral forces than others. However, no 
clear conclusions can be drawn from these figures as to how this impacts wear rate. In addition, 
from the logistic regression model presented in the previous chapter, it was discovered that L/V 
ratio, angle of attack, and tracking position had little to no impact on the probability of a wheel 
behaving as a bad actor. This could lead to the assumption that these variables do not impact the 
wear rate of a rail wheel. From an engineering point of view, this is generally not the case. For the 
case of L/V ratio and even more likely L (Lateral load), there should be a strong positive correlation 
between with wear rate. An increase L/V ratio usually corresponds to an increase in the lateral 
forces between the wheel and the rail. This should generally increase the wheel’s wear rate and 
decrease its expected life. However, this trend is not clear from the results presented thus far. 
Therefore, further refined correlation analyses were conducted in order to find a better relationship 
between wear rate and L/V ratio.  
 
First, it was believed that the nature in which L/V ratio data was collected was contributing to the 
lack of a relationship with wheel wear. As explained earlier, the L/V ratios for all wheels were 
only measured at one location on the 7 line. The behavior at the instrumented site north of 103rd 
Street station may not be fully representative of the entire line. L/V data along the entire line is 
available thanks to the instrumented wheelsets, however, this is only for four wheels in the fleet. 
Had data been available for more wheels along the entire line, perhaps better relationships would 
have been found. Regardless though, the data from the L/V measurement system still should have 
some relation to the wheel wear data. A high L/V ratio should correlate with a high wear rate, and 
vice versa. Therefore, the decision was made to trim down the data shown in Figures 40 and 41 to 
only include those wheels with excessive wear rates. This would allow for a better understanding 
and visualization of how high wear rates are impacted by high L/V values. 
 
When the exploratory data analysis of the L/V Measurement System data was conducted, it was 
found that wheels 1R and 3R exhibited higher L/V ratios when compared to other wheels. 
Continuing to analyze these wheels in particular would highlight the higher L/V values and 
determine whether or not they had an impact on increased wheel wear. The following figures 
present plots of L/V ratio against wheel wear rate. Only those wheels with high flange wear rates 
of less than -0.007 days-1 are shown. In earlier scatterplots, all wheels were included. While 
including all wheels does have its advantages; such as the ability to draw conclusions regarding 
the entire population; it did tend to clutter the plots and make it more difficult to identify trends. 
Removing the wheels with less severe wear rates allows for a clearer and more concise dataset 
from which more effective conclusions can be drawn. Figures 59 and 60 present these plots for 
wheels 1R and 3R, respectively.  
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Figure 59 Scatterplot of L/V ratio vs. wear rates < -0.007 days-1 for 1R wheels. 
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Figure 60 Scatterplot of L/V ratio vs. wear rates < -0.007 days-1 for 3R wheels. 
 
These scatterplots prove that there is some relationship between L/V ratio and wheels with 
excessive wear rates. More specifically, for those wheels indicated by a red marker, there is a 
strong positive relationship between the two variables. As a wheel’s L/V ratio increases, so too 
does its flange wear rate. This is the type of behavior that was anticipated. However, this 
relationship does not hold true for all wheels. The flange wear rates of those wheels indicated by 
a blue marker appear to be independent of L/V ratio. For these wheels, even though L/V ratio is 
varying, the flange wear rate stays within a very narrow range. Of particular interest are those blue 
markers in Figure 60. The measured L/V ratios are towards the upper end of the spectrum, but the 
flange wear rates are not as severe as some of the other wheels. This leads to the belief that another 
variable is controlling the wear rate for these wheels. However, when these plots are produced for 
angle of attack, tracking position, and speed, the relationships are still unclear. Yet, it can be stated 
that within the fleet of cars on the 7 line, there are differences in performance. Some cars may have 
proper steering capability and lateral stability, thus leading to a lower flange wear rate. Other cars 
however may have steering issues or truck issues that are leading to increased lateral forces and 
wear rate. Note that this idea stems from the behavior of those wheels in the 1R and 3R positions. 
At the site of the L/V Measurement System, these wheels are in the leading axle position and are 
traveling on the high rail. This means that they will experience the greatest lateral forces through 
the curve. Wheels in other positions exhibit different lateral force tendencies, and thus, their 
relationships with wear rate at the L/V Measurement System location may vary. Nonetheless, 
Figures 59 and 60 still lead to the conclusion that within this particular population of wheels, some 
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wheel wear rates have a strong dependence upon L/V ratio, while others appear to be more 
independent.  
 
This idea of L/V ratio dependence was further explored by further investigating those bad actor 
wheels as identified by the statistical performance bands. For all of the bad actor wheels in the 1R 
and 3R positions, plots of L/V ratio against wear rate were created and are shown in Figures 61 
and 62. 
 

 
 

Figure 61 Scatterplot of L/V ratio vs. wear rate for bad actor 1R wheels. 
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Figure 62 Scatterplot of L/V ratio vs. wear rate for bad actor 3R wheels. 
  
Again, it can be seen that some wheel wear rates have a strong dependence upon L/V ratio, while 
others appear to be more independent. Those bad actor wheels denoted by red markers have a 
strong dependence on L/V ratio, while those denoted by blue markers appear to be more 
independent. For those blue wheels, another variable is most likely leading to their higher rates of 
wear. At the moment, there is not enough available data to determine the cause of the excessive 
rates of wear in these wheels. Examinations of angle of attack, tracking position, and speed do not 
yield clear results. Future work shall include continuing to examine these wheels in order to 
determine what is attributing to their high rates of wear and poor performance. 
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CONCLUSIONS 

 
The purpose of this research was to the analyze the wear patterns of transit vehicle wheels in order 
to better understand their behavior and life cycle. Thanks to the vast network of instrumentation 
services installed as a part of NYCTA’s work; specifically, the KLD Automatic WheelScan; 
automated and frequent wheel inspection data was made available for every wheel in the study 
fleet. Initial exploratory data analysis proved that wheels were being trued on a regular basis. In 
order to maintain an acceptable flange thickness, wheels were trued back to their original unworn 
profile. Thus, exponential regression was utilized to calculate the wear rate of each wheel on every 
vehicle in the fleet, based upon the WheelScan data.  
 
The calculation of these wear rates allowed for a projection to when the next maintenance event 
will occur. In other words, it became possible to forecast the time until a given wheel will have a 
flange thickness of 24.2 mm, the NYCTA maintenance limit. Ultimately, these forecasts allow for 
an assessment of the performance of NYCTA’s vehicle fleet from a wheel wear perspective, and 
can be used to optimize current maintenance practices. It was found that on average, wheels in this 
particular fleet are being trued too early.  
 
In addition, advanced statistical techniques such as logistic regression were used in order to 
identify and predict which wheels in the fleet will perform poorly in terms of projected life. Such 
wheels can be classified as “bad actors”, and are important to identify so that they may be more 
regularly inspected, maintained, and replaced. Data that was made available from the L/V 
Measurement System and TBOGI was also used in order to better understand the behavior of these 
“bad acting” wheels. Based on the analyses that were conducted and presented, the following 
conclusions can be made as a result of this research: 
 
1. Based on the behavior of the wheel wear data and the results of the analysis, an exponential fit 

appears to be an appropriate method for calculating the wear rate of these particular wheels. 
Initially, linear regression was thought to provide an adequate representation of the fleet’s 
wheel wear. However, upon further investigation of the data, it was realized that linear 
regression would not be acceptable. The flange thickness of a new or recently trued wheel 
exhibited a sharp and rapid wearing in period, whereby the flange would wear at a higher rate 
early on and eventually settle into a steady wear rate. Typically, this type of behavior is thought 
of as an exponential decay. Thus, simple linear regression would not accurately portray the 
wheel’s behavior. Instead, a nonlinear regression analysis technique would be needed. This 
allowed for a more accurate prediction of wheel wear. However, there were some shortcomings 
associated with using exponential regression. By nature, exponential regression treats data 
asymptotically. This assumes that the wheels will continue to wear at a very slow rate once the 
initial sharp wear in period ends. In practice, this is most likely not the case. Defects can form 
in the wheel or the rail that can lead to accelerated wear. The exponential regression model 
cannot account for such factors. In addition, it is important to keep in mind that the calculated 
wear rates are based solely on time. In the rail industry, time is seldom used as a benchmark 
due to differences in tonnage and mileage. However, this data was not made available for this 
study, and thus could not be incorporated. Had this data been available, key information such 
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as vehicle out of service time and total mileage could have been used to produce more accurate 
wear rates. 

 
2. The wear rates that were calculated allowed for forecasting of when the next maintenance event 

is likely to occur. In other words, it became possible to forecast the time until a given wheel 
will have a flange thickness of 24.2 mm, the current NYCTA maintenance limit. Then, based 
on the rim thickness value, a decision must be made as to whether the wheel should be trued 
or replaced. From these forecasts, it was discovered that NYCTA may be truing their wheels 
too early. Rather than allowing the wheels to wear until the threshold, they are being trued 
before reaching their actual maintenance limit. This is a more conservative and safety-oriented 
approach. It is important to note that NYCTA trues on a truck basis; if one wheel on the truck 
reaches the maintenance limit, all four wheels are trued. This reduces the out-of-service time, 
and also maintains the lateral stability and effective conicity of the axle sets. The operational 
and economic effects of altering these practices should be examined.  
 

3. Within the overall population of wheels, there appears to be three different sub-populations 
based on their actual wear performance. There is a large group of wheels that are behaving as 
expected. Next, there is a slightly smaller group of wheels that are behaving better than 
expected. These subpopulations of wheels are exhibiting a very low rate of flange wear, and 
as such, can be classified as “good actors”. Lastly, there is a small group of wheels that are 
behaving worse than expected. This subpopulation of wheels is exhibiting a very high rate of 
flange wear, and as such, can be classified as “bad actors”.  It is of practical significance to be 
able to identify and understand these bad actor wheels, so that they may be more regularly 
inspected and maintained. 
 

4. A logistic regression model was built in order to predict the likelihood of a given wheel 
behaving as a “bad actor”. The wheel’s wear rate, last flange thickness measurement, average 
L/V ratio, average angle of attack, average tracking position, and average speed were used to 
build such a model. Upon construction, it was found that wear rate has the greatest impact on 
the probability of a wheel being a bad actor. Last flange thickness measurement and speed also 
played minor roles. The remaining variables on the other hand; L/V ratio, angle of attack, and 
tracking position; did not appear to have any impact whatsoever. This may be due to the fact 
that these variables were only measured at one point along the track. The model correctly 
identified 83.1 % of the “bad acting” wheels and 93.3 % of the “good acting” wheels. Overall, 
the logistic regression model operated at an accuracy of 92.1 %. Those wheels that were 
misclassified were just on the cusp of being a “bad actor”, as defined by the performance bands 
that were created. Thus, the model that was built was able to successfully identify those wheels 
at the extreme ends of the spectrum, but had difficulty differentiating between those wheels 
that are near the performance threshold.  
 

5. By correlating those wheels with excessive rates of flange wear with L/V ratio, it was found 
that wheels are behaving in two distinct ways. There are some wheels in the fleet whose high 
rate of flange wear is largely dependent on a high L/V ratio. On the other hand, there are other 
wheels in the fleet whose high rate of flange wear is largely independent of a high L/V ratio. 
Another unknown variable is likely controlling these excessive rates of wear. 
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RECOMMENDATIONS FOR FUTURE RESEARCH 
 
Based on the results of this thesis, there is a clear opportunity for further, more aggressive 
analysis using higher order data analytics. In general, there are two overall approaches that can 
be taken in a next phase analysis. The first would be a standard engineering-based approach, in 
which the available data is combined with existing railway engineering knowledge to draw 
conclusions. The second would be a higher-order big data analytics approach. The results of this 
research prove that certain big data techniques can be successfully applied to the available data. 
Performing such an analysis may yield to be more insightful than standard approaches. Specific 
tasks that can be explored in the future include: 
 
1. Gain a better understanding of the underlying causes for a wheel exhibiting a high rate of 

flange wear. The wide range of data streams that are available, in addition to higher order 
data analytics methods, can be used to find the root of poor wheel behavior.  
 

2. Continue to develop a logistic regression model that accurately predicts whether or not a 
given wheel will exhibit a high rate of flange wear, and thus be deemed a “bad actor”. By 
creating as accurate a model as possible, better maintenance decisions can be made for those 
wheels exhibiting poor behavior.  
 

3. Investigate additional regression methods that could be used to better calculate a flange wear 
rate for each wheel in the fleet. Other techniques, such as bilinear regression, could be more 
effective and should be considered. 
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APPENDIX 
 

Appendix A - VBA Code to Perform Exponential Regression 
 
Option Compare Database 
Option Explicit 
Type typRegData 
    nNumPts As Integer 
    nNumEvents As Integer 
    nEvents(1 To 5, 1 To 2) As Integer 
    fDiff(1 To 5) As Single 
    fX(1 To 100) As Single 
    fY(1 To 100) As Single 
    fZ(1 To 100) As Single 
End Type 
Type typCarData 
    nRim_Thickness As Single 
    nFlange_Angle As Single 
    nFlange_Height As Single 
    nFlange_Thickness As Single 
    nData_Quality As Single 
    nData_Quality_Binary As Single 
End Type 
Type typCarInfo 
    dDate As Date 
    tCarData(1 To 4, 1 To 2) As typCarData 
End Type 
Type typKLDData 
    nCarNum As Long 
    nNoDates As Long 
    tCarInfo(1 To 100) As typCarInfo 
End Type 
Type typDefRegResults 
    fInt As Single 
    fSlope As Single 
    fR2 As Single 
    fCycle As Integer 
    fXFirst As Single 
    fYFirst As Single 
    fXLast As Single 
    fYLast As Single 
    fDeltaFirstLast As Single 
    fYMin As Single 
    fXMin As Single 
    fYMax As Single 
    fXMax As Single 
    fDeltaMinMax As Single 
    fA As Double 
    fK As Double 
    fExpR2 As Double 
    fBiSlopeA As Single 
    fBiIntA As Single 
    fBiR2A As Single 
    fBiSlopeB As Single 
    fBiIntB As Single 
    fBiR2B As Single 
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End Type 
 
Private Sub subAddCars() 
Dim rsCarDataTemp As ADODB.Recordset 
Dim rsCars As ADODB.Recordset 
Dim rsCarData As ADODB.Recordset 
Dim nCarNum As Long 
Dim strSQL As String 
Dim nCtr As Integer, nCtr2 As Integer, nCtr3 As Integer 
Dim tKLDData As typKLDData 
Dim dTempDate As Date 
Dim nCarCtr As Integer, nAxleIndex As Integer, nSideIndex As Integer 
nCarCtr = 0 
     
    Set rsCarDataTemp = New ADODB.Recordset 
    rsCarDataTemp.ActiveConnection = CurrentProject.Connection 
    rsCarDataTemp.CursorType = adOpenKeyset 
    rsCarDataTemp.CursorLocation = adUseClient 
    rsCarDataTemp.LockType = adLockOptimistic 
    rsCarDataTemp.Open "DELETE * FROM [Temp Truing_Table]" 
    rsCarDataTemp.Open "SELECT * FROM [Temp Truing_Table]" 
     
    Set rsCars = New ADODB.Recordset 
    rsCars.ActiveConnection = CurrentProject.Connection 
    rsCars.CursorType = adOpenKeyset 
    rsCars.CursorLocation = adUseClient 
    rsCars.LockType = adLockOptimistic 
    rsCars.Open "SELECT DISTINCT [Vehicle_SN] FROM [ALL_KLD]" 
        If rsCars.EOF = False And rsCars.BOF = False Then 
            rsCars.MoveFirst 
            nCarCtr = 1 
            Do While Not rsCars.EOF 
                If Not IsNull(rsCars("Vehicle_SN")) Then 
                   If rsCars("Vehicle_SN") > 0 Then 
                        tKLDData.nCarNum = rsCars("Vehicle_SN") 
                        strSQL = "SELECT*FROM [ALL_KLD] WHERE [Vehicle_SN] = 
" & rsCars("Vehicle_SN") & " ORDER BY [Date], [Car_Axle], [Car_side]" 
'Selecting car #s (Vehicle_SN) from the table 
                         
                        Set rsCarData = New ADODB.Recordset 
                        rsCarData.ActiveConnection = 
CurrentProject.Connection 
                        rsCarData.CursorType = adOpenKeyset 
                        rsCarData.CursorLocation = adUseClient 
                        rsCarData.LockType = adLockOptimistic 
                        rsCarData.Open strSQL 
                         
                        If rsCarData.EOF = False And rsCarData.BOF = False 
Then 
                            rsCarData.MoveFirst 
                            dTempDate = rsCarData("Date") 
                            tKLDData.tCarInfo(nCarCtr).dDate = dTempDate 
                            Do While Not rsCarData.EOF 
                                If rsCarData("Date") = dTempDate Then 
                                    nAxleIndex = rsCarData("Car_Axle") 
                                    If (rsCarData("Car_Side") = "L") Then 
                                        nSideIndex = 1 
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                                    Else 
                                        nSideIndex = 2 
                                    End If 
                                    If Not IsNull(rsCarData("Rim_Thickness")) 
Then 
                                        
tKLDData.tCarInfo(nCarCtr).tCarData(nAxleIndex, nSideIndex).nRim_Thickness = 
rsCarData("Rim_Thickness") 
                                    Else 
                                        
tKLDData.tCarInfo(nCarCtr).tCarData(nAxleIndex, nSideIndex).nRim_Thickness = 
-9 
                                    End If 
                                    If Not IsNull(rsCarData("Flange_Angle")) 
Then 
                                        
tKLDData.tCarInfo(nCarCtr).tCarData(nAxleIndex, nSideIndex).nFlange_Angle = 
rsCarData("Flange_Angle") 
                                    Else 
                                        
tKLDData.tCarInfo(nCarCtr).tCarData(nAxleIndex, nSideIndex).nFlange_Angle = -
9 
                                    End If 
                                    If Not IsNull(rsCarData("Flange_Height")) 
Then 
                                        
tKLDData.tCarInfo(nCarCtr).tCarData(nAxleIndex, nSideIndex).nFlange_Height = 
rsCarData("Flange_Height") 
                                    Else 
                                        
tKLDData.tCarInfo(nCarCtr).tCarData(nAxleIndex, nSideIndex).nFlange_Height = 
-9 
                                    End If 
                                    If Not 
IsNull(rsCarData("Flange_Thickness")) Then 
                                        
tKLDData.tCarInfo(nCarCtr).tCarData(nAxleIndex, nSideIndex).nFlange_Thickness 
= rsCarData("Flange_Thickness") 
                                    Else 
                                        
tKLDData.tCarInfo(nCarCtr).tCarData(nAxleIndex, nSideIndex).nFlange_Thickness 
= -9 
                                    End If 
                                    If Not IsNull(rsCarData("Data_Quality")) 
Then 
                                        
tKLDData.tCarInfo(nCarCtr).tCarData(nAxleIndex, nSideIndex).nData_Quality = 
rsCarData("Data_Quality") 
                                    Else 
                                        
tKLDData.tCarInfo(nCarCtr).tCarData(nAxleIndex, nSideIndex).nData_Quality = -
9 
                                    End If 
                                    If Not 
IsNull(rsCarData("Data_Quality_Binary")) Then 
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tKLDData.tCarInfo(nCarCtr).tCarData(nAxleIndex, 
nSideIndex).nData_Quality_Binary = rsCarData("Data_Quality_Binary") 
                                    Else 
                                        
tKLDData.tCarInfo(nCarCtr).tCarData(nAxleIndex, 
nSideIndex).nData_Quality_Binary = -9 
                                    End If 
                                   rsCarData.MoveNext 
                               Else 
                                    nCarCtr = nCarCtr + 1 
                                    dTempDate = rsCarData("Date") 
                                    tKLDData.tCarInfo(nCarCtr).dDate = 
dTempDate 
                               End If 
                            Loop 
                            tKLDData.nNoDates = nCarCtr 
                 
                            For nCtr = 1 To nCarCtr 
                                For nCtr2 = 1 To 4 '1 
                                     For nCtr3 = 1 To 2 '1 
                                        rsCarDataTemp.AddNew 
                                        rsCarDataTemp("Vehicle_SN") = 
tKLDData.nCarNum 
                                        rsCarDataTemp("Date") = 
tKLDData.tCarInfo(nCtr).dDate 
                                        rsCarDataTemp("Car_Axle") = nCtr2 
                                        rsCarDataTemp("Car_Side") = nCtr3 
                                        rsCarDataTemp("Rim_Thickness") = 
tKLDData.tCarInfo(nCtr).tCarData(nCtr2, nCtr3).nRim_Thickness 
                                        rsCarDataTemp("Flange_Angle") = 
tKLDData.tCarInfo(nCtr).tCarData(nCtr2, nCtr3).nFlange_Angle 
                                        rsCarDataTemp("Flange_Height") = 
tKLDData.tCarInfo(nCtr).tCarData(nCtr2, nCtr3).nFlange_Height 
                                        rsCarDataTemp("Flange_Thickness") = 
tKLDData.tCarInfo(nCtr).tCarData(nCtr2, nCtr3).nFlange_Thickness 
                                        rsCarDataTemp("Data_Quality") = 
tKLDData.tCarInfo(nCtr).tCarData(nCtr2, nCtr3).nData_Quality 
                                        rsCarDataTemp("Data_Quality_Binary") 
= tKLDData.tCarInfo(nCtr).tCarData(nCtr2, nCtr3).nData_Quality_Binary 
                              
                                       rsCarDataTemp.Update 
                                    Next nCtr3 
                                Next nCtr2 
                            Next nCtr 
                   
                            Call subAnalyzeCar(tKLDData) 
                             
                            nCarCtr = 1 
                        End If 
                    rsCarData.Close 
                    End If 
                End If 
                 rsCars.MoveNext 
            Loop 
            Else 
                MsgBox "No Data Found" 
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        End If 
        rsCars.Close 
        MsgBox "DONE!" 
End Sub 
 
Sub subAnalyzeCar(tData As typKLDData) 
Dim nCtr As Integer, nCtr2 As Integer, nCtr3 As Integer 
Dim tRegData As typRegData, tRegData2 As typRegData, tRegData3 As typRegData 
Dim tresults As typDefRegResults 
Dim rsRegression As ADODB.Recordset, rsClean As ADODB.Recordset 
Dim t As Integer, t2 As Integer, t3 As Integer 
Dim nStart As Integer, nStop As Integer 
Dim Truing As String 
Dim Replacement As String 
Dim Wheel As String 
Dim DiffBefore As Single 
Dim DiffAfter As Single 
 
 
Set rsRegression = New ADODB.Recordset 
    rsRegression.ActiveConnection = CurrentProject.Connection 
    rsRegression.CursorType = adOpenKeyset 
    rsRegression.CursorLocation = adUseClient 
    rsRegression.LockType = adLockOptimistic 
    rsRegression.Open "SELECT * FROM [RegTableNEW]" 
     
 Set rsClean = New ADODB.Recordset 
    rsClean.ActiveConnection = CurrentProject.Connection 
    rsClean.CursorType = adOpenKeyset 
    rsClean.CursorLocation = adUseClient 
    rsClean.LockType = adLockOptimistic 
    rsClean.Open "SELECT * FROM [Cleaned Truing Table]" 
 
    For nCtr2 = 1 To 4 
        For nCtr3 = 1 To 2 
            For nCtr = 1 To tData.nNoDates 
                If tData.tCarInfo(nCtr).tCarData(nCtr2, 
nCtr3).nData_Quality_Binary = 1 Then 
                    tRegData.nNumPts = tRegData.nNumPts + 1 
                    tRegData.fX(tRegData.nNumPts) = 
tData.tCarInfo(nCtr).dDate 
                    tRegData.fY(tRegData.nNumPts) = 
tData.tCarInfo(nCtr).tCarData(nCtr2, nCtr3).nFlange_Thickness 
                    tRegData.fZ(tRegData.nNumPts) = 
tData.tCarInfo(nCtr).tCarData(nCtr2, nCtr3).nRim_Thickness 
                     
                    rsClean.AddNew 
                    rsClean("Date") = tData.tCarInfo(nCtr).dDate 
                    rsClean("Flange_Thickness") = 
tData.tCarInfo(nCtr).tCarData(nCtr2, nCtr3).nFlange_Thickness 
                    rsClean("Rim_Thickness") = 
tData.tCarInfo(nCtr).tCarData(nCtr2, nCtr3).nRim_Thickness 
                    rsClean("Vehicle_SN") = tData.nCarNum 
                    rsClean("Car_Axle") = nCtr2 
                    rsClean("Car_Side") = nCtr3 
                    rsClean.Update 
                End If 



 86 

            Next nCtr 
            tRegData2.nNumPts = 1 
            tRegData2.fX(1) = tRegData.fX(1) 
            tRegData2.fY(1) = tRegData.fY(1) 
            tRegData2.fZ(1) = tRegData.fZ(1) 
            For t = 2 To tRegData.nNumPts - 1 
                If Not ((Abs(tRegData.fZ(t - 1) - tRegData.fZ(t)) > 8#) And 
(Abs(tRegData.fZ(t + 1) - tRegData.fZ(t)) > 8#)) Then 
                    tRegData2.nNumPts = tRegData2.nNumPts + 1 
                    tRegData2.fX(tRegData2.nNumPts) = tRegData.fX(t) 
                    tRegData2.fY(tRegData2.nNumPts) = tRegData.fY(t) 
                    tRegData2.fZ(tRegData2.nNumPts) = tRegData.fZ(t) 
                End If 
            Next t 
            tRegData2.nNumPts = tRegData2.nNumPts + 1 
            tRegData2.fX(tRegData2.nNumPts) = tRegData.fX(t) 
            tRegData2.fY(tRegData2.nNumPts) = tRegData.fY(t) 
            tRegData2.fZ(tRegData2.nNumPts) = tRegData.fZ(t) 
             
            tRegData2.nNumEvents = 0 
            For t = 1 To tRegData2.nNumPts - 1 
                If ((tRegData2.fZ(t + 1) - tRegData2.fZ(t)) < -6#) Then 
                    tRegData2.nNumEvents = tRegData2.nNumEvents + 1 
                    tRegData2.nEvents(tRegData2.nNumEvents, 1) = t 
                    tRegData2.nEvents(tRegData2.nNumEvents, 2) = 1 
                    tRegData2.fDiff(tRegData2.nNumEvents) = (tRegData2.fZ(t + 
1) - tRegData2.fZ(t)) 
                ElseIf ((tRegData2.fZ(t + 1) - tRegData2.fZ(t)) > 6#) Then 
                    tRegData2.nNumEvents = tRegData2.nNumEvents + 1 
                    tRegData2.nEvents(tRegData2.nNumEvents, 1) = t 
                    tRegData2.nEvents(tRegData2.nNumEvents, 2) = 2 
                    tRegData2.fDiff(tRegData2.nNumEvents) = (tRegData2.fZ(t + 
1) - tRegData2.fZ(t)) 
                Else 
                End If 
            Next t 
 
            If tRegData2.nNumEvents = 0 Then 
                tresults = fncLinearRegression(tRegData2) 
                rsRegression.AddNew 
                rsRegression("Vehicle_SN") = tData.nCarNum 
                rsRegression("Car_Axle") = nCtr2 
                rsRegression("Car_Side") = nCtr3 
                rsRegression("FT_Slope") = tresults.fSlope 
                rsRegression("Intercept") = tresults.fInt 
                rsRegression("R2") = tresults.fR2 
                rsRegression("NumPts") = tRegData2.nNumPts 
                rsRegression("Cycle Time") = tresults.fCycle 
                rsRegression("XFirst") = tresults.fXFirst 
                rsRegression("YFirst") = tresults.fYFirst 
                rsRegression("XLast") = tresults.fXLast 
                rsRegression("YLast") = tresults.fYLast 
                rsRegression("DeltaFirstLast") = tresults.fDeltaFirstLast 
                rsRegression("YMin") = tresults.fYMin 
                rsRegression("XMin") = tresults.fXMin 
                rsRegression("YMax") = tresults.fYMax 
                rsRegression("XMax") = tresults.fXMax 
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                rsRegression("DeltaMinMax") = tresults.fDeltaMinMax 
                rsRegression("A") = tresults.fA 
                rsRegression("k") = tresults.fK 
                rsRegression("ExpR2") = tresults.fExpR2 
                rsRegression("BiSlopeA") = tresults.fBiSlopeA 
                rsRegression("BiIntA") = tresults.fBiIntA 
                rsRegression("BiR2A") = tresults.fBiR2A 
                rsRegression("BiSlopeB") = tresults.fBiSlopeB 
                rsRegression("BiIntB") = tresults.fBiIntB 
                rsRegression("BiR2B") = tresults.fBiR2B 
                rsRegression("Rim Change Before") = 0# 
                rsRegression("Rim Change After") = 0# 
                rsRegression.Update 
            Else 
                For t = 1 To (tRegData2.nNumEvents + 1) 
                    If t = 1 Then 
                        nStart = 1 
                        nStop = tRegData2.nEvents(t, 1) 
                        DiffBefore = 0# 
                        DiffAfter = tRegData2.fDiff(t) 
                    ElseIf t = (tRegData2.nNumEvents + 1) Then 
                        nStart = tRegData2.nEvents(t - 1, 1) + 1 
                        nStop = tRegData2.nNumPts 
                        DiffBefore = tRegData2.fDiff(t - 1) 
                        DiffAfter = 0# 
                    Else 
                        nStart = tRegData2.nEvents(t - 1, 1) + 1 
                        nStop = tRegData2.nEvents(t, 1) 
                        DiffBefore = tRegData2.fDiff(t - 1) 
                        DiffAfter = tRegData2.fDiff(t) 
                    End If 
                    tRegData3.nNumPts = (nStop - nStart) + 1 
                    For t3 = nStart To nStop 
                        tRegData3.fX(t3 - nStart + 1) = tRegData2.fX(t3) 
                        tRegData3.fY(t3 - nStart + 1) = tRegData2.fY(t3) 
                        tRegData3.fZ(t3 - nStart + 1) = tRegData2.fZ(t3) 
                    Next t3 
 
                    If DiffBefore = 0 And DiffAfter = 0 Then 
                        Wheel = "No maintenance" 
                    Else 
                        Wheel = "Maintenance" 
                    End If 
                     
                    If tRegData3.nNumPts > 1 Then 
                        tresults = fncLinearRegression(tRegData3) 
                        rsRegression.AddNew 
                        rsRegression("Vehicle_SN") = tData.nCarNum 
                        rsRegression("Car_Axle") = nCtr2 
                        rsRegression("Car_Side") = nCtr3 
                        rsRegression("FT_Slope") = tresults.fSlope 
                        rsRegression("Intercept") = tresults.fInt 
                        rsRegression("R2") = tresults.fR2 
                        rsRegression("NumPts") = tRegData3.nNumPts 
                        rsRegression("Cycle Time") = tresults.fCycle 
                        rsRegression("XFirst") = tresults.fXFirst 
                        rsRegression("YFirst") = tresults.fYFirst 
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                        rsRegression("XLast") = tresults.fXLast 
                        rsRegression("YLast") = tresults.fYLast 
                        rsRegression("DeltaFirstLast") = 
tresults.fDeltaFirstLast 
                        rsRegression("YMin") = tresults.fYMin 
                        rsRegression("XMin") = tresults.fXMin 
                        rsRegression("YMax") = tresults.fYMax 
                        rsRegression("XMax") = tresults.fXMax 
                        rsRegression("DeltaMinMax") = tresults.fDeltaMinMax 
                        rsRegression("A") = tresults.fA 
                        rsRegression("k") = tresults.fK 
                        rsRegression("ExpR2") = tresults.fExpR2 
                        rsRegression("BiSlopeA") = tresults.fBiSlopeA 
                        rsRegression("BiIntA") = tresults.fBiIntA 
                        rsRegression("BiR2A") = tresults.fBiR2A 
                        rsRegression("BiSlopeB") = tresults.fBiSlopeB 
                        rsRegression("BiIntB") = tresults.fBiIntB 
                        rsRegression("BiR2B") = tresults.fBiR2B 
                        rsRegression("Rim Change Before") = DiffBefore 
                        rsRegression("Rim Change After") = DiffAfter 
                        rsRegression("Wheel") = Wheel 
                        rsRegression.Update 
                    End If 
                Next t 
            End If 
             
            tRegData.nNumPts = 0 
            
        Next nCtr3 
    Next nCtr2 
 
End Sub 
 
Private Function fncLinearRegression(ByRef tData As typRegData) As 
typDefRegResults 
Dim nCtr As Integer 
Dim N As Double 
Dim Xsum As Double 
Dim Ysum As Double 
Dim XY As Double 
Dim XYsum As Double 
Dim X2sum As Double 
Dim Y2sum As Double 
Dim fSlope As Double, fInt As Double, fR2 As Double 
Dim fCycle As Integer 
 
Dim fXFirst As Single 
Dim fYFirst As Single 
Dim fXLast As Single 
Dim fYLast As Single 
Dim fDeltaFirstLast As Single 
Dim i As Double 
Dim iCtr As Integer 
Dim fYMin As Single 
Dim fXMin As Single 
Dim j As Double 
Dim jCtr As Integer 
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Dim fYMax As Single 
Dim fXMax As Single 
Dim fDeltaMinMax As Single 
 
Dim fA As Double 
Dim fK As Double 
Dim fExpR2 As Double 
Dim expM As Single 
Dim expB As Single 
Dim nexpCtr As Integer 
Dim expN As Double 
Dim expXsum As Double 
Dim expYsum As Double 
Dim expXY As Double 
Dim expXYsum As Double 
Dim expX2sum As Double 
Dim expY2sum As Double 
Dim StartDate As Single, EndDate As Single 
Dim Numerator As Double, Denominator As Double 
 
Dim fBiSlopeA As Single 
Dim fBiIntA As Single 
Dim fBiR2A As Single 
Dim fBiSlopeB As Single 
Dim fBiIntB As Single 
Dim fBiR2B As Single 
Dim nBiCtrA As Integer 
Dim BiNA As Integer 
Dim BiXsumA As Single 
Dim BiYsumA As Single 
Dim BiXYA As Single 
Dim BiXYsumA As Single 
Dim BiX2sumA As Single 
Dim BiY2sumA As Single 
Dim nBiCtrB As Integer 
Dim BiNB As Integer 
Dim BiXsumB As Single 
Dim BiYsumB As Single 
Dim BiXYB As Single 
Dim BiXYsumB As Single 
Dim BiX2sumB As Single 
Dim BiY2sumB As Single 
 
Dim sStrX As String, sStrY As String, expsStrX As String, expsStrY As String 
sStrX = "" 
sStrY = "" 
expsStrX = "" 
expsStrY = "" 
 
Dim tRegData As typRegData 
     
    Xsum = 0# 
    Ysum = 0# 
    XY = 0# 
    XYsum = 0# 
    X2sum = 0# 
    Y2sum = 0# 
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    N = CSng(tData.nNumPts) 
    For nCtr = 1 To tData.nNumPts 
        Xsum = Xsum + tData.fX(nCtr) 
        Ysum = Ysum + tData.fY(nCtr) 
        XY = tData.fX(nCtr) * tData.fY(nCtr) 
        XYsum = XYsum + XY 
        X2sum = X2sum + (tData.fX(nCtr) ^ 2) 
        Y2sum = Y2sum + (tData.fY(nCtr) ^ 2) 
         
        sStrX = sStrX & tData.fX(nCtr) & ", " 
        sStrY = sStrY & tData.fY(nCtr) & ", " 
     
    Next nCtr 
     
    StartDate = tData.fX(1) 
    EndDate = tData.fX(tData.nNumPts) 
 
    fInt = (Ysum * X2sum - Xsum * XYsum) / (N * X2sum - (Xsum) ^ 2) 
    fSlope = (N * XYsum - Xsum * Ysum) / (N * X2sum - (Xsum) ^ 2) 
    If fSlope <> 0 Then 
        fR2 = (N * XYsum - Xsum * Ysum) ^ 2 / ((N * X2sum - (Xsum) ^ 2) * (N 
* Y2sum - (Ysum) ^ 2)) 
    End If 
    fCycle = EndDate - StartDate 
 
    expXsum = 0# 
    expYsum = 0# 
    expXY = 0# 
    expXYsum = 0# 
    expX2sum = 0# 
    expY2sum = 0# 
     
    expN = CSng(tData.nNumPts) 
    For nexpCtr = 1 To tData.nNumPts 
        expXsum = expXsum + (tData.fX(nexpCtr) - 42886) 
        expYsum = expYsum + Log(tData.fY(nexpCtr)) 
        expXY = (tData.fX(nexpCtr) - 42886) * Log(tData.fY(nexpCtr)) 
        expXYsum = expXYsum + expXY 
        expX2sum = expX2sum + ((tData.fX(nexpCtr) - 42886) ^ 2) 
        expY2sum = expY2sum + Log(tData.fY(nexpCtr)) ^ 2 
         
        expsStrX = expsStrX & tData.fX(nexpCtr) & ", " 
        expsStrY = expsStrY & tData.fY(nexpCtr) & ", " 
    Next nexpCtr 
     
    expB = (expYsum * expX2sum - expXsum * expXYsum) / (expN * expX2sum - 
(expXsum) ^ 2) 
    expM = (expN * expXYsum - expXsum * expYsum) / (expN * expX2sum - 
(expXsum) ^ 2) 
    If expM <> 0 Then 
        Numerator = (expN * expXYsum - expXsum * expYsum) ^ 2 
        Denominator = ((expN * expX2sum - (expXsum) ^ 2) * (expN * expY2sum - 
(expYsum) ^ 2)) 
        If Denominator <> 0 Then 
            fExpR2 = Numerator / Denominator 
        End If 
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    End If 
     
    If expB < 500 Then 
        fA = ((2.71828) ^ expB) 
        fK = (expM) 
    Else 
        fA = 0# 
        fK = 0# 
    End If 
 
    fXFirst = tData.fX(1) 
    fYFirst = tData.fY(1) 
    fXLast = tData.fX(tData.nNumPts) 
    fYLast = tData.fY(tData.nNumPts) 
     
    If tData.nNumPts = 2 Then 
        fDeltaFirstLast = 0# 
    Else 
        fDeltaFirstLast = Abs((fYLast - fYFirst) / (fXLast - fXFirst)) 
    End If 
     
    i = CSng(tData.nNumPts) 
    fYMin = tData.fY(1) 
    fXMin = tData.fX(1) 
    For iCtr = 1 To tData.nNumPts 
        If tData.fY(iCtr) <= fYMin Then 
            fYMin = tData.fY(iCtr) 
            fXMin = tData.fX(iCtr) 
        Else 
            fYMin = fYMin 
            fXMin = fXMin 
        End If 
    Next iCtr 
     
    j = CSng(tData.nNumPts) 
    fYMax = tData.fY(1) 
    fXMax = tData.fX(1) 
    For jCtr = 1 To tData.nNumPts 
        If tData.fY(jCtr) >= fYMax Then 
            fYMax = tData.fY(jCtr) 
            fXMax = tData.fX(jCtr) 
        Else 
            fYMax = fYMax 
            fXMax = fXMax 
        End If 
    Next jCtr 
     
    If tData.nNumPts = 2 Then 
        fDeltaMinMax = 0# 
    Else 
        fDeltaMinMax = Abs((fYMax - fYMin) / (fXMax - fXMin)) 
    End If 
 
    fncLinearRegression.fInt = fInt 
    fncLinearRegression.fSlope = fSlope 
    fncLinearRegression.fR2 = fR2 
    fncLinearRegression.fCycle = fCycle 
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    fncLinearRegression.fXFirst = fXFirst 
    fncLinearRegression.fYFirst = fYFirst 
    fncLinearRegression.fXLast = fXLast 
    fncLinearRegression.fYLast = fYLast 
    fncLinearRegression.fDeltaFirstLast = fDeltaFirstLast 
    fncLinearRegression.fYMin = fYMin 
    fncLinearRegression.fXMin = fXMin 
    fncLinearRegression.fYMax = fYMax 
    fncLinearRegression.fXMax = fXMax 
    fncLinearRegression.fDeltaMinMax = fDeltaMinMax 
    fncLinearRegression.fA = fA 
    fncLinearRegression.fK = fK 
    fncLinearRegression.fExpR2 = fExpR2 
    fncLinearRegression.fBiSlopeA = fBiSlopeA 
    fncLinearRegression.fBiIntA = fBiIntA 
    fncLinearRegression.fBiR2A = fBiR2A 
    fncLinearRegression.fBiSlopeB = fBiSlopeB 
    fncLinearRegression.fBiIntB = fBiIntB 
    fncLinearRegression.fBiR2B = fBiR2B 
     
    StartDate = 0 
    EndDate = 0 
 
End Function 
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Appendix B - Scatterplot Matrices for All Wheels 
 

 

Figure B1 Wheel 1L scatterplot matrix. 
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Figure B2 Wheel 1R scatterplot matrix. 

 

Figure B3 Wheel 2L scatterplot matrix. 
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 Figure B4 Wheel 2R scatterplot matrix. 

 

Figure B5 Wheel 3L scatterplot matrix. 
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Figure B6 Wheel 3R scatterplot matrix. 

 

Figure B7 Wheel 4L scatterplot matrix. 
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Figure B8 Wheel 4R scatterplot matrix. 
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Appendix C - List of Bad Actor Wheels 
 

Table C1 List of Bad Actor Wheels Identified by Performance Bands 

Vehicle No. Car Axle Car Side k (1/days) Ylast (mm) Life (days) 
7212 1 Right -0.00086 28.180 363 
7212 2 Right -0.00102 27.820 322 
7212 3 Right -0.00081 28.410 382 
7212 4 Right -0.00103 27.290 302 
7213 1 Left -0.00053 30.030 530 
7213 1 Right -0.00077 27.540 289 
7213 2 Left -0.00113 27.080 221 
7213 2 Right -0.00105 26.590 211 
7213 3 Left -0.00052 29.600 509 
7213 3 Right -0.00079 27.470 280 
7213 4 Left -0.00069 29.240 396 
7213 4 Right -0.00068 28.590 364 
7231 1 Right -0.00052 29.790 555 
7231 2 Left -0.00058 29.620 501 
7231 2 Right -0.00067 29.260 435 
7231 4 Right -0.00061 29.540 481 
7232 2 Left -0.00051 30.260 592 
7232 2 Right -0.00058 29.650 505 
7232 4 Left -0.00054 30.320 570 
7232 4 Right -0.00054 30.020 549 
7233 1 Right -0.00054 29.450 520 
7233 2 Right -0.00055 30.030 542 
7233 4 Right -0.00057 29.860 520 
7234 1 Right -0.00057 29.330 488 
7234 2 Right -0.00051 29.830 562 
7235 1 Left -0.00059 29.590 493 
7235 1 Right -0.00049 30.520 627 
7235 2 Left -0.00055 29.540 515 
7235 3 Left -0.00049 30.510 630 
7238 1 Left -0.00077 28.010 337 
7239 3 Left -0.00056 29.290 487 
7239 4 Left -0.00089 27.620 295 
7249 4 Right -0.00058 26.910 262 
7261 1 Right -0.00085 28.020 378 
7261 3 Right -0.00079 28.390 408 
7261 4 Right -0.00093 27.930 360 
7262 1 Right -0.00076 28.420 416 
7262 2 Right -0.00065 29.350 502 
7262 3 Right -0.00065 29.060 486 
7262 4 Right -0.00077 28.570 422 
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Vehicle No. Car Axle Car Side k (1/days) Ylast (mm) Life (days) 
7263 1 Right -0.00084 28.360 394 
7263 2 Right -0.00070 28.900 460 
7264 1 Right -0.00084 28.100 384 
7264 2 Right -0.00087 27.980 373 
7264 3 Right -0.00067 29.270 488 
7265 1 Left -0.00079 28.770 424 
7265 2 Left -0.00080 28.370 404 
7265 4 Left -0.00092 27.840 358 
7296 2 Left -0.00073 29.440 523 
7316 1 Left -0.00082 29.310 422 
7316 2 Left -0.00089 28.430 370 
7316 3 Left -0.00057 30.090 573 
7316 4 Left -0.00082 28.860 403 
7317 1 Right -0.00099 28.730 362 
7317 2 Right -0.00060 30.150 555 
7317 3 Right -0.00083 29.370 421 
7317 4 Right -0.00056 30.320 589 
7318 1 Left -0.00077 28.140 385 
7318 1 Right -0.00119 27.510 296 
7318 2 Left -0.00068 28.790 446 
7318 2 Right -0.00076 29.700 457 
7318 3 Right -0.00062 29.980 534 
7318 4 Right -0.00062 30.200 543 
7319 1 Right -0.00112 28.020 319 
7319 2 Right -0.00072 29.580 468 
7319 3 Right -0.00083 28.840 399 
7319 4 Right -0.00060 30.420 570 
7320 1 Right -0.00084 28.910 400 
7320 2 Right -0.00087 28.880 392 
7320 3 Right -0.00105 28.570 347 
7320 4 Right -0.00066 29.750 504 
7355 4 Right -0.00094 28.470 237 
7371 1 Left -0.00081 29.500 304 
7372 1 Left -0.00069 29.960 372 
7372 2 Right -0.00051 31.260 565 
7372 3 Left -0.00051 30.190 494 
7373 1 Left -0.00089 29.260 275 
7419 3 Left -0.00050 30.970 560 
7419 4 Left -0.00056 30.250 465 
7446 2 Right -0.00090 28.420 392 
7446 4 Right -0.00096 28.160 373 
7447 2 Left -0.00085 28.400 403 
7447 3 Left -0.00079 28.370 414 
7447 4 Left -0.00083 28.490 411 
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Vehicle No. Car Axle Car Side k (1/days) Ylast (mm) Life (days) 
7448 1 Left -0.00085 28.360 401 
7448 3 Left -0.00076 28.640 437 
7448 4 Left -0.00081 28.480 415 
7449 2 Left -0.00082 28.280 404 
7449 4 Left -0.00076 28.720 439 
7476 1 Right -0.00081 30.150 341 
7476 2 Right -0.00083 30.050 327 
7476 3 Right -0.00077 29.920 343 
7476 4 Right -0.00082 30.160 338 
7477 1 Left -0.00077 30.210 357 
7477 2 Left -0.00077 30.070 349 
7477 2 Right -0.00042 31.580 695 
7477 3 Left -0.00054 31.060 532 
7477 4 Left -0.00073 30.410 380 
7477 4 Right -0.00042 31.640 701 
7478 1 Left -0.00080 30.260 347 
7478 2 Left -0.00058 30.310 453 
7478 3 Left -0.00082 30.320 343 
7478 4 Left -0.00075 30.360 370 
7479 2 Left -0.00083 27.940 240 
7479 3 Left -0.00069 28.960 327 
7480 1 Left -0.00085 30.360 336 
7480 3 Left -0.00075 30.250 366 
7480 4 Right -0.00042 31.430 689 
7501 1 Left -0.00052 30.160 495 
7503 3 Left -0.00053 30.410 506 
7505 4 Right -0.00057 29.840 545 
7511 1 Right -0.00062 29.310 488 
7511 2 Left -0.00069 28.420 413 
7511 3 Left -0.00072 28.190 390 
7512 1 Right -0.00062 29.050 475 
7513 1 Right -0.00067 28.730 435 
7513 2 Left -0.00073 28.150 385 
7514 1 Right -0.00058 29.540 525 
7514 3 Right -0.00062 29.020 473 
7515 2 Left -0.00067 29.160 459 
7515 4 Left -0.00063 29.340 484 
7541 1 Right -0.00106 27.450 322 
7541 2 Right -0.00077 28.860 432 
7541 3 Right -0.00087 28.450 388 
7541 4 Right -0.00074 28.980 447 
7542 1 Right -0.00088 28.360 383 
7542 2 Right -0.00081 28.250 393 
7542 3 Right -0.00078 28.690 421 
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Vehicle No. Car Axle Car Side k (1/days) Ylast (mm) Life (days) 
7542 4 Right -0.00059 29.800 557 
7545 1 Left -0.00060 29.110 437 
7545 2 Left -0.00079 28.030 314 
7545 2 Right -0.00086 27.490 278 
7547 2 Right -0.00095 28.920 247 
7548 4 Left -0.00065 29.330 504 
7550 2 Right -0.00082 29.450 298 
7550 4 Right -0.00098 28.890 240 
7551 1 Left -0.00056 29.590 437 
7552 1 Left -0.00059 28.750 369 
7552 3 Left -0.00055 29.740 453 
7555 2 Right -0.00054 29.140 418 
7558 1 Right -0.00069 28.570 409 
7560 1 Left -0.00075 28.230 272 
7565 2 Left -0.00069 29.420 483 
7565 3 Left -0.00057 30.000 578 
7565 4 Left -0.00057 30.170 584 
7567 2 Left -0.00079 29.150 466 
7568 3 Left -0.00066 29.630 539 
7568 4 Left -0.00069 29.430 512 
7570 1 Left -0.00076 29.140 474 
7570 2 Left -0.00077 29.280 478 
7570 3 Left -0.00091 28.390 406 
7570 4 Left -0.00065 29.850 551 
7572 4 Right -0.00067 28.730 326 
7574 2 Right -0.00076 27.970 261 
7574 4 Right -0.00054 29.020 405 
7575 1 Left -0.00067 28.510 315 
7575 3 Left -0.00058 29.290 401 
7576 1 Right -0.00074 28.390 299 
7576 2 Left -0.00060 28.410 350 
7576 3 Right -0.00105 27.660 279 
7576 4 Left -0.00077 27.560 321 
7576 4 Right -0.00062 28.290 403 
7577 1 Left -0.00092 28.850 274 
7578 1 Left -0.00077 28.700 303 
7578 1 Right -0.00074 28.190 289 
7579 2 Right -0.00070 28.760 328 
7579 3 Left -0.00074 29.900 366 
7579 4 Right -0.00059 29.100 394 
7580 1 Left -0.00085 27.770 244 
7580 2 Right -0.00081 28.680 291 
7580 3 Left -0.00099 27.100 196 
7580 4 Right -0.00088 28.500 268 
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Vehicle No. Car Axle Car Side k (1/days) Ylast (mm) Life (days) 
7581 3 Left -0.00085 28.830 267 
7582 3 Left -0.00057 30.710 480 
7584 1 Left -0.00078 29.150 298 
7585 2 Left -0.00070 26.860 224 
7585 2 Right -0.00066 26.590 218 
7585 4 Left -0.00058 28.210 339 
7585 4 Right -0.00056 27.520 303 
7811 1 Right -0.00068 29.560 487 
7811 2 Right -0.00060 29.730 539 
7811 3 Left -0.00075 28.330 405 
7811 3 Right -0.00093 28.190 358 
7811 4 Right -0.00068 29.440 483 
7812 1 Right -0.00071 29.340 467 
7812 2 Right -0.00068 29.600 492 
7812 3 Right -0.00062 29.920 537 
7812 4 Right -0.00064 29.840 524 
7813 1 Right -0.00089 28.340 372 
7813 2 Right -0.00057 30.110 574 
7813 3 Right -0.00069 29.460 480 
7814 1 Right -0.00081 28.460 394 
7814 3 Right -0.00097 28.470 362 
7814 4 Right -0.00068 29.160 469 
7815 1 Left -0.00057 30.250 589 
7815 2 Left -0.00095 28.190 355 
7815 3 Left -0.00055 30.180 595 
7815 4 Left -0.00099 28.360 354 
7816 1 Left -0.00069 30.050 529 
7816 1 Right -0.00073 28.820 455 
7816 2 Left -0.00089 28.810 412 
7816 2 Right -0.00080 28.890 435 
7816 3 Left -0.00064 29.910 544 
7816 4 Left -0.00090 28.860 411 
7817 1 Right -0.00083 28.870 428 
7817 3 Right -0.00079 29.970 487 
7817 4 Left -0.00070 28.890 468 
7818 1 Right -0.00089 29.010 418 
7818 2 Right -0.00061 30.260 578 
7818 3 Right -0.00067 30.240 546 
7818 4 Right -0.00065 30.650 578 
7819 1 Right -0.00092 29.030 413 
7819 3 Left -0.00084 28.560 412 
7819 3 Right -0.00097 28.990 401 
7819 4 Right -0.00062 30.440 587 
7820 1 Right -0.00082 29.360 450 
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Vehicle No. Car Axle Car Side k (1/days) Ylast (mm) Life (days) 
7820 2 Right -0.00057 30.710 631 
7820 3 Right -0.00074 30.160 515 
7820 4 Right -0.00063 30.230 568 
7821 1 Right -0.00076 29.610 480 
7821 2 Left -0.00087 28.140 389 
7821 2 Right -0.00068 29.780 519 
7821 3 Right -0.00114 27.770 336 
7821 4 Left -0.00087 28.170 390 
7821 4 Right -0.00065 30.490 572 
7849 1 Right -0.00071 29.720 525 
7849 4 Right -0.00061 30.300 605 
7850 1 Left -0.00068 29.650 531 
7850 4 Left -0.00071 29.220 498 
7851 2 Left -0.00097 28.440 401 
7852 2 Left -0.00096 28.120 390 
7853 2 Left -0.00084 28.520 429 
7853 4 Left -0.00073 29.070 485 
7854 4 Left -0.00089 28.300 409 
7860 1 Right -0.00077 28.870 426 
7860 3 Right -0.00083 28.690 403 
7861 2 Left -0.00070 29.600 486 
7861 4 Left -0.00080 29.120 429 
7862 2 Left -0.00080 28.820 414 
7862 4 Left -0.00074 29.140 447 
7863 2 Left -0.00070 29.160 465 
7863 4 Left -0.00087 28.670 391 
7864 2 Left -0.00076 28.750 423 
7864 4 Left -0.00070 29.290 468 
7865 2 Left -0.00083 28.890 411 
7865 4 Left -0.00080 28.760 413 
7877 1 Left -0.00061 30.440 593 
7877 2 Left -0.00098 28.490 386 
7877 3 Left -0.00058 30.690 627 
7877 4 Left -0.00079 29.610 475 
7878 1 Left -0.00064 30.500 580 
7878 2 Left -0.00088 28.800 417 
7878 3 Left -0.00073 30.150 521 
7878 4 Left -0.00077 29.470 475 
7879 1 Left -0.00058 30.580 624 
7879 2 Left -0.00071 30.130 529 
7879 3 Left -0.00058 30.420 611 
7879 4 Left -0.00069 29.990 529 
7880 1 Left -0.00080 29.210 453 
7880 2 Left -0.00094 28.480 392 
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Vehicle No. Car Axle Car Side k (1/days) Ylast (mm) Life (days) 
7880 3 Left -0.00058 30.670 626 
7880 4 Left -0.00069 30.410 549 
7881 1 Right -0.00067 30.040 541 
7881 2 Right -0.00066 30.480 567 
7881 3 Right -0.00069 30.110 534 
7881 4 Right -0.00065 30.310 566 
7888 1 Right -0.00053 30.650 637 
7888 2 Right -0.00051 31.160 687 
7888 3 Right -0.00062 30.550 569 
7888 4 Right -0.00055 30.450 610 
7889 1 Right -0.00076 29.740 463 
7889 2 Right -0.00057 30.640 604 
7889 3 Right -0.00057 30.760 613 
7890 1 Right -0.00063 30.130 538 
7891 1 Right -0.00073 29.750 478 
7891 3 Right -0.00062 30.520 568 
7892 2 Left -0.00077 29.510 451 
7892 4 Left -0.00077 29.360 443 
7902 1 Left -0.00052 29.610 454 
7902 1 Right -0.00053 28.710 396 
7902 2 Right -0.00080 28.540 280 
7902 3 Right -0.00069 29.050 338 
7909 1 Right -0.00112 27.720 310 
7909 2 Right -0.00058 30.470 586 
7909 3 Right -0.00087 29.080 400 
7919 1 Left -0.00082 28.930 288 
7919 2 Left -0.00049 29.150 450 
7919 3 Left -0.00069 29.470 358 
7919 4 Left -0.00050 29.120 444 
7921 2 Right -0.00059 29.620 403 
7921 4 Right -0.00070 29.170 328 
7925 1 Left -0.00095 28.710 248 
7925 2 Left -0.00071 28.260 286 
7925 3 Left -0.00086 29.430 295 
7935 2 Right -0.00069 29.040 346 
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