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ABSTRACT 

 

The rate of highway-rail grade crossing collisions has steadily increased year over year since 2009, 

after a decades long period of decline, beginning in 1972. Several models exist that predict the 

likelihood and number of collisions at crossings. These models have decreased in accuracy as they 

have aged. This research employed Bayesian statistics and its graphical representation, Bayesian 

belief networks, to develop a new model that predicts the probability of a collision at a 

railway/highway grade crossing, as a function of known characteristics, readily available through 

open source data. The final model was found to be a relatively accurate predictor of collision 

likelihood but showed deficiencies that prevent its use in practical application. Despite these 

deficiencies, utilizing Bayesian statistics remains a promising method of predicting collision 

likelihood at a grade crossing, and further study into this application should be conducted.   
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INTRODUCTION 

 

Highway-rail grade crossings occur when a railroad intersects a roadway on the same plane, 

commonly referred to as “at-grade”. A typical grade crossing for a two-lane road and single railway 

track with two quadrant gate protection is shown in  

Figure 1. These crossings are a common form of infrastructure throughout the United States, 

located in urban, rural, and suburban communities in every state. More than 200,000 grade 

crossing exist in the US. Table 1 documents the number of crossings in all states and the District 

of Columbia according to the Federal Railroad Administration (FRA). 

 

 
 

Figure 1: Typical Highway-Rail Grade Crossing with Gates 

 

Table 1: Number of Crossings in Every State 

 

State # of Crossings State # of Crossings 

District Of Columbia 6 Mississippi 3917 

Hawaii 8 Kentucky 4104 

Rhode Island 108 Virginia 4191 

Alaska 237 Alabama 4309 

Delaware 405 

North 

Dakota 4359 

New Hampshire 523 Tennessee 4463 

Nevada 562 Washington 4665 

Connecticut 606 Florida 4731 

Vermont 850 Nebraska 4793 

Arizona 1120 Oklahoma 4926 

Wyoming 1154 Louisiana 5039 

Massachusetts 1162 New York 5159 

New Mexico 1223 Missouri 5338 

Maryland 1253 Wisconsin 5964 

Utah 1254 Pennsylvania 6097 

Maine 1550 Minnesota 6344 
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New Jersey 1980 Iowa 6522 

Idaho 2226 Michigan 6594 

Colorado 2765 

North 

Carolina 6779 

South Dakota 2786 Kansas 7177 

Montana 3026 Georgia 7222 

West Virginia 3079 Indiana 7478 

Oregon 3548 California 8429 

Arkansas 3579 Ohio 8576 

South Carolina 3789 Illinois 10891 

  Texas 13863 

Total   200,729 

 

Though common, highway-rail grade crossings also present serious safety challenges. It is often 

difficult for motorists to see oncoming rail vehicles and impatient motorists will often circumvent 

crossing protection. Train operators that see an obstruction cannot come to a complete stop to 

avoid collision; due to the time it takes to stop a moving train. Additionally, Rail/Highway vehicle 

collisions can result in extensive property damage, environmental hazards, and loss of life.  

 

 

Figure 2 shows the number of total accidents by U.S state since the year 2000. States with higher 

numbers of accidents have deeper blue coloring, while those with lower accident rates have lighter 

blue coloring. The state of Texas, with 5,431 incidents in the past 20 years has the greatest number 

of collision by far. This amounts to more than 270 incidents per year, and 0.02 incidents per 

crossing per year, or a 2% risk of an incident occurring. 
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Figure 2: Number of Accidents by State Since 2000. 

 

In addition to the danger they pose, highway-rail crossings also account for a sizable portion of all 

railroad incidents nationally. Nearly 19% of all train incidents/accidents involve highway rail 

crossings (Federal Railroad Administration Office of Safety Analysis). Due to the large amount of 

incidents involving this single piece of infrastructure, there has been considerable investment in 

methods of reducing incident occurrence. Operation Lifesaver, a public awareness campaign 

developed in 1972, sought to improve public awareness and safety at highway-rail grade crossings 

(Horton 2009). Since the creation of operation lifesaver, highway-rail crossing incidents saw deep 

declines for nearly 40 years, as shown in  

Figure 3. Despite these reductions, the total incidents per year began to plateau in 2009 and even 

showed a slight increase. Though Operation Lifesaver was highly successful in reducing collision 

rates, it alone could not eliminate all instances of collision.  

 

 
 

Figure 3: Total Rail-Highway Incidents Per Year 

 

One means of reducing collisions at a crossing is to either close it or grade separate, have the 

highway vehicle pass over or under the track. Though effective from a crash prevention 

perspective, these options are not always feasible, since they require either large capital 

investments in the form of bridge/underpass construction, or restricted mobility from one side of 

the tracks to the other. As such, in environments where at-grade crossings are essential, it is critical 

that those responsible for them can assess the risk of collision and ensure protection is at an 

acceptable level. Capital improvements that increase protection involve the installation of 

crossbucks, stop signs, pavement markings, bells, flashing lights, train-activated gates, and other 

physical infrastructure.  

 

The objective of this research was to analyze grade crossings, their properties, and the collisions 

that occur at them from a risk perspective. The product of this research is a risk-model that predicts 

the probability of a collision occurring at a grade crossing. The model’s outputs were calculated 

using principles of Bayesian statistics and conditional probabilities.  
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Developing this model consisted of analyzing open source data; crossing incident inventory, and 

crossing property inventory data retrieved from the FRA Office of Safety (Federal Railroad 

Administration Office Of Safety Analysis). The two inventory databases were consolidated and 

cleaned for analysis. Distributions of variables that were hypothesized to influence collision 

likelihood, such as daily train-movements and annual average daily traffic (AADT), were created 

to develop an understanding of the data and how best to further proceed with analysis. After this 

initial analysis, secondary analyses were conducted to show clear trends in collision occurrence 

with respect to crossing properties. These trends were then incorporated into Bayesian network 

models that sought to predict collision occurrence using conditional probabilities and Bayesian 

statistics. Though the models’ efficacy was limited, clear trends were identified between collision 

occurrence and protection type.  

 

Upon completion of this research, there remains substantial room for further analysis of grade 

crossing collisions using Bayesian statistics. The issue of grade crossing accidents will likely grow 

in importance as states, regional governments and private industry expand light rail and interurban 

passenger services, whose rights of way tend to have many at-grade crossings. As a result, ensuring 

safety along these rights of way will increasingly become a matter of preventing loss of life, as 

more passenger services, such as Florida’s Brightline higher speed passenger rail service, come 

online.  

 

LITERATURE REVIEW  

 

Highway-Rail Grade Crossings 

 

Samantha Chadwick and her team at the University of Illinois performed research relating to the 

safety challenges of at-grade crossings along shared high-speed rail and freight operations. In her 

study, “Highway-rail grade crossing safety challenges for shared operations of high-speed 

passenger and heavy freight rail in the U.S.”, she provides an in-depth analysis of the literature 

currently available to model collision likelihood and overall safety at rail-highway crossings. 

These models are often one of two types: relative or absolute. Relative formulae analyze current 

conditions at grade crossings to develop a comparative ranking of safety, from least dangerous 

crossing to most dangerous (Chadwick et al. 2014). Absolute formulae analyze current conditions 

to predict the number of collisions that will occur at a given crossing. 

 

There have been several models produced. The most widely utilized model nationally is the U.S 

Department of Transportation Accident Prediction Model (APS), developed in the 1980s by Faghri 

and Demetsky, then later expanded on by Austin and Carson (Chadwick et al., 2014). This model 

predicts the expected number of yearly collisions at crossings, from factors such as train volume, 

highway type and crossing device; it is an absolute formula (Faghri & Demetsky, 1986). Both 

Chadwick et al. and Faghri & Demetsky’s works look to understand the overall safety of crossings 

and how to predict/improve the rate of collision occurrence. The APS model is shown in  

Figure 4.  

 

https://safetydata.fra.dot.gov/OfficeofSafety/default.aspx
https://safetydata.fra.dot.gov/OfficeofSafety/default.aspx
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Figure 4: APS Model (Chadwick, Zhou, & Saat, 2014) 

 

Though the current APS model is the most widely used, its accuracy has declined over the 25 years 

since it was initially developed. Brod & Gillen (2020) have identified this decline in accuracy and, 

in the process of developing a new model, explain why the decline has occurred. According to 

their study, while the FRA updates normalized accident frequency values (A) based on new 

accident data, these updates do not consider environmental, technological and policy changes that 

influence accident prediction. Such changes include increased freight train lengths and increased 

intermodal traffic (Brod & Gillen, 2020). These changes present new challenges in accident 

prediction. The increase in train lengths and intermodal traffic result in longer and more frequent 

wait times for automobiles at crossings, which subsequently incentivizes more “risky behavior,” 

driving around closed gates to avoid the wait (Brod & Gillen, 2020). Additionally, since the APS 

model was developed, the presence of ridesharing vehicles, delivery vehicles, and SUVs on the 

road has increased substantially. Brod and Gillen (2020) speculate that these changes contributed 

to the decline in accuracy of the APS model.  

 

In addition to the APS model, several state departments of transportation (DOT) have developed 

their own prediction models. The New Hampshire Hazard Index Model,  shown in Equation 1, 

was among the first developed by a state entity and continues to be widely used due to its simplicity 

(Chadwick et al. 2014). Unlike the APS, the New Hampshire Model is a relative formula, which 

ranks the crossings most in need of upgrades. It has been shown to have similar accuracy to other, 

more complex relative models (Chadwick et al., 2014).  Faghri and Demestky (1998) conducted a 

survey of 45 state DOTs and found that there were currently 13 separate models in use. Also from 

the survey, roughly a third of DOTs prefer to use their own models and a third use the APS (Abioye 

et al., 2020).  

 

𝐻𝑎𝑧𝑎𝑟𝑑 𝐼𝑛𝑑𝑒𝑥 = 𝑉𝑇𝑃𝑓    ( 1 ) 

 

where V = average 24-hour highway traffic volume, T = average 24-hour train volume and Pf = 

protection factor (0.1 for gates; 0.6 for flashing lights; 1.0 for signs only) (Chadwick et al., 2014)  
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In addition to state DOT models and the APS, the Peabody-Dimmick absolute formula, Equation 

2, predicts the number of collisions at a crossing over 5 years (Chadwick et al., 2014).  

 

    ( 2 ) 

 

where A5 = 5-year accident count, V = AADT, T = daily train-movements, P = protection 

coefficient, and K = a smoothing parameter  (Chadwick et al., 2014)  

 

There are many prediction models that have been developed, each with their own strengths and 

weaknesses in terms of accuracy, simplicity, and application. While the APS model remains the 

most widely used, it continues to decline in accuracy. Thus, the research undertaken herein 

investigates new modelling techniques to develop a model that can potentially replace the APS. 

The model proposed in this research takes advantage of Bayesian statistics and its principles of 

conditional probability to determine the likelihood of collision occurrence, given known variables.  

 

Bayesian Statistics 

 

Bayesian statistics is a method of applying conditional probability to statistical problems. Koch 

provides an introductory explanation of Bayesian statistics, its mathematics, and its application. It 

is different from traditional statistics in that it is derived from Bayes Theorem, and can be easily 

deployed to test hypotheses and develop confidence regions for unknown parameters. Such 

hypotheses and confidence regions are developed via probability density functions for unknown 

parameters via application of Bayes Theorem (Koch, 2007). As a result of the ease with which 

hypothesis testing and confidence region computation can be performed via Bayesian Statistics, 

its use has spread rapidly since its initial development (Koch, 2007) .  

 

Both Bayesian statistics and traditional statistics (frequentist) are foundationally derived from 

probability, whose component makeup is uncertainty and plausibility. Uncertainty is the degree to 

which the outcome of an event or statement is known, and plausibility is the likelihood that an 

event or statement will occur and is considered an expression of probability. Traditional statistics 

computes probability via analysis of random events, such as the results of random experimentation. 

In comparison to traditional statistics, Bayesian statistics is not relegated to computing the 

probability of random events, but also the probability of statements or propositions, which can be 

more general than in traditional statistics (Koch, 2007). Several rules of probability are combined 

to develop Bayes theorem and Bayesian networks.  

 

The communitive, associative, distributive and DeMorgan’s laws of probability (Koch, 2007) are 

shown below, respectively.  These laws, which are an algebraic application of probability, are used 

to derive Bayes Theorem.  

 

                               ( 3 ) 

 

     ( 4 ) 
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     ( 5 ) 

 

Conditional probability allows for more generalized propositions and is the basis for Bayesian 

statistics. In conditional probability, a proposition is dependent on the results of an additional 

proposition. Conditional probability statements are denoted as P(A|B), or the probability of event 

A given event B.  

 

The product rule and sum rule of probability, adapted for conditional probabilities as used in 

Bayesian statistics, are shown in Equations 6 and 7 according to Koch (2007), respectively. The 

product rule derives a relation between statement A and statement AB, given that statement C is 

true.  Note that P(S|C) is the probability of the sure statement. The sum rule provides a relationship 

between the probability of statement A and �̅� (Koch, 2007).  

 

 

 
      ( 6 ) 

    ( 7 ) 

 

Using the product rule and sum rule, a generalized sum rule is developed in Equation 8 which is 

used to derive Bayes theorem. The generalized sum rule, Equation 9, denotes the probability of A 

+ B given C, in relation to A given C, B given C, and the joint probability AB, given C.  

 

 ( 8 ) 

 

 ( 9 ) 

 

 

The chain rule of probability, Equation 10 expresses the formulation of conditional joint 

probability. The chain rule in Equation (10) is key for the development of Bayesian networks.  

 

  ( 10 ) 

𝑷(𝑨|𝑩) =  
𝑷(𝑩|𝑨)∙𝑷(𝑨)

𝑷(𝑩)
  ( 11 ) 
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Bayes Theorem, shows that the probability of hypothesis A before receiving new information, P(A) 

and the probability of hypothesis A after receiving new information, the posterior probability, 

P(A|B), are relationally dependent. Bayes theorem also does not indicate that P(A) and P(B) cannot 

be independent of one another. For example, if P(A|B) is equal to P(A), then the events are 

independent of one another and event B provides no useful information about the likelihood of 

event A occurring. As such, the closer P(A) and P(A|B) are in value, the less influence prior 

information has on the posterior probability.  

 

This research takes advantage of Bayesian statistics and Bayes Theorem to develop a Bayesian 

network that predicts the likelihood of a rail/highway vehicle collision occurring at a grade 

crossing, given prior information about that crossing.  

 

Bayesian networks were first developed by Pearl and Russel at the University of California, Los 

Angeles. They are a graphical method of representing joint probability distributions that allow for 

simplistic modelling of complex, interconnected systems (Pearl & Russel, 2000). Bayesian 

networks are “directed acyclic graphs” that contain nodes and linkages, where the “nodes represent 

variables of interest, and the links represent informational or causal dependencies” whose level of 

influence “is represented by conditional probabilities” that are shown for each parent-child cluster 

(Pearl & Russel, 2000) . The mathematical determination of those conditional probabilities are 

factorizations of joint probability distributions. A sample Bayesian network and its associated 

conditional probability formulae are shown in  

Figure 5.  
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Figure 5: Sample Bayesian Network 

 

The sample Bayesian network displayed in  

Figure 5 is a graphical representation of the conditional probability that a student will earn an A in 

a course, given their prior performance in that course. The values used in this sample are for 

demonstration purposes only and do not reflect any collected data. This network shows that the 

student’s final grade is dependent on their scores on the final and homework grade. Additionally, 

the homework grade is dependent on the project and weekly homework grades. The tables adjacent 

to the child nodes Final Grade and Homework display the conditional probabilities of occurrence 

given the information from their respective parent nodes. The sample network was developed 

using GeNIe driver software, a product of BayesFusion, LLC, and can calculate probability 

distributions via factorization (GeNIe modeler user manual (2020). A sample joint probability 

formula for the node, Final Grade (FG) is shown in Equation 12.  

 

𝑃(𝑃, 𝑊, 𝐹, 𝐻, 𝐹𝐺) = 𝑃(𝐹𝐺|𝐻, 𝐹) ∙ 𝑃(𝐻|𝑃, 𝐻𝑊) ∙ 𝑃(𝐹) ∙ 𝑃(𝑃) ∙ 𝑃(𝑊)    ( 12 ) 

 

The GeNIe driver can update its joint posterior predictions for nodes as new information becomes 

available by taking advantage of the same factorization as Equation (12). 

 

A sample GeNIe driver calculation is shown when the student already knows their performance 

on all assignments excluding the final in  

Figure 6. Using factorization and the product rule of probability the model predicts that given the 

student’s performance on all assignments other than the final was an A, it is likely that they will 

receive an A for the final grade.  

 

 
 

Figure 6: Updated Joint Probabilities for Sample Network 

 

This research takes advantage of similar modeling and Bayesian techniques shown in the sample 

model. The primary difference between the sample model and the final models developed are that 

the final models’ predictions will be developed using readily available crossing inventory and 

collision data.  
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METHODOLOGY 

 

Data Collection 

 

Consolidation of Grade Crossing and Collision Databases 

 

The FRA Office of Safety provides open-source access to their grade crossing inventory and rail-

highway grade crossing collision database (Federal Railroad Administration Office of Safety 

Analysis). The current crossing data for each state, last updated in July of 2020, was downloaded 

as a comma separated value (CSV) text file. The highway-rail accident data reports (structure 

6180.57) were downloaded for each year from 2000 to 2020. The two databases were consolidated 

into a single Microsoft Access file (Microsoft Access 2019). The yearly collision reports were 

appended together to form a single collision incident table over 20 years. The crossing inventory 

and collision database were queried together to develop data regarding crossing collisions and the 

properties of the associated crossing. 

 

Selected Variables and Data Cleaning 

 

The parameters in the database for each crossing used for analysis are shown in Table 2. 

 

Table 2: Parameter Descriptions 

 

Parameter Description 

AADT Average Annual Daily Auto-Traffic 

DayThru Daily Through Trains 

NightThru Nightly Through Trains 

TypXing Type of Crossing: 2 = Private 3 = Public 

PosXing Position of Crossing 
1 = At Grade 2 = RR Under 3 = RR Over 

CrossingClosed Is Crossing Closed: “Yes” = Closed “No” = Open 

WdCode Protection Type 

1 = No signs or signals  

2 = Other signs or signals 

3 = Crossbucks 

4 = Stop signs  

5 = Special Active Warning Devices  
6 = Highway traffic signals, wigwags, bells, or other 

activated 

7 = Flashing lights 

8 = All other Gates 

9 = Four Quad (full barrier) Gates 

HwyClassrdtpID Highway Type 

https://safetydata.fra.dot.gov/OfficeofSafety/default.aspx
https://safetydata.fra.dot.gov/OfficeofSafety/default.aspx
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11 = Interstate 

12 = Other Freeways and Expressways 

13 = Other Principal Arterial 

16 = Minor Arterial 

17 = Major Collector 
18 = Minor Collector 

19 = Local 

DevelTypID Land Use 

11 = Open Space 

12 = Residential 

13 = Commercial 

14 = Industrial 

15 = Institutional 

16 = Farm 

17 = Recreational 
18 = RR Yard 

 

Crossings in the database that report 0 AADT and 0 total daily thru trains were removed from 

analysis, as this meant data was unavailable and would skew the modeling results. Private 

crossings, above or below grade crossings, and closed crossings were also removed from the 

analysis. Additionally, crossing entries that contain N/A values for any of the listed parameters 

were removed from analysis (See Appendix A). This resulted in 78,403 crossings from the 

inventory, with a corresponding 30,744 total number of accidents over the 20-year history. 

 

APPROACH AND RESULTS 

 

AADT and Train-Movement Distributions 

 

Annual average daily highway traffic (AADT) and the number of daily train movements at 

crossings were expected to significantly influence the frequency of collision, because as more 

highway vehicles and trains pass over a crossing, the more possibilities exist for them to interact 

or collide. As a result, distributions of these two parameters were created to determine what 

patterns they follow. Both train-movements and AADT were observed to follow exponential 

distributions, as shown in  

Figure 7 and  

Figure 8, and exponential equations were overlayed. With the understanding that these parameters 

follow exponential distributions, their influence on collision occurrence was investigated.  

 

The distribution of Train Movements and AADT at crossings that have had at least one collision 

were compared to the distribution of those parameters for all crossings in the database, shown 

again in  

Figure 7 and  

Figure 8. These figures show that crossings with at least one collision have higher average through 

trains and a higher average AADT. These findings align with expectations, allowing train-

movements and AADT to be utilized as normalizing factors in the secondary exploratory data 

analysis.  
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Figure 7: Distribution of Daily Through Trains at All Crossings in the Database and Distribution 

of Daily Through Trains Crossings in the Database that Have Had a Collision Since 2000 

 

 

 
 

Figure 8: Distribution of AADT at All Crossings in the Database and Distribution of AADT at 

Crossings in the Database that Have Had a Collision Since 2000 
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Initial Exploratory Data Analysis 

 

To further understand the crossing and collision data, an exploratory data analysis (EDA) was 

performed. Analysis consisted of creating several charts and graphics that allow one to easily 

visualize relationships between aspects of the data. To undergo the analysis, the collision and 

crossing databases were queried to determine relational aspects of key crossing properties and their 

collisions. The queries were then exported to Microsoft Excel and R1, where bar charts, 

histograms, scatterplots, and map charts of the data were created (RStudio 2021). Once performing 

the initial exploratory data analysis, Brod and Gillen’s publication was consulted to discern the 

best methods for grouping collision risk by protection type.  

 

Initial Exploratory Data Analysis Results 

 

The results of the initial exploratory data analysis provided insight on the collision data and its 

trends. Trends identified contextualize the data and provided an understanding of the best approach 

for analysis of the data. For example,  

Figure 9 indicates that there are many crossings with 0 reported collisions in the period of analysis, 

which is not unexpected as collisions are infrequent/catastrophic events. This presented challenges 

for analysis, as crossings with 0 collisions do not necessarily have 0 risk or 0 probability of 

collision. As such, a latency period between collision risk at a crossing and a collision occurring 

exists.  

 

 
 

                                                

 
1 Open-source statistical programming software 
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Figure 9: Histogram of Number of Collisions Per Crossing 

 

 
 

Figure 10: Total number of accidents and number of Type 1 and Type 2 accidents per year. 

Source FRA collision data.  

 

 

Figure 10 shows the total number of accidents in the U.S per year, starting in 2000 and ending in 

2019.  

Figure 10 also shows the total number of accidents per year, total Type 1 accidents, and total Type 

2 accidents. Type 1 accidents occur when a vehicle collides with a train. Type 2 accidents occur 

when a train collides with a vehicle. Type 2 accidents show a decline from 2000 to 2009 then 

plateau afterwards. Type 1 accidents show a decline from 2000 to 2009 then slowly increases. As 

a result, the increase in total accidents starting in 2009 is likely the result of an increase in Type 1 

accidents only.  

 

Among the most useful findings of this initial analysis is the clear correlation between the number 

of crossings in each U.S state and the total number of crossing collisions that occur in that state as 

shown in  

Figure 11. In addition to  

Figure 11, an accompanying map was created in  

Figure 12, which maps those values.  
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Figure 12 better reflects the states in need of improved collision prevention strategies. Louisiana, 

for example, does not have many total collisions, but experiences a higher collision rate given its 

relatively small number of crossings. This is also shown in  

Figure 11, as it deviates substantially from the trendline.  

 

 
 

Figure 11: Number of incidents per state vs number of crossings per state 

 

 
 

AL

AK

AZ

AR

CA

CO

CT

DE

FL

GA

HI

ID

IL

IN

IA

KS

KY

LA

ME

MD

MA

MI

MN
MS

MO

MT

NE

NV

NH NJ

NM

NY

NC

ND

OH

OK

OR

PA

RI

SC

SD

TN

TX

UT

VT

VA WA

WV

WI

WY

y = 0.4511x - 120.76
R² = 0.8016

-1000

0

1000

2000

3000

4000

5000

6000

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

N
u

m
b

er
 o

f 
A

cc
id

en
ts

 P
er

 S
ta

te

Number of Crossings Per State

Number of Crossings  vs Number of Accidents Per State



16 

 

Figure 12: Heat Map of Accidents/Number of Crossings by State 

 

 

 

 

Secondary Exploratory Data Analysis Using Normalized Collision Rates 

 

The results of the initial exploratory data analysis indicated that collision rates should be 

normalized by the number of opportunities for collision, or exposures. This normalization was 

used in the secondary EDA to determine the influence of crossing properties on collision risk. In 

the secondary analysis, an exposure is a combined variable for AADT and daily through trains at 

a crossing over a 20-year period (2000-2020). Normalizing exposures allows for a more accurate 

understanding of how protection influences risk. For example, two crossings equipped with the 

same protection but differing AADT will have varying possibilities for collision and consequently, 

greater risk. The equation for exposures is modeled after that developed by Brod and Gillen and 

has been adjusted to account for a different period of analysis which is 20 years (Brod & Gillen, 

2020). The exposure equation is shown below: 

 

E = N/(A*T*300*20) X 106    ( 13 ) 

 

where E is the number of collisions per crossing per million exposures, N is the number of 

collisions over 20 years, A is AADT, T is the combined number of daily and nightly through trains, 

300 is the number of annual number of traffic days, and 20 is the period of analysis in years.  

 

Secondary Exploratory Data Analysis Using Normalized Collisions for Protection Types 

 

Using the exposure equation defined in (13), the level of exposure for each crossing was calculated. 

These values were subsequently used to normalize the number of incidents at each crossing. The 

normalized average incidents per million exposures was plotted against the categorical parameters, 

Highway Classification (HwyClasstpID), Land Use Classification (DevelTypID), and Type of 

Protection (WdCode), as shown in  

Figure 13 and  

Figure 14.  
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Figure 13: Average Number of Collisions Per Million Exposures for Land Use Categories 

 

Figure 13 shows that institutional land uses have the highest likelihood of collision; nearly two 

times the likelihood of collision than the next highest land use, recreational.  

Figure 14 plots the average normalized collision rates against highway classification.  

 

 
 

Figure 14: Average Number of Collisions Per Million Exposures for Highway Classification 

 

 

Figure 14 shows that interstate highways have a much larger number of collisions per million 

exposures than all other highway classifications. Additionally, local highways have the second 

highest number of collisions per million exposures, though lower than interstates by a factor of 6.  

 

The results of  

Figure 13 and  

(102 Crossings) (3,099 Crossings) (7,248 Crossings) (13,393 Crossings) (5,130 Crossings) (49,310 Crossings) (121 Crossings) 
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Figure 14, though insightful, can be accounted for in the exposure normalization. While interstate 

highway crossings have a substantially higher normalized collision rate than all other road 

classifications, they also have the highest AADT. Additionally, highway-rail crossings at 

interstates are an extreme rarity, with only 121 total crossings in the entire United States 

experiencing a collision, so the application of these findings are limited. All other roadway types 

have similar collision rates.  

 

For land use classifications, though institutional land uses have the highest rates of collisions, there 

are likely external factors, such as large young driver populations. Institutional land uses include 

universities, which have large concentrations of young drivers who are statistically more prone to 

car crashes (Rates of motor vehicle crashes, injuries and deaths in relation to driver age, united 

states, 2014-2015.2017). Such higher populations may account for the increase, however data to 

support this claim is not readily available for this type of analysis. Like interstate crossings, 

institutional crossings are also rare. Other land use types excluding commercial and rail yards have 

similar normalized accident rates. Though commercial and rail yards have somewhat different 

collision rates, the distinction is not substantial enough to analyze further in this research.  

 

 

Figure 15 presents the most useful findings of the secondary exploratory data analysis. It shows 

that higher-quality, active, protection, such as 4-quadrant gates correspond with lower risks of 

collision than lower quality, passive protection, such as stop signs. The findings in  

Figure 15 are the basis for further analysis using Bayesian belief networks. A Bayesian belief 

network model was developed with the expectation that its results would agree with those of  

Figure 15.  
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Figure 15: Average Number of Collisions Per Million Exposures for Protection Type 

(449 Crossings) (91 Crossings) (19,316 Crossings) (7,292 Crossings) (5,467 Crossings) (384 Crossings) (7,797 Crossings) (36,238 Crossings) (726 Crossings) 
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BAYESIAN NETWORK MODEL DESIGN 

 

Using the findings of the exploratory data analysis, several modeling approaches and resulting 

models were developed to predict the risk of collision at a crossing based on its properties. Three 

models were developed in BayesFusion and are defined as Model 1, Model 2 and Model 3. Each 

model is a Bayesian network, and uses key parameters such as; number of main tracks, through 

trains, highway lanes, timetable speed, and protection type as either parent or child nodes. How 

these parameters are connected defines the differences in the model permutations. Additionally, 

whether a crossing has had a collision in the period of analysis is a child node, and the primary 

output, for Model 1 and Model 3. In Model 2, it is a parent node.  

 

The probabilities shown for each variable are determined via input of the cleaned collision data 

described previously. The models’ accuracy is calculated by inputting crossings from the FRA 

inventory and identifying the percentage of correct predictions of collision likelihood via a 

confusion matrix. Model 1 and Model 2 had intermediate accuracy, peaking at 46%, but showed 

severe flaws that made them unusable. Model 3 resolved the primary flaws of Model 1 and Model 

2 but displayed a sharp drop in accuracy. As a result, the models, as currently designed, require 

further development.  

 

Model 1 

 

In Model 1, collision occurrence is the primary output, since its conditional probability is 

dependent on key crossing properties identified, shown graphically in Figure 16. As such, the 

accuracy and reliability of Model 1 increases as its ability to correctly predict the likelihood of 

collision increases. The nodes, connections and variables used in Model 1 are shown in Error! 

Reference source not found.. Initial accuracy for Model 1 was low, but after incremental 

adjustment of variables, parameters and connections, had a maximum accuracy of 46%, higher 

than Model 3. The primary flaw of Model 1 was its inability to predict increased collision 

likelihood with decreased crossing protection. Identifying this flaw early in the model development 

process helped guide the designs of Model 2 and Model 3. 

 

Table 3: Model 1 Nodes and Connections 

 

Node Variable Parent Child 

Main Tracks One Night Through Trains 

Day Through Trains 
Collision 

Main Tracks More Than One 

Day Through Trains Ten or Less 

- 

Collision 

Main 

Tracks 
Day Through Trains More Than Ten 

Night Through Trains None 

- 

Collision 

Main 

Track 
Night Through Trains One or More 

Max Timetable Speed Less than forty 
- Collision 

Max Timetable Speed More than forty 

Traffic Lanes Two or Less AADT Collision 
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Traffic Lanes More Than two 

Protection Type (Wd code) 4 Quadrant 

- Collision 

Protection Type (Wd code) Crossbucks 

Protection Type (Wd code) Flashing Lights 

Protection Type (Wd code) Gates 

Protection Type (Wd code) Highway Traffic 

Signal 

Protection Type (Wd code) No Sign or Signal 

Protection Type (Wd code) Non-train 

Activated Special 

Protection Type (Wd code) Other Sign or 

Signal 

Protection Type (Wd code) Stop Sign 

Protection Type (Wd code) Unknown 

Collision Collision  Night Through Trains 

Main Track 

Day Through Trains 

AADT 

Max Timetable Speed 

Traffic Lanes 

Protection Type 

(WdCode) 

- 
Collision No Collision 
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Figure 16: Model 1
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This led to the development of new iterations and alterations of Model 1 to optimize its accuracy, 

using GeNIe software’s validate function. The validate function compares the predicted collision 

output probability (either collision is more likely, or no collision is more likely) of a model to a 

given dataset. It then produces a confusion matrix, as shown in Error! Reference source not 

found.,that displays the counts of all the model’s accurate and inaccurate predictions. Each new 

iteration of Model 1 sought to improve its collision prediction accuracy. The iteration number, 

change description and confusion matrix for each iteration are shown in  

Table 5. 

 

Table 4: Model 1 Confusion Matrix 

 

 Predicted 

Collision No Collision 

Act Collision 5,633 13,601 

No Collision 6,850 56,827 

 

 

Table 5: Model 1 Iterations 

 
Iteration Change Description Accuracy 

 
Confusion Matrix 

1 Add all 9 WdCodes 

0.74     Predicted 
 

  
 

No Collision Collision 
 

A
ct

u
al

 

No Collision 59459 4260 
 

Collision 15346 3883 

2 add aadt 

0.76     Predicted 
 

  
 

No Collision Collision 
 

A
ct

u
al

 

No Collision 57427 6202 
 

Collision 13842 5387 

3 
reduce aadt 

categories 

0.74     Predicted 
 

  
 

No Collision Collision 
 

A
ct

u
al

 

No Collision 54987 8732 
 

Collision 9162 3632 

4 
add all lane 

categories 

0.75     Predicted 
 

  
 

No Collision Collision 
 

A
ct

u
al

 

No Collision 56773 6946 
 

Collision 13580 5649 

5 
add passive lights or 

gates 

0.74     Predicted 
 

  
 

No Collision Collision 
 

A
ct

u
al

 

No Collision 55291 8428 
 

Collision 12906 6323 

6 

disconnect aadt and 

lanes, daythru and 

main trk 

0.74     Predicted 
 

  
 

No Collision Collision 
 

A
c

tu
a l No Collision 55163 8556 
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Collision 12812 6417 

7 add night thru 

0.7     Predicted 
 

  
 

No Collision Collision 
 

A
ct

u
al

 

No Collision 49264 14513 
 

Collision 10327 8907 

8 
add whistban - 

removed 

0.74     Predicted 
 

  
 

No Collision Collision 
 

A
ct

u
al

 

No Collision 54235 9012 
 

Collision 12556 6653 

9 
add night thru 

categories - removed 

0.7     Predicted 
 

  
 

No Collision Collision 
 

A
ct

u
al

 

No Collision 49226 14021 
 

Collision 10374 8835 

10 
add transit movement 

-  removed 

0.68     Predicted 
 

  
 

No Collision Collision 
 

A
ct

u
al

 

No Collision 43177 13600 
 

Collision 9852 8481 

11 
add development type 

- removed 

0.71     Predicted 
 

  
 

No Collision Collision 
 

A
ct

u
al

 

No Collision 50371 13406 
 

Collision 10609 8625 

 

 

 

Figure 17 shows how accuracy improved with each iteration. The “overall rate” series of the model 

represents the combined rate of correct “collision” and “no collision” predictions. The “correct 

positive rate” series represents the rate of correct “collision” predictions and the “correct negative 

rate” series represents the rate of correct “no collision” predictions. After each iteration, the overall 

rate and correct negative rate remained substantially higher than the correct positive rate, with 

neither series dipping below 70% accuracy. This is likely because there are more instances of “no 

collision” than instances of “collision” in the data to train the model as shown in  

Figure 18, so it is an easier output for the model to accurately predict. This is a result on the 

imbalanced data.  As such, the goal of each iteration was to improve the accuracy of “collision” 

prediction. The maximum accuracy that could be produced from Model 1 was 46%. Though this 

accuracy was lower than expected, it represents a notable improvement from an initial accuracy of 

only 20%.  
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Figure 17: Prediction Accuracy of Model 1 Iterations 

 

 

 
 

Figure 18: Total Number of Instances of Collision and No Collision. 0 indicates no collisions and 

1 indicates collisions.  

 

Problems with Model 1 

 

Despite the gains in accuracy, further sensitivity and parametric analysis of Model 1 

revealed that some of its outputs are inconsistent with both the literature and the exploratory data 

analysis.   
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Figure 19 overlays the prediction results of Model 1 onto the results of the secondary data 

analysis in  

 

 

 

 

 

 

. It shows that the two results do not agree with one another and are inversely proportional. 

The results of  

 

 

 

 

 

 

 show that as the level of protection increases (from left to right), the number of collisions 

per exposure, an empirical measurement of collision likelihood, decreases. In contrast, the results 

of Model 1 predict that as the level of protection increases, the likelihood of collision increases. 

The results of Model 1 were expected to agree with  

 

 

 

 

 

 

 as well as the conclusions of Brod and Gillen’s study, which found that increase in protection type 

lowers the collision rate per exposure. The results of Model 1 are also logically inconsistent, as 

installing more robust and costly protection devices, such as four quadrant gates, should reduce 

collision risk, not increase it. Upon discovery of the flaws with Model 1, a second structure was 

developed in Model 2. 
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Figure 19: Model 1 vs  

 

 

 

 

 

 

 Results 

 

Model 2 

 

Model 2, as shown in Figure 20, was developed in response to Model 1. While Model 1 is 

developed to predict the likelihood of collision based on key crossing properties, Model 2 is 

developed to predict the protection type based on whether a collision has occurred on other 

properties. Note that the protection type is consolidated from its original 9 categories to 3, as shown 

in Table 6Error! Reference source not found.. They were consolidated because of the limited 

available data for specific protection types, such as no sign or signal. Additionally, day through 

trains, night through trains, and AADT were consolidated into the single exposure parameter that 

was developed during the exploratory data analysis using RStudio (See Appendix A). Increasing 

states (State0 to State11) reflect an increase in exposure.  
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Table 6: Protection Type Consolidation 

 

Protection Type Model 1 Protection Type Model 2 

No Sign or Signal 

Other Sign or Signal 

Stop Signs 

Crossbucks 

Passive (P) 

Non-Train Activated 

Highway Traffic Signal 

Flashing Lights 
Lights (L) 

Gates 

Four Quadrant Gates Gates (G) 

 

A parametric analysis of Model 2, shown in  

Figure 21, shows that its results still do not agree with the implications of the literature and 

exploratory data analysis.  

Figure 21 shows that the likelihood of a crossing having passive protection increases if a collision 

did not occur and decreases if a collision did occur. Conversely, the likelihood of a crossing having 

gates decreases if a collision did not occur and increases if a collision occurred.  
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Figure 20: Model 2
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Figure 21: Model 2 Parametric Analysis 

 

A confusion matrix was developed for Model 2 with protection type as the variable being analyzed, 

and is shown in Error! Reference source not found.. The overall accuracy of Model 2 was 66%, 

with gates and passive being the most accurately predicted protection types, at 77% and 79% 

respectively. The accuracy of lights was nearly a fifth that of both gates and passive at 13%. The 

accuracy of predicting lights is substantially lower than gates and passive protection. This is likely 

due to lights being an intermediary category that shares characteristics with both gates and passive 

protection.   

 

Table 7: Model 2 Confusion Matrix 

 

 Predicted 

G L P 

Act G 28,845 1,647 6,587 

L 5,775 1,800 6,140 

P 4,697 1,185 22,143 

 

Model 2 sought to improve upon and correct the flaws of Model 1 but encountered similar issues. 

It improved prediction accuracy for Passive and Gated crossings over Model 1. Like Model 1 

however, its predictions are inversely related to what is anticipated for protection type. While 

increasing protection should decrease collision likelihood, both Model 1 and Model 2 predict the 

opposite. 

 

Revision of Data 

 

Given Model 1 and Model 2’s flaws, the data was revisited to confirm that greater protection 

reduces collision occurrence.  

Figure 22 revisits the findings in  
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Figure 15 to confirm that gated crossings have lower total collisions with increasing exposure than 

passive crossings. The exposure levels shown are the same as those in Model 2. Its results largely 

agree with what was anticipated, though as the level of exposure increases, it appears that the 

difference between gates and passive crossings becomes increasingly insignificant. Still the data 

supports that gated crossings coincide with lower collision rates than passive, which the first two 

model’s did not predict.  

 

 
 

Figure 22: Total Accidents Vs Exposure for Passive and Gates Crossings 

 

Though the exact reason for these inverse predictions for Model 1 and Model 2 are not entirely 

understood, upon revisiting the data, there are some patterns that provide insight as to what is 

driving the disconnect.  

Figure 23 charts the average number of yearly incidents by protection type. It shows that as the 

level of protection increases, the average number of yearly incidents also increases, likely because 

crossings with higher annual collisions are those chosen for upgrades. The results plotted in  

Figure 23 align with those of both Model 1 and Model 2. Crossings with greater protection have 

more instances of collision and, without normalization by exposures, would be predicted to have 

greater collision likelihood.  
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Figure 23: Average yearly incidents by protection type 

 

In the designs of Model 1 and Model 2, it was anticipated that including exposure parameters 

(AADT, Thru Trains) as nodes would act as a normalization.  

Figure 24 shows that crossings with increased protection have more exposures. It was thought that, 

if an input had greater protection and higher exposure, the models would predict a lower likelihood 

of collision. In contrast, the models consistently predicted lower collision likelihood with higher 

exposures and consistently predicted higher collision likelihood with greater protection.  

 

It was hypothesized that the reason for this disconnect was an imbalanced data set. As  

Figure 24 shows, crossings with increased protection tend to have higher exposure, which is 

expected, to produce higher collision rates, regardless of protection type. As such, it was believed 

that Model 1 and Model 2 predicted that crossings with greater protection are more likely to have 

a collision because they have more exposures than crossings with less protection. A third model 

was developed that sought to mitigate the imbalance through normalization of exposures.  

 

 
 

Figure 24: Average yearly exposure by protection type 

 

Model 3 

 

A final model was produced that sought to include normalization. Model 3, shown in Figure 25, 

incorporates aspects of both Model 1 and Model 2, including all nodes as Model 1 but 
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consolidating protection type categories as in Model 2. Unlike Model 1 and Model 2, Model 3 

does not predict the likelihood of collision, but rather predicts the likelihood that a crossing will 

have a higher normalized collision rate than the weighted mean for all crossings. The weighed 

mean was chosen as the threshold between an acceptable collision rate and an unacceptable 

collision rate. Parametric analysis of Model 3, shown in  

Figure 26, agrees with the results of the EDA and literature review. As the level of protection 

increases, Model 3 predicts that  the crossing is more likely to have lower than average normalized 

collision rates.   
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Figure 25: Model 3 
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Figure 26: Model 3 Protection Type Parametric Analysis 

 

Further parametric analysis of timetable speed for Model 3 is shown in  

Figure 27. Model 3 predicts that crossings with higher timetable speeds are more likely to be above 

the acceptability threshold.  This aligns with the results of the exploratory data analysis and 

literature review. Higher speeds at crossings result in less reaction time for the car driver, leading 

to collision. Model 3 confirms the increased collision risk for higher speed crossings.  

 

The limitations of BayesFusion software made it difficult to determine the accuracy of Model 3. 

The confusion matrix of Model 3 is shown in Error! Reference source not found.. showing that 

BayesFusion identified no correct above-threshold predictions. This is likely due to most crossings 

having below average collision rates, in part due to most having 0 total collisions. As a result, 

Model 3 cannot predict a crossing is more likely to have above average collision rates than below 

average (never above 50% likelihood). Consequently, no crossing was predicted to have above 

average collision rates. As such, despite the incorporation of normalization in Model 3, its 

application is limited. Further research should be undertaken that identifies an acceptable level of 

normalized collisions and enables model 3 to predict that crossings are more likely to be beyond 

the acceptability threshold than below. One such threshold could be the random probability of the 

data. 
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Figure 27: Model 3 Timetable Speed Parametric Analysis 

 

Table 8: Model 3 Confusion Matrix 

 

 Predicted 

Below Above 

Act Below 77,832 0 

Above 5,179 0 

 

 

CONCLUSION AND RECOMMENDATIONS FOR FURTHER RESEARCH 

 

This research sought to develop a new model for predicting collision likelihood at highway-rail 

grade crossings. The model most widely used today, the USDOT APS model, developed in the 

1980s, has declined in accuracy as the data has changed, and does not consider modern statistical 

analytic methods.  

 

New models were developed herein using the principles of Bayesian statistics, taking advantage 

of Bayes Theorem and its associated ability to update probabilities when new information. The 

new models developed, Model 1 and Model 2, and Model 3 are Bayesian networks, which are 

graphical representations of joint probability distributions.  

 

Model 1 was designed to predict the probability of collision at a crossing, given prior knowledge 

about that crossing. Model 1 was determined to be fairly accurate at predicting collisions, with a 

maximum accuracy rate of 46%, but showed results that were counterintuitive to the results of the 

exploratory data analysis and literature review. Model 1 predicts that the more protection a 

crossing has, the more likely it is to have had a collision, which is not reflected in real world 
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conditions or the EDA.  Upon additional research, it was decided that a second model be developed 

that worked in the reverse, predicting the most likely protection type, given that a collision existed, 

along with other relevant factors. Model 1 provided insight as to how to develop a Bayesian 

network for Model 2 and the flaws encountered. It was hoped that the second model would 

accurately predict that more protection decreases collision likelihood.  

 

Model 2 sought to improve upon the strengths of Model 1 while incorporating the reverse 

prediction plan. Model 2 consolidated the variable categories from Model 1 to develop a more 

streamlined Bayesian network, while still attempting to retain accuracy. Model 2 predicts the 

likelihood of a crossing having either lights, gates or passive protection based on collision 

occurrence and other factors. Model 2 was found to be as accurate, if not more than Model 1, 

depending on the protection type predicted. Model 2 predicted a gate crossing with 77% accuracy, 

a passive crossing with 79% accuracy and a lights crossing with 31% accuracy. Model 2 showed 

the same critical flaw as Model 1, predicting that crossings with collisions are more likely to have 

increased protection.   

 

Model 3 combined aspects of Model 1, Model 2, and the findings of the exploratory data analysis. 

Rather than predicting the likelihood of collision, it predicts the likelihood of an above average 

normalized collision rate at a crossing, where above average is considered unacceptable. Model 3 

successfully predicts that more protection lowers the likelihood of unacceptable collision rates but 

was interpreted by the software to have 0% accuracy. This is the result of BayesFusion software 

identifying a correct prediction only if the probability of above average collision rates is over 50%. 

However, the results can be used effectively for a relative based risk analysis. 

 

Both Model 1 and Model 2 can somewhat accurately predict the likelihood of collision or 

likelihood of protection but show flaws that should be addressed with further research. Model 3 

successfully addresses this flaw by predicting the likelihood of an unacceptable collision rate, 

above the weighted mean. It however cannot predict that an unacceptable collision rate is more 

likely than an acceptable collision rate for any crossing in the database. The primary goal of further 

research should be to identify a new acceptability threshold that can be predicted with a greater 

degree of certainty than Model 3 is currently capable of. Such a threshold may be the random 

probability of collision based on the data. Once this threshold has been identified, a second focus 

of further research should be to increase the overall accuracy of the model and to determine if there 

are other influential factors, such as human behavior, that are not currently considered.   

 

Though the resulting has limitations, this research has shown that Bayesian statistics, specifically 

Bayesian Networks, offer a promising method for determining the likelihood of collision risk at 

grade crossings. As the APS model ages and continues to decline in accuracy, the need for the 

development of a new model will grow. Additionally, should the rate of rail-highway crossing 

incidents continue to increase, more sophisticated modelling techniques and countermeasures will 

need to be developed to reverse the trend. As such, researchers should continue to pursue the 

development of new prediction models that can eventually replace the APS as the primary accident 

predication model.  
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Appendix A 

 

R Scripts  

 

  

Figure 28: Exploratory Data Analyses Page 1 
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Figure 29: Exploratory Data Analyses Page 2 
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Figure 30: Exploratory Data Analyses Page 3 
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Figure 31: Exploratory Data Analyses Page 4 
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Figure 32: Model Development Page 1 
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Figure 33: Model Development Page 2 
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Figure 34: Model Development Page 3 
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